Solution of the radiative transfer equation in NLTE stellar atmospheres

Similar documents
Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres

arxiv: v1 [astro-ph.sr] 14 May 2010

PHAS3135 The Physics of Stars

Opacity and Optical Depth

Model Photospheres with Accelerated Lambda Iteration

Lecture 2 Solutions to the Transport Equation

7. Non-LTE basic concepts

NLTE solar flare models with stationary velocity fields

Limb Darkening. Limb Darkening. Limb Darkening. Limb Darkening. Empirical Limb Darkening. Betelgeuse. At centre see hotter gas than at edges

7. Non-LTE basic concepts

RADIATIVE TRANSFER IN AXIAL SYMMETRY

Stellar atmospheres: an overview

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5]

Lecture Notes on Radiation Transport for Spectroscopy

XXIX IAC Winter School of Astrophysics

Energy transport: convection

Lecture 3 Numerical Solutions to the Transport Equation

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Radiative Transfer Plane-Parallel Frequency-Dependent

On the NLTE plane-parallel and spherically symmetric model atmospheres of helium rich central stars of planetary nebulae

Model Atmospheres. Model Atmosphere Assumptions

Section 11.5 and Problem Radiative Transfer. from. Astronomy Methods A Physical Approach to Astronomical Observations Pages , 377

CMFGEN. Associate every atomic species with a given identification number

Assignment 4 Solutions [Revision : 1.4]

Radiative transfer theory (Pure gas atmosphere)

Atomic Physics 3 ASTR 2110 Sarazin

arxiv: v1 [astro-ph.sr] 13 Jun 2014

Observational Appearance of Black Hole Wind Effect of Electron Scattering

Modelling stellar atmospheres with full Zeeman treatment

2. Basic Assumptions for Stellar Atmospheres

SIMPLE RADIATIVE TRANSFER

Radiative Transfer and Molecular Lines Sagan Workshop 2009

Lecture Notes: Basic Equations

2. Stellar atmospheres: Structure

11.1 Local Thermodynamic Equilibrium. 1. the electron and ion velocity distributions are Maxwellian,

Hale Collage. Spectropolarimetric Diagnostic Techniques!!!!!!!! Rebecca Centeno

2. Basic assumptions for stellar atmospheres

In this method, one defines

Introduction to Solar Radiative Transfer II Non-LTE Radiative Transfer

Stellar Atmospheres. University of Denver, Department of Physics and Astronomy. Physics 2052 Stellar Physics, Winter 2008.

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

xii ASTROPHYSICAL BACKGROUND

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies,

Lecture 4: Absorption and emission lines

TRANSFER OF RADIATION

Non-LTE models for synthetic spectra of Type Ia supernovae

SISD Training Lectures in Spectroscopy

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

Nearly everything that we know about stars comes from the photons they emit into space.

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

arxiv:astro-ph/ v1 16 Jun 2005

Stellar Atmospheres: Basic Processes and Equations

Photon Physics. Week 4 26/02/2013

Radiative transfer in planetary atmospheres

To remain at 0 K heat absorbed by the medium must be removed in the amount of. dq dx = q(l) q(0) dx. Q = [1 2E 3 (τ L )] σ(t T 4 2 ).

Radiative Transfer in Axial Symmetry

WINDS OF HOT MASSIVE STARS III Lecture: Quantitative spectroscopy of winds of hot massive stars

Astronomy 421. Lecture 14: Stellar Atmospheres III

arxiv: v1 [astro-ph.sr] 2 Jan 2009

2. Basic assumptions for stellar atmospheres

Astro 305 Lecture Notes Wayne Hu

Radiation in climate models.

Atomic Physics ASTR 2110 Sarazin

Theory of optically thin emission line spectroscopy

Environment of the Radiation Field ...

Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities

Substellar Atmospheres. PHY 688, Lecture 18 Mar 9, 2009

Beer-Lambert (cont.)

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

Plasma Spectroscopy Inferences from Line Emission

Radiative Transfer and Stellar Atmospheres

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities

Nearly everything that we know about the Sun (& other stars) comes from the photons it emits into space.

Introduction to the School

2 The Radiative Transfer Equation

Lecture 2: Formation of a Stellar Spectrum

Substellar Atmospheres II. Dust, Clouds, Meteorology. PHY 688, Lecture 19 Mar 11, 2009

Solar and Stellar Atmospheric Modeling Using the Pandora Computer Program

25 years of progress in modeling stellar winds

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

PHYS 231 Lecture Notes Week 3

Spectroscopy. AST443, Lecture 14 Stanimir Metchev

Astronomy 421. Lecture 13: Stellar Atmospheres II. Skip Sec 9.4 and radiation pressure gradient part of 9.3

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Radiative Transfer with Polarization

Outline. Today we will learn what is thermal radiation

The art of Stokes inversions. Luis R. Bellot Rubio Instituto de Astrofísica de Andalucía (CSIC), Spain National Astronomical Observatory, Japan

Topics ASTR 3730: Fall 2003

COX & GIULI'S PRINCIPLES OF STELLAR STRUCTURE

PHYS 633: Introduction to Stellar Astrophysics

Stellar Spectra ASTR 2120 Sarazin. Solar Spectrum

X-ray Emission from O Stars. David Cohen Swarthmore College

SOLAR SPECTRUM FORMATION

Optical Depth & Radiative transfer

Stellar Astrophysics: Heat Transfer 1. Heat Transfer

Spectroscopy Lecture 2

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out.

Introduction. Stellar Objects: Introduction 1. Why should we care about star astrophysics?

Hydrodynamic model atmospheres for WR stars. Self-consistent modeling of a WC star wind

Transcription:

Solution of the radiative transfer equation in NLTE stellar atmospheres Jiří Kubát kubat@sunstel.asu.cas.cz Astronomický ústav AV ČR Ondřejov Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 1

Outline 1. Basic equations for stellar atmospheres 2. Radiative transfer equation 3. Equations of statistical equilibrium 4. Discretization 5. Formal solution of RTE 6. Lambda iteration 7. Complete linearization 8. Accelerated lambda iteration Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 2

Role of radiation in stellar atmospheres source of information about star and stellar atmosphere influence on matter in stellar atmosphere non-local (long distance) interaction (photon mean free path particle mean free path) change of the population numbers (non-equilibrium values) radiatively driven stellar wind Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 3

Basic equations assume static atmosphere ( v = 0) stationary atmosphere ( / t = 0) 1-dimensional atmosphere given temperature structure T ( r) given density structure ρ( r) equations to be solved (numerically): radiative transfer equation equations of statistical equilibrium Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 4

Basic equations assume static atmosphere ( v = 0) stationary atmosphere ( / t = 0) 1-dimensional atmosphere given temperature structure T ( r) given density structure ρ( r) equations to be solved (numerically): radiative transfer equation equations of statistical equilibrium Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 4

Basic equations assume static atmosphere ( v = 0) stationary atmosphere ( / t = 0) 1-dimensional atmosphere given temperature structure T ( r) given density structure ρ( r) equations to be solved (numerically): radiative transfer equation equations of statistical equilibrium account for full angle and frequency dependence (I (µ, ) I µ ) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 4

Radiative transfer equation µ di µ(z) dz = η (z) χ (z)i µ (z) = χ [S (z) I µ (z)] η (z) emissivity χ (z) opacity S (z) = η (z) χ (z) source function Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 5

Radiative transfer equation µ di µ(z) dz = η (z) χ (z)i µ (z) = χ [S (z) I µ (z)] introduce dτ = χ dz optical depth J = 1 1 I 2 1 µ dµ mean intensity K = 1 1 2 1 µ2 I µ dµ f = K /J variable Eddington factor (Auer & Mihalas 1970) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 5

Radiative transfer equation µ di µ(z) dz = η (z) χ (z)i µ (z) = χ [S (z) I µ (z)] introduce dτ = χ dz optical depth J = 1 1 I 2 1 µ dµ mean intensity K = 1 1 2 1 µ2 I µ dµ f = K /J variable Eddington factor (Auer & Mihalas 1970) 2nd order equation d 2 [f (z)j (z)] dτ 2 = J (z) S (z) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 5

Radiative transfer equation 2nd order equation d 2 [f (z)j (z)] dτ 2 = J (z) S (z) + boundary conditions d [f (z)j (z)] = g (z) H dτ upper d [f (z)j (z)] = H + + g (z) dτ lower g = R 1 0 µ (I + µ I µ) dµ J Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 5

Radiative transfer equation opacity χ = i emissivity l>i [ n i g ] i n l α il () + g l i k ( n i n i e h kt n e n k α kk (, T ) ) α ik ()+ ( 1 e h kt ) + n e σ e η = 2h3 c 2 [ i l>i n l g i g l α il () + i n i α ik ()e h kt + k n e n k α kk (, T )e h kt ] Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 6

Radiative transfer equation opacity χ = i emissivity l>i [ n i g ] i n l α il () + g l i k ( n i n i e h kt n e n k α kk (, T ) ) α ik ()+ ( 1 e h kt ) + n e σ e η = 2h3 c 2 [ i l>i n l g i g l α il () + i n i α ik ()e h kt + n e n k α kk (, T )e h kt ] k Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 6

Equations of statistical equilibrium in LTE: n i = f (n e, T ) Saha-Boltzmann distribution Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 7

Equations of statistical equilibrium outside LTE: n i = f (n e, T, J ) statistical equilibrium for i = 1,... NL l i {n l [R li + C li ] n i (R il + C il )} = 0 Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 7

Equations of statistical equilibrium outside LTE: n i = f (n e, T, J ) statistical equilibrium for i = 1,... NL l i {n l [R li + C li ] n i (R il + C il )} = 0 collisional rates n i C il = n i n e q il (T ), Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 7

Equations of statistical equilibrium outside LTE: n i = f (n e, T, J ) statistical equilibrium for i = 1,... NL l i radiative rates {n l [R li + C li ] n i (R il + C il )} = 0 αil () n i R il = n i 4π h J d ( g i αij () 2h 3 n l R li = n l 4π g j h c 2 + J ) d Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 7

Equations of statistical equilibrium outside LTE: n i = f (n e, T, J ) statistical equilibrium for i = 1,... NL {n l [R li (J ) + C li ] n i (R il (J ) + C il )} = 0 l i radiative rates αil () n i R il = n i 4π h J d ( g i αij () 2h 3 n l R li = n l 4π g j h c 2 + J ) d Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 7

Final radiative transfer equation d 2 [f (z)j (z)] dτ 2 = J (z) S (z, J ) S = η χ f = K J K = χ = f χ (, n e, T, n i ) Z 1 1 «µ 2 I µ dµ η = f η (, n e, T, n i ) X {n l [R li (J ) + C li ] n i (R il (J ) + C il )} = 0 l i Z n i R il = n i 4π Z g i n l R li = n l 4π g j αil () h αij () h J d 2h 3 c 2 + J «d Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 8

Two-level atom d 2 [f (z)j (z)] dτ 2 = J (z) S (z, J ) the source function may be written as (Mihalas 1978) S = (1 ε) ϕ J d + εb ε = ε 1 + ε ε = C 21 ( 1 e h/kt ) A 21 Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 9

Discretization J continuous function of z, depth (z d) equidistant in log m or log τ some 4 5 depth points per decade frequency ( n) not equidistant need to resolve lines continuum edges angle (µ m) 3 directions all quantities expressed as J dn Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 10

Discretized radiative transfer equation for a frequency point n and angle m, depth points d = 1,..., ND a d f d 1 J d 1 + (b d f d + 1) J d + c d f d+1 J d+1 = S d (b 1 f 1 + g 1 + 1) J 1 + c 1 f 2 J 2 = H + S 1 a ND f ND 1 J ND 1 + (b ND f ND + g ND + 1) J ND = H + + S ND» 1 1 a d = τ 2 d + τ 12 d+ τ 12 d 12» 1 1 c d = τ 2 d + τ 12 d+ τ 12 d+ 12 b d = a d c d. Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 11

Discretized frequency integration for lines, ensure that J() d φ() d = NF n=1 NF n=1 w n J n w n φ n = 1 if not, it is obligatory to renormalize w n for continuum edges place 2 frequency points (on both sides) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 12

Discretized angle integration I(µ) dµ NF m=1 w m I m 3 points sufficient if Gaussian quadrature is used also necessary to check normalization Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 13

Discretized equations of statistical equilibrium for all d = 1,..., ND, i = 1,..., NL {(n l ) d [(R li ) d + (C li ) d ] (n i ) d [(R il ) d + (C il ) d ]} = 0 l i (n i ) d (R il ) d = (n i ) d 4π NF n=1 (n l ) d (R li ) d = (n l ) d g i g j 4π w n (α il ) n h n NF n=1 J dn w n (α il ) n h n ( 2h 3 n c 2 + J dn ) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 14

Formal solution of the RTE solution for given χ and η (given S ) relatively simple d 2 [f (z)j (z)] dτ 2 = J (z) S (z) 2nd order differential equation same numerical scheme as for the Feautrier solution crucial for the total accuracy of the whole problem solution Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 15

Λ iteration radiative transfer equation for J d 2 [f (z)j (z)] dτ 2 = J (z) S (z) formally may be written as J = Λ S iteration scheme: J ESE S RTE J ESE S l i J (n+1) { [ ] n (n) l R li (J (n) ) + C li = Λ S (n) n (n) i [ R il (J (n) ) + C il ]} = 0 converges extremely slowly for stellar atmospheres Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 16

Complete linearization to stellar atmospheres introduced by Auer & Mihalas (1969) for the case of NLTE model atmospheres solution of equations: radiative transfer (J ) hydrostatic equilibrium (ρ) radiative equilibrium (T ) statistical equilibrium (n i ) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 17

Complete linearization to stellar atmospheres introduced by Auer & Mihalas (1969) for the case of NLTE model atmospheres for a restricted problem NLTE line formation (Auer 1973) solution of equations: radiative transfer (J ) statistical equilibrium (n i ) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 17

Complete linearization to stellar atmospheres introduced by Auer & Mihalas (1969) for the case of NLTE model atmospheres for a restricted problem NLTE line formation (Auer 1973) solution of equations: radiative transfer (J ) statistical equilibrium (n i ) vector of solution ψ = (J 1,..., J NF, n 1,..., n NL ) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 17

Complete linearization vector of solution ψ = (J 1,..., J NF, n 1,..., n NL ), dimension NF + NL formally F ( ) ψ = 0 current estimate ψ 0 correct solution ψ = ψ 0 + δ ψ corrections δ ψ = [ F ψ ( ψ0 ) ] 1 matrix NL + NF for each depth point d F ( ψ0 ) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 18

Complete linearization radiative transfer equation (from Mihalas, 1978, Stellar atmospheres) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 19

Complete linearization radiative transfer equation J = (J 1,..., J NF ) A d δ J d 1 + B d δ J d + C d δ J d+1 = L d δs nd = NL l=1 S n n l (δn l ) d d Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 19

Complete linearization radiative transfer equation J = (J 1,..., J NF ) A d δ J d 1 + B d δ J d + C d δ J d+1 = L d δs nd = NL l=1 S n n l (δn l ) d d A d δj n,d 1 + B d δj n,d + C d δj n,d+1 + D d δn l,d = L n,d Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 19

Complete linearization radiative transfer equation A d δj n,d 1 + B d δj n,d + C d δj n,d+1 + D d δn l,d = L n,d statistical equilibrium A n = b, n = (n 1,..., n NL ) [ ] A b n n n + A d δ n d + [ A J n,d n b J n,d ] δj n,d = b d A d n d E d δn l,d + F d δj n,d = K l,d Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 19

Complete linearization radiative transfer equation A d δj n,d 1 + B d δj n,d + C d δj n,d+1 + D d δn l,d = L n,d statistical equilibrium E d δn l,d + F d δj n,d = K l,d Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 19

Complete linearization radiative transfer equation A d δj n,d 1 + B d δj n,d + C d δj n,d+1 + D d δn l,d = L n,d statistical equilibrium E d δn l,d + F d δj n,d = K l,d n l J n = δn l,d = NL r=1 A 1 lr NF n=1 [ n l J n b r J n δ(j n ) d d NL s=1 A rs J n n s ] Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 19

Complete linearization radiative transfer + statistical equilibrium A d δ J d 1 + B d δ J d + C d δ J d+1 = L d J d = (J 1,..., J NF ), d = 1,..., ND A 1 = 0, C ND = 0 Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 20

Complete linearization reformulation using net radiative bracket (Auer & Heasley 1976) t transition index (δz t ) d = (n i ) d (δr il ) d (n l ) d (δr li ) d δn i = t n i Z t δz t δ Z t + R t n i + S t δ n l = L t ( ) n i n l 1 + R t + S t δz t = Z t Z L t R t t t t n i Z t δz t S t t t n l Z t δz t system is solved for (Z t ) d Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 21

Accelerated lambda iteration huge matrices in complete linearization laborious and computationally expensive simple Λ-iteration convergence problems way out > Accelerated lambda iteration (ALI) (Cannon 1973) formal solution J = Λ S Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 22

Accelerated lambda iteration huge matrices in complete linearization laborious and computationally expensive simple Λ-iteration convergence problems way out > Accelerated lambda iteration (ALI) (Cannon 1973) formal solution J = Λ S + Λ S Λ S Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 22

Accelerated lambda iteration huge matrices in complete linearization laborious and computationally expensive simple Λ-iteration convergence problems way out > Accelerated lambda iteration (ALI) (Cannon 1973) formal solution J = Λ S + (Λ Λ ) S Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 22

Accelerated lambda iteration huge matrices in complete linearization laborious and computationally expensive simple Λ-iteration convergence problems way out > Accelerated lambda iteration (ALI) (Cannon 1973) formal solution iteration scheme J = Λ S + (Λ Λ ) S J (n+1) = Λ S (n+1) + (Λ Λ ) S (n) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 22

Accelerated lambda iteration huge matrices in complete linearization laborious and computationally expensive simple Λ-iteration convergence problems way out > Accelerated lambda iteration (ALI) (Cannon 1973) formal solution iteration scheme J = Λ S + (Λ Λ ) S J (n+1) = Λ S (n+1) + (Λ Λ ) S (n) }{{} J (n) correction term Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 22

Accelerated lambda iteration huge matrices in complete linearization laborious and computationally expensive simple Λ-iteration convergence problems way out > Accelerated lambda iteration (ALI) (Cannon 1973) formal solution iteration scheme J = Λ S + (Λ Λ ) S J (n+1) = Λ S (n+1) + (Λ Λ ) S (n) }{{} J (n) correction term compare: J (n+1) = Λ S (n) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 22

Accelerated lambda iteration iteration scheme J (n+1) = Λ S (n+1) + (Λ Λ ) S (n) = Λ S (n+1) + J (n) J (n) correction term S RTE J, J ESE+ALI S solution of the radiative transfer equation is transferred to the solution of the statistical equilibrium equations Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 23

Accelerated lambda iteration iteration scheme J (n+1) = Λ S (n+1) + (Λ Λ ) S (n) = Λ S (n+1) + J (n) J (n+1) radiative rates n i R il = n i 4π n l R li = n l g i g j 4π αil () h αij () h [ Λ S (n+1) ( 2h 3 c 2 + ] + J (n) d [ Λ S (n+1) ] ) + J (n) d Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 23

Accelerated lambda iteration equations of statistical equilibrium l i {n l [R li (n i, n l ) + C li ] n i (R il (n i, n l ) + C il )} = 0 for i = 1,... NL ALI eliminated radiation field from the explicit solution equations of statistical equilibrium are nonlinear in n i, n l savings important, for a typical problem NF 10000 Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 24

Accelerated lambda iteration equations of statistical equilibrium {n l [R li (n i, n l ) + C li ] n i (R il (n i, n l ) + C il )} = 0 l i solution by Newton-Raphson method (linearization) preconditioning Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 24

Summary two basic methods of the solution of the RTE+ESE system 1. complete linearization (Kiel) 2. accelerated lambda iteration (DETAIL) Non-LTE Line Formation for Trace Elements in Stellar Atmospheres, Nice 30.07.2007 p. 25