NOTES Ch 17: Genes and. Variation

Similar documents
NOTES CH 17 Evolution of. Populations

EVOLUTION change in populations over time

Evolution of Populations

EVOLUTION change in populations over time

EVOLUTION. HISTORY: Ideas that shaped the current evolutionary theory. Evolution change in populations over time.

Gene Pool The combined genetic material for all the members of a population. (all the genes in a population)

Theory a well supported testable explanation of phenomenon occurring in the natural world.

Unit 10.4: Macroevolution and the Origin of Species

Ch. 16 Evolution of Populations

Population Genetics & Evolution

Evolution. Before You Read. Read to Learn

VERY SIMPLY PUT-- Evolution is. change in a species over time.

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly).

Vocab. ! Evolution - change in a kind of organism over time; process by which modern organisms have descended from ancient organisms

Guided Notes: Evolution. is the change in traits through generations over! Occurs in, NOT individual organisms

19. When allele frequencies change as a result of the migration of a small subgroup of a population

List the five conditions that can disturb genetic equilibrium in a population.(10)

Evolution. Chapters 16 & 17

Evolution of Populations. Chapter 17

Biology Chapter 15 Evolution Notes

Name Date Class. Patterns of Evolution

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology

CH 16: Evolution of Population

Evolution and Natural Selection

Evolution. Species Changing over time

Vocabulary List: Instructions: blackout

Microevolution (Ch 16) Test Bank

Evolution. Species Changing over time

Unit 8: EVOLUTION NOTES

It all depends on barriers that prevent members of two species from producing viable, fertile hybrids.

CH_15_Evolution.notebook. February 28, Cellular Evolution. Jean Baptiste de Lamarck. Endosymbiont Theory. Charles Darwin

5/31/2012. Speciation and macroevolution - Chapter

What is Evolution? Study of how things change over time

Concepts of Evolution

AP Biology Review Packet 5- Natural Selection and Evolution & Speciation and Phylogeny

Name: Period Study Guide 17-1 and 17-2

Speciation and Patterns of Evolution

Evolutionary change. Evolution and Diversity. Two British naturalists, one revolutionary idea. Darwin observed organisms in many environments

Slide 1. Slide 2. Slide 3. Concepts of Evolution. Isn t Evolution Just A Theory? Evolution

EVOLUTION & SPECIATION

Chapter 2 Section 1 discussed the effect of the environment on the phenotype of individuals light, population ratio, type of soil, temperature )

chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question.

Quazi accurate photo history

THE THEORY OF EVOLUTION

Chapters 17, 19.2, & 16.4 EVOLUTION

The theory of evolution continues to be refined as scientists learn new information.

Modes of Natural Selection Guided Notes What is Natural Selection?

History of Biological Diversity. Evolution: Darwin s travel

A) oldest on bottom layer, youngest on top. B) the type of environment it was

Reproduction- passing genetic information to the next generation

The Origin of Species

Darwin s Observations & Conclusions The Struggle for Existence

1. E, or change over time, is the process by which modern organisms have descended from ancient organisms

Unit 1: DNA & the Genome. 1.7: Evolution. 1.7 Evolution

The Origin of New Species

IV. Natural Selection

Evolution. Changes over Time

Evolution. Part 1: Historical Perspective on the Theory of Natural Selection

3 Domains of Living Things Bacteria and Archaea are prokaryotic organisms.

EvolutionIntro.notebook. May 13, Do Now LE 1: Copy Now. May 13 12:28 PM. Apr 21 6:33 AM. May 13 7:22 AM. May 13 7:00 AM.

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele

Chapter 16: Evolutionary Theory

Evolution. Darwin s Voyage

Name Date Class CHAPTER 15. In your textbook, read about developing the theory of natural selection. For each statement below, write true or false.

Environmental Influences on Adaptation

14. A small change in gene frequencies to a population overtime is called a. Macroevolution b. Speciation c. Microevolution d.

Evolution Test Review

Evolution by Natural Selection

What is Evolution? Evolution = Most changes occur gradually, but can happen on a shorter time scale Variations in populations come from

STUDY GUIDE SECTION 16-1 Genetic Equilibrium

Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each)

EVOLUTION. Evolution - changes in allele frequency in populations over generations.

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation

Station 1. What is Evolution? What causes Evolution? A primary example of Evolution, is different bird beak sizes. What caused this to occur?

UNIT XI EVOLUTION Test Friday 2-24

WTHS Biology Keystone Exams

Taxonomy. The Science of Classification

The Origin of Species

Biology 11 UNIT 1: EVOLUTION LESSON 2: HOW EVOLUTION?? (MICRO-EVOLUTION AND POPULATIONS)

Unit 9 - Evolution Practice Quiz

THE HISTORY OF THE THEORY. Darwin presented that happens and offered an of how it happens. Theory a broad that has been and

Are individuals in a population of a species the same?

1. Natural selection can only occur if there is variation among members of the same species. WHY?

How Species Form. 4.3 How Species Form. Reproductive Isolation

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc.

Anthro 101: Human Biological Evolution. Lecture 6: Macroevolution & Speciation. Prof. Kenneth Feldmeier feldmekj.weebly.com

Types of Natural Selection

Biology 2017 Mr. Johnson

1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur?

Reproduction and Evolution Practice Exam

EVOLUTION. c. problem: Lamarck did not know how traits were inherited

THE THEORY OF EVOLUTION

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population

Adaptation and Change

Chapter 17: Population Genetics and Speciation

Final Revision G8 Biology ( ) Multiple Choice Identify the choice that best completes the statement or answers the question.

7.1 What is the Theory of Evolution?

Section 15 3 Darwin Presents His Case

Natural Selection. Charles Darwin & Alfred Russell Wallace

Evolution and Natural Selection (16-18)

Transcription:

NOTES Ch 17: Genes and Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Variation

17.1 Genes & Variation Darwin developed his theory of natural selection without knowing how heredity worked or how variations arise VARIATIONS are the raw materials for natural selection All of the discoveries in genetics fit perfectly into evolutionary theory!

Genotype & Phenotype GENOTYPE: the particular combination of alleles an organism carries an organism s genotype, together with environmental conditions, produces its PHENOTYPE PHENOTYPE: all physical, physiological, and behavioral characteristics of an organism (i.e. eye color, height)

Natural Selection NATURAL SELECTION acts directly on PHENOTYPES! How does that work?...some individuals have phenotypes that are better suited to their environment they survive & produce more offspring (higher fitness!) organisms with higher fitness pass more copies of their genes to the next generation!

Do INDIVIDUALS evolve? NO! Individuals are born with a certain set of genes (and therefore phenotypes) If one or more of their phenotypes (i.e. tooth shape, flower color, etc.) are poorly adapted, they may be unable to survive and reproduce An individual CANNOT evolve a new phenotype in response to its environment

So, EVOLUTION acts on POPULATIONS! POPULATION = all members of a species that live in a particular area In a population, there exists a RANGE of phenotypes NATURAL SELECTION acts on this range of phenotypes the most fit are selected for survival and reproduction

17.2: Evolution as Genetic Change in Populations

Mechanisms of Evolution (How evolution happens) 1) Natural Selection (from Darwin) 2) Mutations 3) Migration (Gene Flow) 4) Genetic Drift

DEFINITIONS: > SPECIES: group of organisms that breed with one another and produce fertile offspring. > POPULATION: > POPULATION: group of individuals of the same species that live in the same area.

> GENE POOL: combined genetic information of all members of a particular population. > Relative (allele) frequency = the number of times that an allele occurs in a gene pool compared with the number of times other alleles occur -Usually expressed as a %

1) Mechanism of Evolution: NATURAL SELECTION All organisms struggle for survival by competing for resources (especially in an overpopulated environment) so low levels of fitness = die or leave few offspring high levels of fitness = survive and reproduce most successfully

1) Mechanism of Evolution: Natural Selection NATURAL SELECTION: survival of the fittest -Imagine that green beetles are easier for birds to spot (and hence, eat). Brown beetles are a little more likely to survive to produce offspring The brown beetles pass their genes for brown coloration on to their offspring Next generation: brown beetles are more common than in the previous generation.

What is Fitness? FITNESS: how successful a particular genotype is at leaving offspring in the next generation (relative to other genotypes) -If brown beetles consistently leave more offspring than green beetles -The brown beetles have a greater fitness relative to the green beetles.

Fitness is a relative thing A genotype s fitness depends on the environment in which the organism lives. The fittest genotype during an ice age, for The fittest genotype during an ice age, for example, is probably not the fittest genotype once the ice age is over.

FITNESS The fittest individual is not necessarily the strongest, fastest, or biggest A genotype s fitness includes its ability to survive, find a mate, produce offspring (leave its genes in the next generation)

There cannot be NATURAL SELECTION without GENETIC VARIATION in the first place!

How do changes in appearance come about? 2) Mechanism for Evolution: MUTATION MUTATION: change in the DNA sequence that affects genetic information (random not predictable) -a mutation could cause parents with genes for bright green coloration to have offspring with a gene for brown coloration -that would make the genes for brown beetles more frequent in the population.

Sources of Genetic Variation - MUTATION Single mutation can have a large effect in many cases, evolutionary change is based on the accumulation of many mutations can be beneficial, neutral, or harmful mutations do not try to supply what the organism needs.

Sources of Genetic Variation The individuals which happen to have the mutations giving them the best adaptations to the environment will be the ones that survive hence the good mutations will be passed down to the next generation.

Not all mutations matter to evolution -All cells in our body contain DNA -Mutations in non-reproductive cells won t be passed onto offspring

Causes of mutations: Mistake in copying DNA External sources radiation, chemicals

Sources of Genetic Variation 2) Gene shuffling: (How chromosomes line up in meiosis) -Crossing over can occur

This shuffling is important for EVOLUTION because it can introduce new combinations of genes every generation.

3) Mechanism of Evolution: Migration (a.k.a. GENE FLOW ) Some individuals from a population of brown beetles might have joined a population of green beetles. -would make the genes for brown beetles more frequent in the green beetle population.

4) Mechanism for Evolution: GENETIC DRIFT In a population, an allele can become more or less common by chance (remember genetics and probability!) GENETIC DRIFT = The random change in the frequency of an allele (gene) most effective with small populations SO Gene pools can change without natural selection an allele can become common in a population by chance alone.

GENETIC DRIFT: example Imagine that a population of green and brown beetles Several green beetles were killed when someone stepped on them and therefore, they had no offspring.

The next generation would have a few more brown beetles than the previous generation but just by chance. These chance changes from generation to generation are known as GENETIC DRIFT.

Genetic Drift Example: FOUNDER EFFECT A small group of individuals move to new habitat (the founding group) Their alleles and allele frequencies may be different that that of the original population So the new population that they found will have different allele frequencies than the original group BY CHANCE!

Genetic Drift Example: BOTTLENECK EFFECT a population experiences an event (storm, sickness, over hunted by humans) that causes it to decrease in # to just a few individuals the allele frequencies in the few surviving individuals may be different than the original population Example: cheetahs

Bottleneck Effect

Of all of the mechanisms covered, the strongest influence is that of NATURAL SELECTION

NATURAL SELECTION Natural selection on single gene traits can lead to changes in the allele frequency -Ex: brown vs. green beetles Natural selection on polygenic traits affects distribution of phenotypes in 3 ways 1) Directional Selection 2) Stabilizing Selection 3) Disruptive Selection

Modes of Selection: Imagine the range of phenotypes in a population are graphed into a distribution curve:

1) DIRECTIONAL SELECTION: If organisms at one end of the curve have higher fitness than organisms in the middle or at the other end of the curve Finch beaks in the Galapagos Result: specific beak size increased

1) DIRECTIONAL SELECTION: Examples: -bacterial resistance to antibiotics -peppered moth

Peppered Moth example: 100 years after the first dark moth was discovered in 1848, 90% of moths were dark; the light variety continued to dominate in unpolluted areas outside of London.

2) STABILIZING SELECTION: Individuals near center of curve have higher fitness that individuals at either end of the curve -Human baby birth weight Babies born vs. underweight less likely to survive Larger babies have a hard time being born (think size of birth canal)

3) DISRUPTIVE SELECTION: Individuals at either end of the curve are more fit than those in the center Intermediate type is selected against Ex: Bird beak size if medium seed size becomes less common, birds that can eat the smallest and largest seeds will survive

17.3 The Process of Speciation Central Idea: How does natural selection (and other mechanisms of evolution) lead to the formation of a new species?

SPECIATION: formation of a new species Remember: Species: a group of organisms that breed with one another and produce fertile offspring A population of individual organisms share a gene pool. If a genetic change increases fitness, that allele will eventually be found in many members of the population

As new species evolve, populations become reproductively isolated from each other. When members of two populations cannot reproduce to produce fertile offspring = reproductive isolation At this point, species have separate gene pools Question: How does reproductive isolation develop?

Kaibab Squirrel Albert s Squirrel

3 Kinds of Isolating Mechanisms: 1) Behavioral Isolation -Two populations are physically able to interbreed but have different courtship rituals or other types of behavior 2) Geographic Isolation: -Geographic barriers (rivers, mountains, roads) prevent genes from being exchanged, including advantageous mutations and variations -BUT does not guarantee formation of a new species WHY NOT? 3) Temporal Isolation -Species reproduce at different times and therefore are unlikely to reproduce with each other

What an organism eats and does (physical and biological conditions), and where it lives in its environment is a NICHE 2 species that occupy the same niche create COMPETITION Competition can lead to EXTINCTION

MACROEVOLUTION Definition: Large scale evolutionary changes that take place over long periods of time. Six patterns of macroevolution 1. Mass extinction 2. Adaptive radiation (a.k.a. divergent evolution) 3. Convergent evolution (analogous structures) 4. Coevolution 5. Gradualism 6. Punctuated equilibrium

Process of one species giving rise to many species that live in different ways (niches) A.K.A.: DIVERGENT EVOLUTION EX: Darwin s finches!

Organisms evolve a variety of characteristics that enable them to survive in different niches Hawaiian Honeycreeper

CONVERGENT EVOLUTION: Different organisms (unrelated) look similar because they live in similar environments Different raw material for natural selection to work on, but Similar environmental demands EX: moving through air, water, eating similar foods

CONVERGENT EVOLUTION: Produces analogous structures like the dolphin s fluke and a fish s tail fin Look and function similarly but do not share a common evolutionary history

COEVOLUTION: 2 species exert an evolutionary influence on one another (and so, coevolve) Examples: -a parasite and its host -a flowering plant and its pollinator insect or bird

GRADUALISM: (Darwin s idea of evolution): Darwin thought evolution only took place over a LONG time Hutton and Lyell s discussion of slow geologic change GRADUALISM = fossil record shows continuous, minor changes (evolution is slow and steady!)

Punctuated Equilibrium: Equilibrium hardly any change Definition: A pattern of long stable periods interrupted by brief periods of rapid change

Examples: **When the equilibrium is upset, change can occur in a short period of time EX: A small group of organisms migrate to a new environment Organisms evolve quickly to fill available niches (Galapagos Finches) EX: A small population is cut off from its original population

Example of Punctuated Equilibrium: Life is going on smoothly for a population of mice. Then whoosh! There is a flood which separates the population into two groups, one on one side of a river and one on the other side. (Geographic isolation reproductive isolation!) What could happen as a result?

Gradualism vs. punctuated equilibrium: Biologists agree that either gradualism or punctuated equilibrium can results in speciation, depending on the circumstances