m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3

Similar documents
Fluidi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3

Chapter 11. Fluids. continued

In steady flow the velocity of the fluid particles at any point is constant as time passes.

Chapter 10. Solids & Liquids

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

Fluids Bernoulli s equation

Chapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

Chapter 9: Solids and Fluids

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14)

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

MECHANICAL PROPERTIES OF FLUIDS

Physics 123 Unit #1 Review

Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion

Fluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Pressure in a fluid P P P P

Chapter 15. m. The symbolic equation for mass density is: ρ= m V. Table of Densities

Fluids Bernoulli s equation

Chapter 14. Fluid Mechanics

Phy 212: General Physics II. Daniel Bernoulli ( )

MECHANICAL PROPERTIES OF FLUIDS:

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9.

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion

Nicholas J. Giordano. Chapter 10 Fluids

Physics 201 Chapter 13 Lecture 1

Page 1. Physics 131: Lecture 23. Today s Agenda. Announcements. States of Matter

General Physics I. Lecture 16: Fluid Mechanics. Prof. WAN, Xin ( 万歆 )

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012

Chapter -5(Section-1) Friction in Solids and Liquids

Physics 201 Chapter 13 Lecture 1

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

Physics 111. Thursday, November 11, 2004

ρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get

SOLUTION According to Equation 11.3, pressure is defined as P= F/ A; therefore, the magnitude of the force on the lid due to the air pressure is

Chapter 9. Solids and Fluids

Physics 107 HOMEWORK ASSIGNMENT #9

Chapter 15 - Fluid Mechanics Thursday, March 24 th

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

Chapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE

Physics - Fluids. Read Page 174 (Density) TQ1. A fluid is what type of matter? TQ2. What is fluid mechanics? TQ3. What is the equation for density?

Physics 110 Third Hour Exam

Chapter 9. Solids and Fluids

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding

Physics 202 Homework 2

Fluid Mechanics. The atmosphere is a fluid!

Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas

Physics 101: Lecture 18 Fluids II

Physics 153 Introductory Physics II. Week One: FLUIDS. Dr. Joseph J. Trout

Chapter 12. Fluid Mechanics. A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V.

Barometer Fluid rises until pressure at A, due its weight, equals atmospheric pressure at B. Unit: mm Hg (millimeters that mercury rises)

CHEN 3200 Fluid Mechanics Spring Homework 3 solutions

Fluids, Continuity, and Bernouli

10 - FLUID MECHANICS Page 1

Physics 220: Classical Mechanics

Chapter 1 INTRODUCTION

Physics 207 Lecture 18

Test 3 Preparation Questions

Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009

Fluids. Fluids in Motion or Fluid Dynamics

Fluid Dynamics. Equation of continuity Bernoulli s Equation Bernoulli s Application Viscosity Poiseuilles law Stokes law Reynolds Number

Reminder: HW #10 due Thursday, Dec 2, 11:59 p.m. (last HW that contributes to the final grade)

General Physics I (aka PHYS 2013)

Locations by Lab Instructor. Pressure in an oil well. PHYSICS 220 Evening Exam 2. Lecture 18. Fluid Dynamics. See Home Page For lab hours

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

FLUID FLOW IDEAL FLUID BERNOULLI'S PRINCIPLE

Chapter 18 Fluids Pearson Education, Inc. Slide 18-1

Fluid dynamics - Equation of. continuity and Bernoulli s principle.

Introductory Physics PHYS101

Physics 106 Lecture 13. Fluid Mechanics

Chapter 11 - Fluids in Motion. Sections 7-9

Stevens High School AP Physics II Work for Not-school

Chapter 9 Fluids. Pressure

Chapter 3 Fluid Statics

States of matter. Density high > high >> low (pressure dependent)

Physics 111 P 2 A = P 1. A + mg = P 1. A + ρ( AΔh)g. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468.

CHAPTER 6 Fluids Engineering. SKMM1922 Introduction of Mechanical Engineering

Lecture 2 Flow classifications and continuity

Chapter 10 - Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain

TALLER DE HIDROSTÁTICA

States of Matter Unit

f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s)

Lecture 8 Equilibrium and Elasticity

Chapter 4 DYNAMICS OF FLUID FLOW

Study fluid dynamics. Understanding Bernoulli s Equation.

Answers to test yourself questions

Final Mock Exam PH 221-1D

Physics 351 Monday, April 27, 2015

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

Mock Exam III PH 201, PH 221

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

UNIT I FLUID PROPERTIES AND STATICS

Section 1 Matter and Energy

Transcription:

Chapter Fluids

. Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m 3

. Mass Density

. Mass Density Example Blood as a Fraction of Body Weight The body of a man whose weight is 690 N contains about 5.x0-3 m 3 of blood. (a) Find the blood s weight and (b) express it as a percentage of the body weight. m V 3 3 3 5.0 m 060kg m 5.5 kg

. Mass Density (a) W mg 5.5 kg9.80m s 54 N (b) Percentage 54 N 690 N 00% 7.8%

. Pressure P F A SI Unit of Pressure: N/m = Pa Pascal

. Pressure Example The Force on a Swimmer Suppose the pressure acting on the back of a swimmer s hand is.x0 5 Pa. The surface area of the back of the hand is 8.4x0-3 m. (a) Determine the magnitude of the force that acts on it. (b) Discuss the direction of the force.

. Pressure P F A F PA.00 3 5 3.0 N m 8.40 m N Since the water pushes perpendicularly against the back of the hand, the force is directed downward in the drawing.

. Pressure Atmospheric Pressure at Sea Level:.03x0 5 Pa = atmosphere

.3 Pressure and Depth in a Static Fluid F y P A P A mg 0 P A P A mg m V

.3 Pressure and Depth in a Static Fluid V Ah P A P A Vg P A P A Ahg P P hg

.3 Pressure and Depth in a Static Fluid Conceptual Example 3 The Hoover Dam Lake Mead is the largest wholly artificial reservoir in the United States. The water in the reservoir backs up behind the dam for a considerable distance (0 miles). Suppose that all the water in Lake Mead were removed except a relatively narrow vertical column. Would the Hoover Same still be needed to contain the water, or could a much less massive structure do the job?

.3 Pressure and Depth in a Static Fluid Example 4 The Swimming Hole Points A and B are located a distance of 5.50 m beneath the surface of the water. Find the pressure at each of these two locations.

.3 Pressure and Depth in a Static Fluid P P gh P atmospheric pressure 5 3 3.00 Pa.000 kg m 9.80m s 5.50 m.550 5 Pa

.4 Pressure Gauges P P gh P atm gh h Patm g 5.00 Pa 3 3 3.60 kg m 9.80m s 0.760 m 760 mm

.4 Pressure Gauges P P B P A P A P gh absolute pressure P Patm gh gaugepressure

.4 Pressure Gauges

.5 Pascal s Principle PASCAL S PRINCIPLE Any change in the pressure applied to a completely enclosed fluid is transmitted undiminished to all parts of the fluid and enclosing walls.

.5 Pascal s Principle P P g 0 m F A F A F F A A

.5 Pascal s Principle Example 7 A Car Lift The input piston has a radius of 0.00 m and the output plunger has a radius of 0.50 m. The combined weight of the car and the plunger is 0500 N. Suppose that the input piston has a negligible weight and the bottom surfaces of the piston and plunger are at the same level. What is the required input force?

.5 Pascal s Principle F F A A F 0.00 m 0500 N 0.50 m 3 N

.6 Archimedes Principle P P gh F B P A P A P P A F B gha V ha F B V g mass of displaced fluid

.6 Archimedes Principle ARCHIMEDES PRINCIPLE Any fluid applies a buoyant force to an object that is partially or completely immersed in it; the magnitude of the buoyant force equals the weight of the fluid that the object displaces: F B Magnitudeof buoyant force W fluid Weight of displacedfluid

.6 Archimedes Principle If the object is floating then the magnitude of the buoyant force is equal to the magnitude of its weight.

.6 Archimedes Principle Example 9 A Swimming Raft The raft is made of solid square pinewood. Determine whether the raft floats in water and if so, how much of the raft is beneath the surface.

.6 Archimedes Principle V raft 3 4.0 m4.0 m0.30 m 4.8 m F Vg max B water V water g 3 3 000 kg m 4.8m 9.80m s 47000 N

.6 Archimedes Principle W raft m raft g pine V raft g 3 3 550kg m 4.8m 9.80m s 6000 N 47000 N The raft floats!

.6 Archimedes Principle If the raft is floating: Wraft F B 6000 N water V water g 3 000kg m 4.0 m4.0 m 9.80m s 6000 N h h 6000 N 000 kg m 4.0 m4.0 m9.80m s 3 0.7 m

.6 Archimedes Principle Conceptual Example 0 How Much Water is Needed to Float a Ship? A ship floating in the ocean is a familiar sight. But is all that water really necessary? Can an ocean vessel float in the amount of water than a swimming pool contains?

.6 Archimedes Principle

.7 Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point changes as time passes. Turbulent flow is an extreme kind of unsteady flow in which the velocity of the fluid particles at a point change erratically in both magnitude and direction.

.7 Fluids in Motion Fluid flow can be compressible or incompressible. Most liquids are nearly incompressible. Fluid flow can be viscous or nonviscous. An incompressible, nonviscous fluid is called an ideal fluid.

.7 Fluids in Motion When the flow is steady, streamlines are often used to represent the trajectories of the fluid particles.

.7 Fluids in Motion Making streamlines with dye and smoke.

.8 The Equation of Continuity The mass of fluid per second that flows through a tube is called the mass flow rate.

.8 The Equation of Continuity m V A vt distance m t Av m t A v

.8 The Equation of Continuity EQUATION OF CONTINUITY The mass flow rate has the same value at every position along a tube that has a single entry and a single exit for fluid flow. A v Av SI Unit of Mass Flow Rate: kg/s

.8 The Equation of Continuity Incompressible fluid: A v Av Volume flow rate Q: Q Av

.8 The Equation of Continuity Example A Garden Hose A garden hose has an unobstructed opening with a cross sectional area of.85x0-4 m. It fills a bucket with a volume of 8.00x0-3 m 3 in 30 seconds. Find the speed of the water that leaves the hose through (a) the unobstructed opening and (b) an obstructed opening with half as much area.

.8 The Equation of Continuity (a) Q Av v Q A 3 3 8.000 m 30.0 s.850-4 m 0.936m s (b) A v Av v A 0.936m s.87 m s v A

.9 Bernoulli s Equation The fluid accelerates toward the lower pressure regions. According to the pressure-depth relationship, the pressure is lower at higher levels, provided the area of the pipe does not change.

.9 Bernoulli s Equation Fs Fs PAs P P V W W nc mv mgy mv mgy

.9 Bernoulli s Equation mgy mv mgy mv V P P gy v gy v P P BERNOULLI S EQUATION In steady flow of a nonviscous, incompressible fluid, the pressure, the fluid speed, and the elevation at two points are related by: gy v P gy v P

.0 Applications of Bernoulli s Equation Conceptual Example 4 Tarpaulins and Bernoulli s Equation When the truck is stationary, the tarpaulin lies flat, but it bulges outward when the truck is speeding down the highway. Account for this behavior.

.0 Applications of Bernoulli s Equation

.0 Applications of Bernoulli s Equation

.0 Applications of Bernoulli s Equation

.0 Applications of Bernoulli s Equation Example 6 Efflux Speed The tank is open to the atmosphere at the top. Find an expression for the speed of the liquid leaving the pipe at the bottom.

.0 Applications of Bernoulli s Equation v 0 P P atm P P v gy P v gy y y h v gh v gh

. Viscous Flow Flow of an ideal fluid. Flow of a viscous fluid.

. Viscous Flow FORCE NEEDED TO MOVE A LAYER OF VISCOUS FLUID WITH CONSTANT VELOCITY The magnitude of the tangential force required to move a fluid layer at a constant speed is given by: F Av y coefficient of viscosity SI Unit of Viscosity: Pa s Common Unit of Viscosity: poise (P) poise (P) = 0. Pa s

. Viscous Flow POISEUILLE S LAW 4 R P P The volume flow rate is given by: Q 8 L

. Viscous Flow Example 7 Giving and Injection A syringe is filled with a solution whose viscosity is.5x0-3 Pa s. The internal radius of the needle is 4.0x0-4 m. The gauge pressure in the vein is 900 Pa. What force must be applied to the plunger, so that.0x0-6 m 3 of fluid can be injected in 3.0 s?

. Viscous Flow P P 8 LQ 4 R 3 6 3 0 Pas 0.05 m.00 m 3.0 s -4 4.0 0 m 4 8.5 00 Pa

. Viscous Flow P 900 Pa P P 00 Pa P 300 Pa F P A 5 300 Pa 8.00 m 0.5N