Classical electromagnetism - Wikipedia, the free encyclopedia

Similar documents
Physics 402: Electricity & Magnetism II

TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva

Physics 402: Electricity & Magnetism II

Physics 402: Electricity & Magnetism II

Describe the forces and torques exerted on an electric dipole in a field.

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

UNIT I ELECTROSTATIC FIELDS

INTRODUCTION TO ELECTRODYNAMICS

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES

Classical Electrodynamics

CHAPTER 7 ELECTRODYNAMICS

has an exact defined value: [1][2]

Introduction to Electromagnetism

PHYSICS LECTURES ON. 'ftt/tatt DEFINITIVE EDITION VOLUME II FEYNMAN LEIGHTON SANDS. Addison Wesley PEARSON

Physics For Scientists and Engineers A Strategic Approach 3 rd Edition, AP Edition, 2013 Knight

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

qq k d Chapter 16 Electric and Magnetic Forces Electric charge Electric charges Negative (electron) Positive (proton)

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

CLASSICAL ELECTRICITY

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange

ε induced Review: Self-inductance 20.7 RL Circuits Review: Self-inductance B induced Announcements

PHYSICS Course Structure Units Topics Marks Electrostatics Current Electricity III Magnetic Effect of Current & Magnetism

Physics 4322 Spring Section Introduction to Classical Electrodynamics - Part 2

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

Electromagnetic field theory

Unit-1 Electrostatics-1

Engineering Electromagnetics

Uniqueness theorems, Separation of variables for Poisson's equation

SCIENCE DEPT CHAIR: Mr. Scheidt AS 212B

Classical Field Theory

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

UNIT-I Static Electric fields

fusion production of elements in stars, 345

Calculus Relationships in AP Physics C: Electricity and Magnetism

Electromagnetic Field Theory (EMT) Lecture # 25

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016

MUDRA PHYSICAL SCIENCES


1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

University of Colorado at Boulder Summer 2017, Session B Tuesday, July 11 - Friday, August 11. Prof. Mik Sawicki PHYS 1120 COURSE CALENDAR WEEK 1

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

COPYRIGHTED MATERIAL. Basic Field Vectors. 1.1 The Electric and Magnetic Field Vectors

10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017

TECHNO INDIA BATANAGAR

Part IB Electromagnetism

Module 3: Electromagnetism

Chapter wise Theoretical Important Questions in Physics for. Class-XII. Electrostatics

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Chapter wise Theoretical Important Questions in Physics for Class-XII

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

ELECTROMAGNETIC FIELDS AND WAVES

Lecture Notes on ELECTROMAGNETIC FIELDS AND WAVES

Chapter 22. Induction

Wilson Area School District Planned Course Guide

ELECTRO MAGNETIC FIELDS

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY

Northern Regional: January 19 th, Circuit Lab B Test. Name(s): Team Name: School Name: Rank: Team Number: Score:

AP Physics C Electricity and Magnetism

Principles of Mobile Communications

ELECTROMAGNETIC FIELD

ELECTROMAGNETIC WAVES WHAT IS LIGHT?

Chap. 1 Fundamental Concepts

Discipline Course-I Semester-II

UNIT-III Maxwell's equations (Time varying fields)

Chapter 2 Basics of Electricity and Magnetism

Mineral Area College FALL credit hours

SUGGESTED LESSON PLANS FOR PHY 097 SEMESTER NOV10 Text Book : PHYSICS FOR SCIENTISTS & ENGINEERS WITH MODERN PHYSICS BY GIANCOLI, FOURTH EDITION

AC Circuits and Electromagnetic Waves

ELECTROMAGNETIC FIELDS AND RELATIVISTIC PARTICLES

Don t Copy This. Michael Faraday 3/1/13. Chapter 25: EM Induction and EM Waves. Key Terms:

Where k = 1. The electric field produced by a point charge is given by

1. An isolated stationary point charge produces around it. a) An electric field only. b) A magnetic field only. c) Electric as well magnetic fields.

ELECTRICITY AND MAGNETISM

1 Basic electromagnetism

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

PHYS 1444 Section 004 Lecture #22

AP Physics C - E & M

Announcements Self-inductance. Self-inductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9-.10) τ = R. Electromagnetic Waves

Electromagnetic Induction

REVIEW SESSION. Midterm 2

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work

Welcome to PHY2054C. Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140

Electromagnetic Theory PHYS 401/402

College Physics 10th edition

Chapter 21 Magnetic Induction Lecture 12

Chapter 7. Electrodynamics

ELECTRICITY AND MAGNETISM

Inductance. thevectorpotentialforthemagneticfield, B 1. ] d l 2. 4π I 1. φ 12 M 12 I 1. 1 Definition of Inductance. r 12

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

9-3 Inductance. * We likewise can have self inductance, were a timevarying current in a circuit induces an emf voltage within that same circuit!

Engineering Electromagnetic Fields and Waves

Here are some internet links to instructional and necessary background materials:

UNIT-I Static Electric fields

University Of Pennsylvania Department of Physics PHYS 141/151 Engineering Physics II (Course Outline)

Yell if you have any questions

Transcription:

Page 1 of 6 Classical electromagnetism From Wikipedia, the free encyclopedia (Redirected from Classical electrodynamics) Classical electromagnetism (or classical electrodynamics) is a branch of theoretical physics that studies consequences of the electromagnetic forces between electric charges and currents. It provides an excellent description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible (see quantum electrodynamics). Fundamental physical aspects of classical electrodynamics are presented e.g. by Feynman, Leighton and Sands, [1] Panofsky and Phillips, [2] and Jackson. [3] The theory of electromagnetism was developed over the course of the 19th century, most prominently by James Clerk Maxwell. For a detailed historical account, consult Pauli, [4] Whittaker, [5] and Pais. [6] See also History of optics, History of electromagnetism and Maxwell's equations. Ribarič and Šušteršič [7] considered a dozen open questions in the current understanding of classical electrodynamics; to this end they studied and cited about 240 references from 1903 to 1989. The outstanding problem with classical electrodynamics, as stated by Jackson, [3] is that we are able to obtain and study relevant solutions of its basic equations only in two limiting cases:»... one in which the sources of charges and currents are specified and the resulting electromagnetic fields are calculated, and the other in which external electromagnetic fields are specified and the motion of charged particles or currents is calculated... Occasionally,..., the two problems are combined. But the treatment is a stepwise one -- first the motion of the charged particle in the external field is determined, neglecting the emission of radiation; then the radiation is calculated from the trajectory as a given source distribution. It is evident that this manner of handling problems in electrodynamics can be of only approximative validity.«as a consequence, we do not yet have physical understanding of those electromechanical systems where we cannot neglect the mutual interaction between electric charges and currents, and the electromagnetic field emitted by them. In spite of a century long effort, there is as yet no generally accepted classical equation of motion for charged particles, as well as no pertinent experimental data, cf. [8] Contents Electromagnetism Electricity Magnetism Electrostatics Electric charge Coulomb's law Electric field Electric flux Gauss's law Electric potential Electrostatic induction Electric dipole moment Polarization density Magnetostatics Ampère's law Electric current Magnetic field Magnetization Magnetic flux Biot Savart law Magnetic dipole moment Gauss's law for magnetism Electrodynamics Lorentz force law emf Electromagnetic induction Faraday s law Lenz's law Displacement current Maxwell's equations EM field Electromagnetic radiation Liénard Wiechert potential Maxwell tensor Eddy current Electrical Network Electrical conduction Electrical resistance Capacitance Inductance Impedance Resonant cavities Waveguides Covariant formulation 1 Lorentz force

Page 2 of 6 2 The electric field E 3 Electromagnetic waves 4 General field equations 5 Models 6 See also 7 References 8 External links Lorentz force Main article: Lorentz force Electromagnetic tensor EM Stress-energy tensor Four-current Electromagnetic four-potential Scientists Ampère Coulomb Faraday Gauss Heaviside Henry Hertz Lorentz Maxwell Tesla Volta Weber Ørsted The electromagnetic field exerts the following force (often called the Lorentz force) on charged particles: where all boldfaced quantities are vectors: F is the force that a charge q experiences, E is the electric field at the location of the charge, v is the velocity of the charge, B is the magnetic field at the location of the charge. The above equation illustrates that the Lorentz force is the sum of two vectors. One is the cross product of the velocity and magnetic field vectors. Based on the properties of the cross product, this produces a vector that is perpendicular to both the velocity and magnetic field vectors. The other vector is in the same direction as the electric field. The sum of these two vectors is the Lorentz force. Therefore, in the absence of a magnetic field, the force is in the direction of the electric field, and the magnitude of the force is dependent on the value of the charge and the intensity of the electric field. In the absence of an electric field, the force is perpendicular to the velocity of the particle and the direction of the magnetic field. If both electric and magnetic fields are present, the Lorentz force is the sum of both of these vectors. The electric field E Main article: Electric field The electric field E is defined such that, on a stationary charge: where q 0 is what is known as a test charge. The size of the charge doesn't really matter, as long as it is small enough not to influence the electric field by its mere presence. What is plain from this definition, though, is that the unit of E is N/C, or newtons per coulomb. This unit is equal to V/m (volts per meter), see below. The above definition seems a little bit circular but, in electrostatics, where charges are not moving, Coulomb's law works fine. The result is:

Page 3 of 6 where n is the number of charges, q i is the amount of charge associated with the ith charge, r i is the position of the ith charge, r is the position where the electric field is being determined, and ε 0 is the electric constant. Note: the above is just Coulomb's law, divided by q 1, adding up multiple charges. If the field is instead produced by a continuous distribution of charges, the summation becomes an integral: where ρ(r) is the charge density as a function of position, is the unit vector pointing from dv to the point in space E is being calculated at, and r is the distance from the point E is being calculated at to the point charge. Both of the above equations are cumbersome, especially if one wants to calculate E as a function of position. There is, however, a scalar function called the electrical potential that can help. Electric potential, also called voltage (the units for which are the volt), which is defined by the line integral where φ E is the electric potential, and C is the path over which the integral is being taken. Unfortunately, this definition has a caveat. From Maxwell's equations, it is clear that E is not always zero, and hence the scalar potential alone is insufficient to define the electric field exactly. As a result, one must resort to adding a correction factor, which is generally done by subtracting the time derivative of the A vector potential described below. Whenever the charges are quasistatic, however, this condition will be essentially met, so there will be few problems. From the definition of charge, one can easily show that the electric potential of a point charge as a function of position is: where q is the point charge's charge, r is the position, and r q is the position of the point charge. The potential for a general distribution of charge ends up being: where ρ(r) is the charge density as a function of position, and r is the distance from the volume element dv.

Page 4 of 6 Note well that φ is a scalar, which means that it will add to other potential fields as a scalar. This makes it relatively easy to break complex problems down in to simple parts and add their potentials. Taking the definition of φ backwards, we see that the electric field is just the negative gradient (the del operator) of the potential. Or: From this formula it is clear that E can be expressed in V/m (volts per meter). Electromagnetic waves Main article: Electromagnetic waves A changing electromagnetic field propagates away from its origin in the form of a wave. These waves travel in vacuum at the speed of light and exist in a wide spectrum of wavelengths. Examples of the dynamic fields of electromagnetic radiation (in order of increasing frequency): radio waves, microwaves, light (infrared, visible light and ultraviolet), x-rays and gamma rays. In the field of particle physics this electromagnetic radiation is the manifestation of the electromagnetic interaction between charged particles. General field equations Main articles: Jefimenko's equations and Liénard-Wiechert Potentials As simple and satisfying as Coulomb's equation may be, it is not entirely correct in the context of classical electromagnetism. Problems arise because changes in charge distributions require a non-zero amount of time to be "felt" elsewhere (required by special relativity). For the fields of general charge distributions, the retarded potentials can be computed and differentiated accordingly to yield Jefimenko's Equations. Retarded potentials can also be derived for point charges, and the equations are known as the Liénard- Wiechert potentials. The scalar potential is: where q is the point charge's charge and r is the position. r q and v q are the position and velocity of the charge, respectively, as a function of retarded time. The vector potential is similar: These can then be differentiated accordingly to obtain the complete field equations for a moving point particle.

Page 5 of 6 Models A branch of classical electromagnetisms such as optics, electrical and electronic engineering consist of a collection of relevant mathematical models of different degree of simplification and idealization to enhance our understanding of the specific electrodynamics phenomena, cf. [9] An electrodynamics phenomenon is determined by the particular fields, specific densities of electric charges and currents, and the particular transmission medium. Since there are infinitely many of them, in modeling there is a need for some typical, representative (a) electrical charges and currents, e.g. moving pointlike charges and electric and magnetic dipoles, [10] electric currents in a conductor etc; (b) electromagnetic fields, e.g. voltages, the Liénard-Wiechert potentials, the monochromatic plane waves, optical rays; radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, gamma rays etc; (c) transmission media, e.g. electronic components, antennas, electromagnetic waveguides, flat mirrors, mirrors with curved surfaces convex lenses, concave lenses; resistors, inductors, capacitors, switches; wires, electric and optical cables, transmission lines, integrated circuits etc; which all have only few variable characteristics. See also Quantum electrodynamics Wheeler-Feynman absorber theory References 1. ^ Feynman, R.P., R.B. Leighton, and M. Sands, 1965, The Feynman Lectures on Physics, Vol. II: the Electromagnetic Field, Addison-Wesley, Reading, Mass. 2. ^ Panofsky, W.K., and M. Phillips, 1969, Classical Electricity and Magnetism, 2nd edition, Addison- Wesley, Reading, Mass. 3. ^ a b Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). New York: Wiley. ISBN 0-471-30932-X. 4. ^ Pauli, W., 1958, Theory of Relativity, Pergamon, London 5. ^ Whittaker, E.T., 1960, History of the Theories of the Aether and Electricity, Harper Torchbooks, New York. 6. ^ Pais, A., 1983,»Subtle is the Lord...«; the Science and Life of Albert Einstein, Oxford University Press, Oxford 7. ^ Ribarič, M., and L. Šušteršič, 1990, Conservation Laws and Open Questions of Classical Electrodynamics, World Scientific, Singapore 8. ^ M. Ribarič and L. Šušteršič, Improvement on the Lorentz-Abraham-Dirac equation, arxiv:1011.1805 (http://arxiv.org/abs/1011.1805) 9. ^ Peierls, Rudolf. Model-making in physics (http://www.informaworld.com/smpp/content~content=a752582770~db=all~order=page), Contemporary Physics, Volume 21 (1), January 1980, 3-17. 10. ^ [ Ribarič M. and Šušteršič L. Moving pointlike charges and electric and magnetic dipoles, AM.J.Phys.60 (6),June 1992 ]

Page 6 of 6 External links Electromagnetic Field Theory (http://www.plasma.uu.se/ced/book/emft_book.pdf) by Bo Thidé Retrieved from "http://en.wikipedia.org/wiki/classical_electromagnetism" Categories: Electromagnetism Electrodynamics This page was last modified on 8 April 2011 at 23:45. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details. Wikipedia is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.