Geometry beyond Euclid

Similar documents
Chapter 12: Ruler and compass constructions

Constructions with ruler and compass

GALOIS THEORY : LECTURE 11

GALOIS THEORY : LECTURE 12

UNDERSTANDING RULER AND COMPASS CONSTRUCTIONS WITH FIELD THEORY

On Number Theory, Algebra and Spherical Geometry

1 Solution of Final. Dr. Franz Rothe December 25, Figure 1: Dissection proof of the Pythagorean theorem in a special case

The Three Ancient Problems 1

Models of Hyperbolic Geometry

Exercises for Unit V (Introduction to non Euclidean geometry)

Jennifer Duong Daniel Szara October 9, 2009

Section 6: Field and Galois theory

How to (Almost) Square a Circle

Lecture 6 SPHERICAL GEOMETRY

Math 1230, Notes 2. Aug. 28, Math 1230, Notes 2 Aug. 28, / 17

CBSE Class IX Syllabus. Mathematics Class 9 Syllabus

Test #1 Geometry MAT 4263

Constructions with ruler and compass.

A sequence of thoughts on constructible angles.

Lesson 9.1 Skills Practice

Lecture 6. Three Famous Geometric Construction Problems

D - E - F - G (1967 Jr.) Given that then find the number of real solutions ( ) of this equation.

Constructions with ruler and compass

POINCARE AND NON-EUCLIDEAN GEOMETRY

CHAPTER 5 INTRODUCTION TO EUCLID S GEOMETRY. 5.1 Introduction

MATHEMATICS (IX-X) (CODE NO. 041) Session

Exercise 2.1. Identify the error or errors in the proof that all triangles are isosceles.

MthEd/Math 300 Williams Fall 2011 Midterm Exam 3

EUCLID S AXIOMS A-1 A-2 A-3 A-4 A-5 CN-1 CN-2 CN-3 CN-4 CN-5

Geometry I (CM122A, 5CCM122B, 4CCM122A)

Lecture 1: Axioms and Models

Mathematics Class 9 Syllabus. Course Structure. I Number System 17 II Algebra 25 III Geometry 37 IV Co-ordinate Geometry 6 V Mensuration 5 Total 90

COURSE STRUCTURE CLASS -IX

Class IX Chapter 5 Introduction to Euclid's Geometry Maths

Notes on Quadratic Extension Fields

Activity Sheet 1: Constructions

THE CYCLOTOMIC EQUATION AND ITS SIGNIFICANCE TO SOLVING THE QUINTIC EQUATION

Properties of the Pseudosphere

COURSE STRUCTURE CLASS IX Maths


M A T H E M A T I K O N

III. THIRD YEAR SYLLABUS :

Euclidean Geometry. The Elements of Mathematics

REVISED vide circular No.63 on

baryons+dm radiation+neutrinos vacuum curvature

12.2 Existence proofs: examples

TERMWISE SYLLABUS SESSION CLASS-IX SUBJECT : MATHEMATICS. Course Structure. Schedule for Periodic Assessments and CASExam. of Session

Euclid Geometry And Non-Euclid Geometry. Have you ever asked yourself why is it that if you walk to a specific place from

3.C. Further comments on axioms for geometry

A crash course the geometry of hyperbolic surfaces

Course 311: Hilary Term 2006 Part IV: Introduction to Galois Theory

Exercise 5.1: Introduction To Euclid s Geometry

October 16, Geometry, the Common Core, and Proof. John T. Baldwin, Andreas Mueller. The motivating problem. Euclidean Axioms and Diagrams

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

Hon 213. Third Hour Exam. Name

Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals

CLASS-IX MATHEMATICS. For. Pre-Foundation Course CAREER POINT

Foundations of Basic Geometry

Course 311: Abstract Algebra Academic year

The Three Ancient Geometric Problems

CLASS IX : CHAPTER - 1 NUMBER SYSTEM

Euclid s Elements Part II

N-Division Points of Hypocycloids

MEI Conference Squaring the Circle and Other Shapes

WHAT IS HYPERBOLIC GEOMETRY?

GEOMETRIC CONSTRUCTIONS AND ALGEBRAIC FIELD EXTENSIONS

Geometry and axiomatic Method

TRIPURA BOARD OF SECONDARY EDUCATION. SYLLABUS (effective from 2016) SUBJECT : MATHEMATICS (Class IX)

CBSE OSWAAL BOOKS LEARNING MADE SIMPLE. Published by : 1/11, Sahitya Kunj, M.G. Road, Agra , UP (India) Ph.: ,

Pythagoras, Euclid, Archimedes and a new Trigonometry

What can you prove by induction?

Homework has to be turned in this handout. For extra space, use the back pages, or blank pages between. due January 22/23

Homework Assignments Math /02 Fall 2014

0. Introduction. Math 407: Modern Algebra I. Robert Campbell. January 29, 2008 UMBC. Robert Campbell (UMBC) 0. Introduction January 29, / 22

Some Highlights along a Path to Elliptic Curves

Mathematics 3210 Spring Semester, 2005 Homework notes, part 8 April 15, 2005

Exhaustion: From Eudoxus to Archimedes

Chapter 14 Hyperbolic geometry Math 4520, Fall 2017

Geometric Constructions

Dr Prya Mathew SJCE Mysore

Pretty Algebra. S.Kalimuthu,SF 212/4,Kanjampatti P.O,Pollachi Via,Tamil nadu ,India

Math 603, Spring 2003, HW 6, due 4/21/2003

CHAPTER 1. Introduction

UNIT 6. BELL WORK: Draw 3 different sized circles, 1 must be at LEAST 15cm across! Cut out each circle. The Circle

Greece. Chapter 5: Euclid of Alexandria

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C.

Tin Ka Ping Secondary School F.2 Mathematics Teaching Syllabus

Geometry. Commensurate and incommensurate segments. The Euclidean algorithm.

Homework Assignments Math /02 Fall 2017

Alg. Exercise (1) Department : Math Form : 1 st prep. Sheet. [1] Complete : 1) Rational number is 2) The set of integer is.. 3) If. is rational if x.

Hyperbolic Geometry on Geometric Surfaces

MATHEMATICS (IX-X) (Code No. 041)

MATHEMATICS QUESTION BANK. for CLASS IX CHAPTER WISE COVERAGE IN THE FORM MCQ WORKSHEETS AND PRACTICE QUESTIONSS.

The Gergonne problem

θ 2 Euclid s 5 th Axiom:

Contact. Emina. Office: East Hall 1825 Phone:

Math Number 842 Professor R. Roybal MATH History of Mathematics 24th October, Project 1 - Proofs

MA 460 Supplement: Analytic geometry

Solutions to Practice Final

Unit 1: Introduction to Proof

Transcription:

Geometry beyond Euclid M.S. Narasimhan IISc & TIFR, Bangalore narasim@math.tifrbng.res.in 1

Outline: Aspects of Geometry which have gone beyond Euclid Two topics which have played important role in development of mathematics Three famous Greek problems involving construction using compass and straight-edge. Euclid s Parallel Postulate How these concepts and problems that arise in Euclid have evolved. Relevance to modern mathematics and also to physics. 2

Euclid s Elements 3

Constructions with Ruler ( Straight-Edge and Compass) To construct lengths, angles and geometric figures using only (unmarked) straight-edge and compass. Starting from given data, construct finite number of lines/circles using ruler and compass, obtaining new points of intersection, ending with a desired figure. 4

Constructions with Ruler ( Straight-Edge and Compass) Starting from given data, construct finite number of lines/circles using ruler and compass, obtaining new points of intersection, ending with a desired figure. e.g., to construct an equilateral triangle on a given base: A B 5

Constructions with Ruler ( Straight-Edge and Compass) Starting from given data, construct finite number of lines/circles using ruler and compass, obtaining new points of intersection, ending with a desired figure. e.g., to construct an equilateral triangle on a given base: A B 6

Constructions with Ruler ( Straight-Edge and Compass) Starting from given data, construct finite number of lines/circles using ruler and compass, obtaining new points of intersection, ending with a desired figure. e.g., to construct an equilateral triangle on a given base: A B 7

Constructions with Ruler ( Straight-Edge and Compass) Starting from given data, construct finite number of lines/circles using ruler and compass, obtaining new points of intersection, ending with a desired figure. e.g., to construct an equilateral triangle on a given base: A B 8

Constructions with Ruler ( Straight-Edge and Compass) Other problems that can be done with ruler and straightedge are drawing parallel lines, bisecting angles, constructing squares of area equal to (or twice the area of) a given polygon Historically, there were three problems that proved elusive to solution using compass and straight-edge In fact, these problems puzzled mathematicians for thousands of years. 9

Problem 1: Duplication of the Cube To construct a cube whose volume is twice the volume of a given cube, using only compass and straight-edge. The Plague and the Oracle at Delphi, the Altar to Apollo, and Plato 10

Problem 2: Trisection of an (Arbitrary) Angle Given an arbitrary angle in the plane, to construct (using only straight-edge and compass) a new angle one-third of the given angle. 11

Problem 3: Squaring the Circle Given a circle in the plane, to construct (using only a compass and straight-edge) a square of area equal to the area of the enclosed by the circle. 12

Related Problem Given an integer n, to construct a regular polygon with n sides. 13

Solving the Three Problems The first and third problems date back to c. 450 BC Proved only in middle of 19th C (AD) that it is impossible to do first three constructions by straightedge and compass. As for fourth question: Greeks knew that this can be done for n = 3, 4, 5, 6, 15 (see that n = 7 missing) It is harder to convince a squarer of a circle that the problem is impossible to solve, than to solve the problem itself. 14

Contribution by Gauss The 19-year old Gauss proved that a regular 17-gon can be constructed by straight-edge and compass. This success motivated him to opt for a career in mathematics! The young Gauss It was only in the middle of the 19th C that the exact values of n for which a regular n-gon can be constructed by straight-edge and compass were determined. A regular 17-gon 15

Relevance to Modern Mathematics In the process of construction, certain major theories which play an important role in present day mathematics were developed. Evariste Galois Algebraic theory of fields, in particular, Galois theory. Theory of transcendental numbers Galois last testament 16

Why this long delay? Long delay in solution to these problems. Lack of clear and tractable formulation of these problems. (This could also explain large numbers of wrong solutions proposed.) 17

Geometry Algebra Middle of 17th C: introduction of Cartesian coordinates, by Descartes and Fermat, in an algebraic language. Descartes Fermat 18

Geometry Algebra Point in Euclidean plane represented by pair of real numbers (x,y). Figures in plane: algebraic relations between coordinates of points e.g., ax2 + by2 + cxy + d = 0 px + qy + r = 0 Problems of geometry transferred to algebra. Thus in our case, Descartes gave algebraic criterion for problem to be solvable, which I now proceed to describe 19

Descartes Formulation Suppose we are give points (a1, b1),, (an, bn) in the Cartesian plane, with ai, bi being rational numbers. (Recall a number is rational if it is of the form p/q, where p and q are integers,q 0.) Suppose a point (, ) in the plane can be constructed from the initial data {(ai, bi)} by means of ruler & compass. Then, Descartes gives a necessary and sufficient condition for to be so obtained. We will call such a number a constructible. A necessary condition is that should be an algebraic number i.e., it should satisfy an equation of the form am m am 1 m 1... a0 0 where a0,, am are rational numbers i.e., should be a root of a polynomial with rational coefficients. 20

Descartes Formulation Applied to Squaring the Circle Let us apply this to problem of squaring the circle. To find: a number a such that a2 =? (recall area A = r2, where r = radius) So a should be algebraic, by Descartes. It follows that should be algebraic. But Lindemann proved in 1822 that is not algebraic (the proof is not easy!) Thus squaring the circle is impossible. A number which is not algebraic is called transcendental. 21

Descartes Formulation Applied to Duplication of the Cube Duplication of the cube is impossible by compass and straight-edge, because (2)1/3 is not constructible. 22

Trisection of an Angle That 60o cannot be trisected by straight-edge and compass can be proved by considering the cubic equation: x3-3y - 1 = 0 23

Euclid s Parallel Postulate Given a line L in the plane and a point P not lying on the line, there exists a unique line through P not intersecting the line L. P L For more than 2000 years: attempts to deduce parallel postulate from other axioms of Euclid. Many attempts to prove by contradiction. e.g., Saccheri, Lambert, results in future non-euclidean geometry. Existing preconceptions did not suggest that a geometry without parallel postulate is possible. 24

Non-Euclidean Geometry Left to Lobachevsky & Bolyai (and Gauss!) to assert and construct such a geometry. Constructed a geometry in which through a point P not on a line L, there is an infinity of lines not intersecting L; hyperbolic geometry. Greeted by many as one of the greatest mathematical discoveries of the 19th C; paradigm shift. 25 Lobachevsky Bolyai

Poincaré Model of Hyperbolic Geometry Set of points in plane is interior of unit disc in usual Euclidean plane. Lines are arcs of circles perpendicular to unit circle and segments of lines through origin. Poincaré 26

Riemannian Geometry Riemann Scope of non-euclidean Geometry extended enormously by Riemann. Showed there are plenty of noneuclidean geometries. Famous paper: On the hypotheses which lie at the bases of Geometry (influenced by work of Gauss on 2-D surfaces) introduced notions of higher-dim spaces (manifolds), measure (Riemannian metric) curvature on such spaces 27

Riemannian Geometry & Curvature Curvature in Euclidean space is zero; sum of three angles of triangle is. Curvature in Lobachevsky hyperbolic space is negative; sum of three angles of triangle is less than. 28

Geodesics One can define notion of length of curve in Riemannian space Curves of shortest length (geodesics) are analogues of straight lines. Curvature controls behaviour of geodesics. 29

Implications for Physics Riemann s theory proved to be the basis for the general relativity theory of Einstein. Riemann himself was aware of the relevance of his theory to physics. Einstein 30

31