A Family of Multivariate Abel Series Distributions. of Order k

Similar documents
CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

Two Coefficients of the Dyson Product

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM

Principle Component Analysis

The Number of Rows which Equal Certain Row

Applied Statistics Qualifier Examination

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)

INTRODUCTION TO COMPLEX NUMBERS

International Journal of Pure and Applied Sciences and Technology

Statistics and Probability Letters

Review of linear algebra. Nuno Vasconcelos UCSD

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p*

Sequences of Intuitionistic Fuzzy Soft G-Modules

Numbers Related to Bernoulli-Goss Numbers

Katholieke Universiteit Leuven Department of Computer Science

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Improved Approximation Methods to the Stopped Sum Distribution

NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS

Least squares. Václav Hlaváč. Czech Technical University in Prague

Expected Value and Variance

Continuous Time Markov Chain

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

Randić Energy and Randić Estrada Index of a Graph

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

On the average number of divisors of the sum of digits of squares

The Schur-Cohn Algorithm

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Existence of Two Conjugate Classes of A 5 within S 6. by Use of Character Table of S 6

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB

SL n (F ) Equals its Own Derived Group

Remember: Project Proposals are due April 11.

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

On quasiperfect numbers

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

A combinatorial proof of multiple angle formulas involving Fibonacci and Lucas numbers

Lecture 4: Piecewise Cubic Interpolation

H-matrix theory and applications

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX

A General Dynamic Inequality of Opial Type

A new Approach for Solving Linear Ordinary Differential Equations

Vol. 5, No. 5 May 2014 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

Foundations of Arithmetic

System in Weibull Distribution

Continuous Time Markov Chains

Binomial transforms of the modified k-fibonacci-like sequence

Bernoulli Numbers and Polynomials

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes

4. Eccentric axial loading, cross-section core

Google PageRank with Stochastic Matrix

A New Method for Solving Fuzzy Volterra Integro-Differential Equations

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

Stochastic integral representations of quantum martingales on multiple Fock space

Lecture 36. Finite Element Methods

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

arxiv: v1 [math.co] 12 Sep 2014

On the spectral norm of r-circulant matrices with the Pell and Pell-Lucas numbers

ψ ij has the eigenvalue

COMPLEX NUMBER & QUADRATIC EQUATION

SELECTED PROOFS. DeMorgan s formulas: The first one is clear from Venn diagram, or the following truth table:

Restricted divisor sums

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

Exercises of Chapter 2

The binomial transforms of the generalized (s, t )-Jacobsthal matrix sequence

6. Stochastic processes (2)

PLEASE SCROLL DOWN FOR ARTICLE

NP-Completeness : Proofs

6. Stochastic processes (2)

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Self-complementing permutations of k-uniform hypergraphs

The internal structure of natural numbers and one method for the definition of large prime numbers

Machine Learning Support Vector Machines SVM

Lecture 3: Probability Distributions

Valuated Binary Tree: A New Approach in Study of Integers

CS-433: Simulation and Modeling Modeling and Probability Review

Lecture notes. Fundamental inequalities: techniques and applications

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2].

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

6.6 The Marquardt Algorithm

Neutrosophic Bi-LA-Semigroup and Neutrosophic N-LA- Semigroup

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

Meenu Gupta, Man Singh & Deepak Gupta

On the Multicriteria Integer Network Flow Problem

Research Article Relative Smooth Topological Spaces

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Realistic Method for Solving Fully Intuitionistic Fuzzy. Transportation Problems

Transcription:

Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind e-ml: rupk_cftech@yhoo.co.uk & 2 Deprtment of Sttstcs, Guht Unversty, Guwht, Assm, Ind e-ml: dskkshore@gml.com Abstrct In ths pper n ttempt s mde to defne the multvrte bel seres dstrbutons (MASDs) of order k. From MASD of order k, new dstrbuton clled the qus multvrte logrthmc seres dstrbuton (QMLSD) of order k s derved. Some well known dstrbutons re lso obtned by new method of dervton. Lmtng dstrbuton of QNMD of order k re studed. Mthemtcs Subect Clssfcton: 62E5; 62E7 Keywords: Multvrte Abel seres dstrbutons of order k, qus multvrte logrthmc seres dstrbuton of order k, qus multnoml dstrbuton of order k, qus negtve multnoml dstrbuton of order k. Introducton In ths study, consderng the multvrte Abel seres dstrbuton of order k, we hve defned multvrte Abel seres dstrbutons of order k. From the MASDs of order k, new dstrbuton clled Qus Multvrte logrthmc seres dstrbuton of order k s obtned. Also vrnt of qus negtve multnoml dstrbuton of order k s studed. Moreover, on usng new method of dervton some well known dstrbutons, vz. qus multnoml dstrbuton of type-i of order k (QMD-I (k)), qus multnoml dstrbuton of type-ii of order k (QMD-II (k)), multple generlzed posson dstrbuton of order k (MGPD (k)) etc. re obtned. A property,.e. the lmtng dstrbuton of the QNMD of order k hs been found out.

2240 R. Gupt nd K. K. Ds 2. Multvrte Abel seres dstrbuton of order k nd ts specl cses Let us consder fnte nd postve functon f ( ) of ( ) =,..., mk, where ech ( = () m), = () k s non-negtve nteger. For ny rel z, we hve the multnoml bel seres expnson of order k s, x ( k ) ( ) (, ) = ( ) /! ( ) = xz x = x = =.. () m k f f z x z x d f where the summton s over x, x 2, x 3,..., x k such tht x = x nd ech x ( = () m) ( k ) beng non-negtve nteger nd the fctor d f ( ) = xz / x! s denoted by β ( x, z) s ndependent of, whch s lwys greter thn zero. The domn of = (,..., mk ) s subspce of n mk-dmensonl prmeter spce subect to restrctons 0, f z 0 nd ( xz) 0, f z 0, z belongng to sutble subect of rel numbers. Thus, (2.) cn be wrtten, x ( ) (, ) = β (, ) ( ).. (2) x = x f f z x z x z usng the forml seres expnson (2.), we suggest the followng defnton for the multvrte bel seres dstrbuton of order k (MASD (k)) Defnton A multvrte dscrete dstrbuton of order k, pk ( x) s sd to be MASD (k) fmly, f t hs the followng probblty functon (p.f.), x ( k ) pk ( x) pk ( x;, z) = ( xz) /( k )! d f ( ) / f( ) = xz x = x... (3) where x = x, ech x beng non-negtve nteger, the ( = () m; = () k) nd z re prmeters nd f() re stted n (2.). For z = 0, the probblty functon (2.3) becomes multvrte power seres dstrbuton of order k.

Multvrte Abel seres dstrbutons 224 For z = 0 nd k =, the probblty functon (2.3) becomes multvrte Abel seres dstrbuton (Nnd nd Ds, 996) nd the z = 0, t becomes usul multvrte power seres dstrbuton (Ptl, 965). Dervton of some dstrbutons I. Here we derve new dstrbuton from MASD (k), clled the multvrte logrthmc seres dstrbuton of order k. Let us consder Abel seres expnson of order k of the logrthmc seres functon f() gven by, x! x log = x ( ) ;..... (4)! = x x ; x = 0,,...; for m, x > 0,0 < < ( for m& k); < Thus the ssocted MASD-fmly of order k hs the followng probblty functon, x! x pk ( x) = x ( ) ;......(5)! = x x log ; x = 0,,...; for m, x > 0,0 < < ( for m& k); < ~ MLSDk(,..., mk) (Ak, Kubok nd Hrno (984)) For k =, the probblty functon (2.5) becomes usul MLSD wth prmeters, 2, 3,..., m,.e., m x! p x x x x m m = x (,..., m) = ; 0; 0 m m = = x! log = =..... (6) For m =, the p.f. (2.5) becomes the multprmeter logrthmc seres dstrbuton of order k (Phlppou, 988). II. Here we derve new dstrbuton from MASD (k), clled the qusmultvrte logrthmc seres dstrbuton of order k (QMLSD (k)) s follows.

2242 R. Gupt nd K. K. Ds Consder the logrthmc seres functon f ( ) log ( ) = +... + mk nd (,..., mk ) expnson of log ( ) of order k s, =, where =. Then the multvrte Abel seres x! x log ( ) = ( x z) x z x! = x where ( x ) x = x s defned n (2.) nd 0 < = +... + mk <. Thus the ssocted MASD fmly of order k hs the followng p. f. x! ( x )! [ log( ) ] x k( ) = x = x x.(7) p x ( xz) xz ; () () x 0, = m, = k& 0 < < x.(8) The p.f. (2.8) s clled the QMLSD (k). If z 0, then the p. f. (2.8) becomes the multnoml logrthmc seres dstrbuton of order k. For k =, the p.f. (2.8) becomes QMLSD (Nnd & Ds, 996) nd then s z 0, t becomes the common multnoml logrthmc seres dstrbuton (Johnson & Kotz, 969, p.303). III. (k)). Next we obtn qus multnoml dstrbuton of type-i of order k (QMD-I Let us consder the smple seres functon f ( ) = ( + b) n, where ( ) = + +. Then the multvrte Abel seres =,..., mk nd... mk expnson of ( + b) n of order k s, n x ( + b) = ( xz) ( b+ xz) x = x x n Hence the correspondng MASD fmly fnds the p.f. of QMD-I (k), n x n x n pk( x) = ( xz) ( b+ xz) /( + b)... (9) x n x

Multvrte Abel seres dstrbutons 2243 where, 0 x = x n Suppose, n = x n! n x! x! ( ) ( + b), ech x beng non- negtve nteger nd p = ; = () m& = () k; p 0 = ( + b) ndφ = Usng (2.0) n (2.9), we get z ( + b) n p x p x p p x m k n x ( 0 φ) ( φ).(0) x k( ) = +..() x = = m k where, 0 x n, p = nd = = For k =, we get the p.f. (2.9) s QMD-I (Jnrdn, 975). IV. Now, we derve the multple generlzed posson dstrbuton of order k. Let us consder the exponentl seres functon f ( ) = e, where (,..., mk ) expnson of ( ) = nd = +... + mk. Then the multvrte Abel seres f = e s, x xz e = ( x z) /( x )! e...(2) x = x where x = x s stted n (2.) Thus the correspondng p.f. of the MASD fmly of order k s, m k ( ) ( ) x ( x z) pk( x) = [ xz e / x!]..... (3) = = where x = x nd ech x beng non-negtve nteger. The p.f. (2.3) s known s the MGPD of order k nd for k =, the p.f. (2.3) reduces to MGPD (Jnrdn, 975). V. Fnlly, we derve the qus negtve multnoml dstrbuton of order k. Let us consder the seres functon, f ( ) = ( b ) n, where ( ) = + +. Then the multvrte Abel seres =,..., mk nd... mk expnson of ( b ) n of order k s,

2244 R. Gupt nd K. K. Ds Γ n+ x n x n x ( b ) = ( xz) b xz x = x x! Γ( n ) where re gven n (2.). x = x Then the ssocted fmly of the MASD of order k hs the p.f. Γ n+ x n x x n pk( x) = ( xz) b xz ( b ) x! ( n Γ )... (4) ; x 0; = () m nd = () k. Suppose, p = ; = () m& = () k; ( b ) b z Q = ndφ =...(5) ( b ) ( b ) Applyng (2.5) to the p.f. (2.4), we get Γ n+ x n x x pk( x) = P( P xφ) Q xφ..(6) x! ( n Γ ) where P x φ 0 nd Q P = The probblty functons (2.4) nd (2.6) re clled QNMD of order k. If z = 0, then (2.4) nd (2.6) reduces to negtve multnoml dstrbuton of order k. If k =, then (2.4) nd (2.6) reduces to QNMD nd then for z = 0, t reduces to common negtve multnoml dstrbuton (Johnson nd Kotz, 969, p. 292). 3. Propertes of QNMD of order k Lmtng dstrbutons The QNMD of order k, (2.6) wth P ( = () m, = () k), Q, φ nd n tends to multple generlzed posson dstrbuton wth prmeters λ ( = () m, =

Multvrte Abel seres dstrbutons 2245 () k) nd ϕ, s n, P 0 nd φ 0, such tht np = λ nd nφ = ϕ. The probblty functon of ths lmtng dstrbuton s gven n (2.3). Acknowledgements One of the uthors, Rupk Gupt s grteful to Dr. R. K. Ptnk, Pro Vce-Chncellor of The Icf Unversty, Trpur, Ind nd Prof. J. J. Kwle, Drector, INEUC for ther constnt encourgements nd motvtons to pursue reserch works. The uthor cknowledges the fnncl support receved from the Icf Unversty, Trpur. Also, the uthors thnks the referees for ther helpful suggestons nd comments. References [] Ak, S. nd Hrno, K. (988). Some chrcterstcs of the bnoml dstrbuton of order k nd relted dstrbutons, Sttstcl Theory nd Dt Anlyss II, (ed. K. Mtust), -222, North Holnd. [2] Ak, S., Kubok, H nd Hrno, K. (984). On dscrete dstrbutons of order k, Ann. Inst.Sttst. Mth., 36, 43-440. [3] Ak, S. nd Hrno, K. (994). Dstrbutons of numbers of flures nd successes untl the consecutve k successes, Ann. Inst. Sttst. Mth., 46, 93-202. [4] Chrlmbdes, Ch. A. (986). On dscrete dstrbutons of order k, Ann. Inst. Sttst. Mth., 38, 557-568. [5] Comtet. L. (974). Advnced Combntorcs, D. Redl Publshng Compny, Inc., Boston, U.S.A [6] Consul, P. C. (974). A smple urn model dependent on predetermned strtegy, Snkhy, B.36, 39-399. [7] Consul, P.C.nd Jn, G.C.(973).A generlzton of the Posson dstrbuton, Technometrcs, 5(4), 79-799. [8] Ds, K. K.(Mrch, 993). Some spects of clss of qus bnoml dstrbutons, Assm Sttstcl Revew, 7, 33-40. [9] Jnrdn, K. G. (975). Mrkov-Poly urn models wth predetermned strteges I, Gurt Sttst. Revew, 2, 7-32.

2246 R. Gupt nd K. K. Ds [0] Johnson, N. L. nd Kotz, S. (969). Dscrete Dstrbutons, John Wley nd Sons, Inc., New York. [] Hrno, K. (986). Some propertes of the dstrbutons of order k, Fboncc Numbers nd Ther Applctons (eds.a. N. Phlppou, G. E. Bergum nd A. F. Hordm), 43-53, Redel, Dordrecht. [2] Lng, K. D. (988). On Bnoml dstrbutons of order k, Sttst. Probb. Lett., 6, 247-250. [3] Nnd, S. B. nd Ds, K. K. A Fmly of the Abel Seres Dstrbutons, Snkhy: The Indn Journl of Sttstcs, 994, Volume 56, Seres B, Pt. 2, pp. 47-64. [4] Nnd, S. B. nd Ds, K. K. A Fmly of the Multvrte Abel Seres Dstrbutons, Snkhy: The Indn Journl of Sttstcs, 996, Volume 58, Seres A, Pt. 2, pp. 252-263. [5] Phlppou, A. N., Georghou, C. nd Phlppou, G. N. (983). A generlzed geometrc dstrbuton nd some of ts propertes, Sttst. Probb. Lett.,,7-75. Receved: Februry 7, 2008