Lie groupoids and Lie algebroids

Similar documents
EXERCISES IN POISSON GEOMETRY

LIE ALGEBROIDS AND POISSON GEOMETRY, OLIVETTI SEMINAR NOTES

On the Van Est homomorphism for Lie groupoids

Integrability and Associativity

THE MODULAR CLASS OF A LIE ALGEBROID COMORPHISM

Representing Representations up to Homotopy

Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group

Lie theory of multiplicative structures.

Atiyah classes and homotopy algebras

Lie groupoids, cyclic homology and index theory

INTEGRATION OF TWISTED POISSON STRUCTURES ALBERTO S. CATTANEO AND PING XU

Integrating exact Courant Algebroids

LIE GROUPOIDS AND LIE ALGEBROIDS LECTURE NOTES, FALL Contents 1. Lie groupoids Definitions 30

On the integration of LA-groupoids and duality for Poisson groupoids 1 2

LECTURE 3 MATH 261A. Office hours are now settled to be after class on Thursdays from 12 : 30 2 in Evans 815, or still by appointment.

HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY

Archivum Mathematicum

arxiv: v2 [math.dg] 6 Aug 2018

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Constant symplectic 2-groupoids

Poisson Manifolds Bihamiltonian Manifolds Bihamiltonian systems as Integrable systems Bihamiltonian structure as tool to find solutions

The Atiyah bundle and connections on a principal bundle

Deformations of Coisotropic Submanifolds of Jacobi Manifolds

INTEGRABILITY OF POISSON BRACKETS arxiv:math/ v2 [math.dg] 23 Dec 2003

Integration of Lie algebroid comorphisms

Symplectic and Poisson Manifolds

arxiv:math.dg/ v2 24 Oct 2002

From momentum maps and dual pairs to symplectic and Poisson groupoids

Chern characters via connections up to homotopy. Marius Crainic. Department of Mathematics, Utrecht University, The Netherlands

THE MOMENTUM MAP IN POISSON GEOMETRY

INTRODUCTION TO POISSON GEOMETRY LECTURE NOTES, WINTER 2017

Lie, symplectic and Poisson groupoids and their Lie algebroids

Twisted Poisson manifolds and their almost symplectically complete isotropic realizations

Q-ALGEBROIDS AND THEIR COHOMOLOGY. Rajan Amit Mehta

On the holonomy fibration

Patrick Iglesias-Zemmour

Quasi-Poisson structures as Dirac structures

Group Actions and Cohomology in the Calculus of Variations

arxiv: v1 [math.dg] 24 Oct 2015

De Lecomte Roger à Monge Ampère From Lecomte Roger to Monge Ampère

On the connection theory of extensions of transitive Lie groupoids

Lagrangian submanifolds and dynamics on Lie algebroids

MODULAR VECTOR FIELDS AND BATALIN-VILKOVISKY ALGEBRAS

Poisson geometry of b-manifolds. Eva Miranda

Structures in tangent categories

A BRIEF INTRODUCTION TO DIRAC MANIFOLDS

CHARLES-MICHEL MARLE. Calculus on Lie algebroids, Lie groupoids and Poisson manifolds

Homotopy Lie Algebroids

Dirac structures. Henrique Bursztyn, IMPA. Geometry, mechanics and dynamics: the legacy of J. Marsden Fields Institute, July 2012

ON CONTRAVARIANT PRODUCT CONJUGATE CONNECTIONS. 1. Preliminaries

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

INTEGRATING THE NONINTEGRABLE. Alan WEINSTEIN Department of Mathematics, University of California, Berkeley, USA

arxiv:math/ v2 [math.qa] 21 Nov 2002

Multiplicative geometric structures

-Chern-Simons functionals

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

T. DRUMMOND, M. JOTZ LEAN, AND C. ORTIZ

Dynamical systems on Leibniz algebroids

In this short note we prove that any Dirac structure can be realized as the push-forward of a presymplectic form via a

Stable generalized complex structures

Lie 2-algebras and Higher Gauge Theory. Danny Stevenson Department of Mathematics University of California, Riverside

arxiv: v2 [math-ph] 2 Oct 2008

Normal forms in Poisson geometry

Deformation groupoids and index theory

Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan. Pfaffian groupoids. María Amelia Salazar.

Singular foliations, examples and constructions

Geometrical mechanics on algebroids

arxiv: v2 [math.dg] 24 Jan 2019

Lie algebra cohomology

12 Geometric quantization

Algebraic Topology European Mathematical Society Zürich 2008 Tammo tom Dieck Georg-August-Universität

On algebraic index theorems. Ryszard Nest. Introduction. The index theorem. Deformation quantization and Gelfand Fuks. Lie algebra theorem

Deformations of coisotropic submanifolds in symplectic geometry

Ruijsenaars type deformation of hyperbolic BC n Sutherland m

COMPUTING THE POISSON COHOMOLOGY OF A B-POISSON MANIFOLD

1. Geometry of the unit tangent bundle

Hamilton-Jacobi theory on Lie algebroids: Applications to nonholonomic mechanics. Manuel de León Institute of Mathematical Sciences CSIC, Spain

J.F. Cari~nena structures and that of groupoid. So we will nd topological groupoids, Lie groupoids, symplectic groupoids, Poisson groupoids and so on.

Deformation Quantization and Reduction

Poisson Geometry in Constrained Systems

HOLONOMY GROUPOIDS OF SINGULAR FOLIATIONS

arxiv:math/ v1 [math.ag] 18 Oct 2003

Sheaves of Lie Algebras of Vector Fields

On the geometry of coisotropic submanifolds of Poisson manifolds

10. The subgroup subalgebra correspondence. Homogeneous spaces.

ABSTRACT DIFFERENTIAL GEOMETRY VIA SHEAF THEORY

A QUICK NOTE ON ÉTALE STACKS

Groupoid Representation Theory

9. The Lie group Lie algebra correspondence

Doubled Aspects of Vaisman Algebroid and Gauge Symmetry in Double Field Theory arxiv: v1 [hep-th] 15 Jan 2019

arxiv: v3 [math.sg] 4 Aug 2016

Differentiable Stacks, Gerbes, and Twisted K-Theory. Ping Xu, Pennsylvania State University

Eva Miranda. UPC-Barcelona. (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February

Complex structures on 4-manifolds with symplectic 2-torus actions

arxiv:math/ v1 [math.dg] 18 Oct 2006

Workshop on higher structures December 2016

The Hitchin map, local to global

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39)

arxiv: v2 [math.dg] 17 Mar 2008

Higgs Bundles and Character Varieties

Transcription:

Lie groupoids and Lie algebroids Songhao Li University of Toronto, Canada University of Waterloo July 30, 2013 Li (Toronto) Groupoids and algebroids Waterloo 2013 1 / 22

Outline Lie groupoid Lie groupoid Examples of Lie groupoids Lie algebroid Lie algebroid Examples of Lie algebroids Category of integrations Poisson groupoid Poisson manifold Poisson groupoid Lie bialgebroids Examples of Poisson groupoids and symplectic groupoids Li (Toronto) Groupoids and algebroids Waterloo 2013 2 / 22

Lie groupoid Lie groupoid Lie groupoid Lie groupoid A Lie groupoid G over the base manifold M is a category such that the set of objects is M, and the set of arrows G is a manifold; the arrows are invertible; the source s and target t are submersions; the multiplication m and the identity id are smooth. Li (Toronto) Groupoids and algebroids Waterloo 2013 3 / 22

Lie groupoid Lie groupoid Lie groupoid Lie groupoid A Lie groupoid G over the base manifold M is a category such that the set of objects is M, and the set of arrows G is a manifold; the arrows are invertible; the source s and target t are submersions; the multiplication m and the identity id are smooth. The structure maps are summarized by the following commutative diagram: G s t G m i G s id t M Li (Toronto) Groupoids and algebroids Waterloo 2013 3 / 22

Lie groupoid Lie groupoid Source-simply-connected Lie groupoid Notation For a Lie groupoid G over M, we denote it by G M. Source-simply-connected Lie groupoid For a Lie groupoid G M, for x M, the source fiber of x is s 1 (x), and the target fiber is t 1 (x); G M is source-connected, if s 1 (x) is connected for each x M; G M is source-simply-connected, if s 1 (x) is connected and simply-connected for each x M. Li (Toronto) Groupoids and algebroids Waterloo 2013 4 / 22

Lie groupoid Examples of Lie groupoids Examples: Lie groupoids 1. Lie group If the base M is a point, then G is a Lie group. Li (Toronto) Groupoids and algebroids Waterloo 2013 5 / 22

Lie groupoid Examples of Lie groupoids Examples: Lie groupoids 1. Lie group If the base M is a point, then G is a Lie group. 2. Bundle of Lie groups If the source s : G M and the target t : G M coincide, then G M is a bundle of Lie groups. Li (Toronto) Groupoids and algebroids Waterloo 2013 5 / 22

Lie groupoid Examples of Lie groupoids Examples: Lie groupoids 1. Lie group If the base M is a point, then G is a Lie group. 2. Bundle of Lie groups If the source s : G M and the target t : G M coincide, then G M is a bundle of Lie groups. 3. Pair groupoid For a connected manifold M, we define the pair groupoid Pair(M) M: Pair(M) = M M; s : Pair(M) M, (x, y) x; t : Pair(M) M, (x, y) y; id : M Pair(M), x (x, x); m : Pair(M) s t Pair(M) Pair(M), ((x, y), (y, z)) (x, z). Li (Toronto) Groupoids and algebroids Waterloo 2013 5 / 22

Lie groupoid Examples of Lie groupoids Examples: Lie groupoids 4. Fundamental groupoid For a connected manifold M, we define the fundamental groupoid Π 1 (M) M: Π 1 (M) is the homotopy classes of paths; s : Π 1 (M) M, t : Π 1 (M) M, γ γ(0); γ γ(1); id : M Π 1 (M), x id(x) where id(x) is the constant path at x; m : Π 1 (M) s t Π 1 (M) Π 1 (M) is the concatenation of paths. Li (Toronto) Groupoids and algebroids Waterloo 2013 6 / 22

Lie groupoid Examples of Lie groupoids Examples: Lie groupoids 4. Fundamental groupoid For a connected manifold M, we define the fundamental groupoid Π 1 (M) M: Π 1 (M) is the homotopy classes of paths; s : Π 1 (M) M, t : Π 1 (M) M, γ γ(0); γ γ(1); id : M Π 1 (M), x id(x) where id(x) is the constant path at x; m : Π 1 (M) s t Π 1 (M) Π 1 (M) is the concatenation of paths. Remark Note that (s, t) : Π 1 (M) Pair(M) is a Lie groupoid morphism. Li (Toronto) Groupoids and algebroids Waterloo 2013 6 / 22

Lie groupoid Examples of Lie groupoids Examples: Lie groupoids 5. General linear groupoid For a vector bundle E M, we define the general linear groupoid GL(E) M: GL(E) {(x, y, φ xy ) x M, y M} where φ xy : E x Ey is an invertible linear transformation; s : GL(E) M, (x, y, φ xy ) x; t : GL(E) M, (x, y, φ xy ) y; id : M GL(E), x (x, x, id xx ); m : GL(E) s t GL(E) GL(E), ( (x, y, φxy ), (y, z, φ yz ) ) (x, z, φ yz φ xy ). Li (Toronto) Groupoids and algebroids Waterloo 2013 7 / 22

Lie groupoid Examples of Lie groupoids Examples: Lie groupoids 5. General linear groupoid For a vector bundle E M, we define the general linear groupoid GL(E) M: GL(E) {(x, y, φ xy ) x M, y M} where φ xy : E x Ey is an invertible linear transformation; s : GL(E) M, (x, y, φ xy ) x; t : GL(E) M, (x, y, φ xy ) y; id : M GL(E), x (x, x, id xx ); m : GL(E) s t GL(E) GL(E), ( (x, y, φxy ), (y, z, φ yz ) ) (x, z, φ yz φ xy ). Remark A Lie groupoid action of G M on a vector bundle E M is a Lie groupoid morphism ρ : G GL(E). Li (Toronto) Groupoids and algebroids Waterloo 2013 7 / 22

Lie groupoid Examples of Lie groupoids Examples: Lie groupoids 6. Holonomy groupoid For a vector bundle E M, we define the holonomy groupoid Hol(E) M: Hol(E) = {(γ, φ st ) γ Π 1 D. where φ st : E γ(0) Eγ(1) } is an invertible linear transformation; s : Hol(E) M, t : Hol(E) M, (γ, φ st ) γ(0); (γ, φ st ) γ(1); id : M Hol(E), x (id(x), id xx ); m : Hol(E) s t Hol(E) Hol(E), ((γ, φ st ), (σ, ψ st )) (γ σ, φ st ψ st ). Li (Toronto) Groupoids and algebroids Waterloo 2013 8 / 22

Lie groupoid Examples of Lie groupoids Examples: Lie groupoids 6. Holonomy groupoid For a vector bundle E M, we define the holonomy groupoid Hol(E) M: Hol(E) = {(γ, φ st ) γ Π 1 D. where φ st : E γ(0) Eγ(1) } is an invertible linear transformation; s : Hol(E) M, t : Hol(E) M, (γ, φ st ) γ(0); (γ, φ st ) γ(1); id : M Hol(E), x (id(x), id xx ); m : Hol(E) s t Hol(E) Hol(E), ((γ, φ st ), (σ, ψ st )) (γ σ, φ st ψ st ). Remark There is an obvious surjective groupoid morphism Hol(E) GL(E) which covers Π 1 (M) Pair(M). Li (Toronto) Groupoids and algebroids Waterloo 2013 8 / 22

Lie groupoid Examples of Lie groupoids Examples: Lie groupoids 7. Gauge groupoid For a principal G-bundle p : P M, we consider the diagonal action of G on P P: g(u, v) = (gu, gv). We define the gauge groupoid Gauge(P) M: Gauge(P) = (P P)/G. For u, v, v, w P such that p(v) = p(v ) = x, s([u, v]) = p(u); t([u, v]) = p(v); id(x) = ([v, v]); m ([u, v], [v, w]) = ([u, w]). Li (Toronto) Groupoids and algebroids Waterloo 2013 9 / 22

Lie algebroid Lie algebroid Lie algebroid Lie algebroid A Lie algebroid A over the base manifold M is a vector bundle A M with a Lie bracket [, ] on Γ(A) and an anchor map a : A TM that preserves the bracket and satisfies the Leibniz rule [X, fy ] = f [X, Y ] + a(x)(f )Y. (2.1) Li (Toronto) Groupoids and algebroids Waterloo 2013 10 / 22

Lie algebroid Lie algebroid Lie algebroid Lie algebroid A Lie algebroid A over the base manifold M is a vector bundle A M with a Lie bracket [, ] on Γ(A) and an anchor map a : A TM that preserves the bracket and satisfies the Leibniz rule [X, fy ] = f [X, Y ] + a(x)(f )Y. (2.1) Lie functor For a Lie groupoid G M, the vector bundle Lie(G). = id ker (Ts : T G TM) (2.2) with the bracket on left invariant vector fields, and the anchor Tt : Lie(G) TM, is Lie algebroid. Li (Toronto) Groupoids and algebroids Waterloo 2013 10 / 22

Lie algebroid Examples of Lie algebroids Examples: Lie algebroids 1.Lie algebra If the base M is a point, then A is a Lie algebra. Li (Toronto) Groupoids and algebroids Waterloo 2013 11 / 22

Lie algebroid Examples of Lie algebroids Examples: Lie algebroids 1.Lie algebra If the base M is a point, then A is a Lie algebra. 2. Bundle of Lie algebras If the anchor a : A TM is trivial, then A is a bundle of Lie algebras. Li (Toronto) Groupoids and algebroids Waterloo 2013 11 / 22

Lie algebroid Examples of Lie algebroids Examples: Lie algebroids 1.Lie algebra If the base M is a point, then A is a Lie algebra. 2. Bundle of Lie algebras If the anchor a : A TM is trivial, then A is a bundle of Lie algebras. 3. Tangent algebroid For a connected manifold M, the tangent bundle TM itself is a Lie algebroid. Both the pair groupoid Pair(M) and the fundamental groupoid Π 1 (M) integrates the tangent algebroid TM. Li (Toronto) Groupoids and algebroids Waterloo 2013 11 / 22

Lie algebroid Examples of Lie algebroids Examples: Lie algebroids 4. General linear algebroid For a vector bundle E M of rank r, we define the general linear algebroid gl(e): Let E be the Euler vector field, we have Γ(gl(E)) = {X Γ(TE) L E X = 0}. (2.3) The anchor a : gl(e) TM is the pushforward of the projection E M. Li (Toronto) Groupoids and algebroids Waterloo 2013 12 / 22

Lie algebroid Examples of Lie algebroids Examples: Lie algebroids Remark The general linear algebroid gl(e) fits into the following exact sequence a 0 V gl(e) TM 0 (2.4) where V is the vector bundle whose sections are the vertical vector fields. Both the holonomy groupoid Hol(E) and the general linear groupoid GL(E) integrates the general linear algebroid gl(e). A Lie algebroid action A M on a vector bundle E M is a Lie algebroid morphism from A to gl(e). Li (Toronto) Groupoids and algebroids Waterloo 2013 13 / 22

Lie algebroid Examples of Lie algebroids Examples: Lie algebroids 5. Atiyah algebroid For a principal G-bundle P M, the Atiyah algebroid At(P) of P is the Lie algebroid of the gauge groupoid Gauge(P) P, which fits in the following short exact sequence: 0 P G g At(P) TM 0 (2.5) where P G g is the associated bundle. Li (Toronto) Groupoids and algebroids Waterloo 2013 14 / 22

Lie algebroid Category of integrations Category of integrations In general, it is not always true that a Lie algebroid integrates to a Lie groupoid. The integrability condition was given in [Crainic-Fernandes, 03]. For an integrable Lie algebroid A, the source-connected groupoids integrating A form a category Gpd(A). The initial object in Gpd(A) is the source-simply-connected groupoid integrating A; the terminal object, if exists, is the adjoint groupoid. Li (Toronto) Groupoids and algebroids Waterloo 2013 15 / 22

Lie algebroid Category of integrations Category of integrations In general, it is not always true that a Lie algebroid integrates to a Lie groupoid. The integrability condition was given in [Crainic-Fernandes, 03]. For an integrable Lie algebroid A, the source-connected groupoids integrating A form a category Gpd(A). The initial object in Gpd(A) is the source-simply-connected groupoid integrating A; the terminal object, if exists, is the adjoint groupoid. Lie groups For a Lie algebra g, the category of integrations Gpd(g) is equivalent to the lattice of normal subgroups of the fundamental group of simply-connected Lie group, Λ(π 1 (G sc )). Li (Toronto) Groupoids and algebroids Waterloo 2013 15 / 22

Lie algebroid Category of integrations Category of tangent integrations For a connected manifold M, the category of tangent integrations Gpd(TM) is equivalent to the lattice of normal subgroups of the fundamental group, Λ(π 1 (M, x)). The equivalence is given by G M t (π 1 (s 1 (x), id(x))). (2.6) The fundamental groupoid Π 1 (M) is the source-simply-connected integration, and corresponds to the trivial group {id} inside π 1 (M, x). The pair groupoid Pair(M) is the adjoint integration, and corresponds to π 1 (M, x). Li (Toronto) Groupoids and algebroids Waterloo 2013 16 / 22

Poisson groupoid Poisson manifold Poisson manifold Schouten Nijenhuis breacket For a manifold M, the bracket [, ] on vector fields X(M) may be extended to make the alternating multi-vectors X (M) a Gerstenhaber algebra [X 1 X m, Y 1 Y n ] = i,j ( 1) i+j [X i, Y j ]X 1 ˆX i X m Y 1 Ŷj Y n. (3.1) Li (Toronto) Groupoids and algebroids Waterloo 2013 17 / 22

Poisson groupoid Poisson manifold Poisson manifold Schouten Nijenhuis breacket For a manifold M, the bracket [, ] on vector fields X(M) may be extended to make the alternating multi-vectors X (M) a Gerstenhaber algebra [X 1 X m, Y 1 Y n ] = i,j ( 1) i+j [X i, Y j ]X 1 ˆX i X m Y 1 Ŷj Y n. (3.1) Poisson manifold A Poisson manifold is a manifold M with a bivector π X 2 (M) such that [π, π] = 0. (3.2) Li (Toronto) Groupoids and algebroids Waterloo 2013 17 / 22

Poisson groupoid Poisson manifold Poisson algebroid Poisson algebroids For a Poisson manifold (M, π), we define the Poisson algebroid T π M: T π M = T M; the anchor is π : T M TM, α ι α π; the bracket is the Koszul bracket [α, β] = L π (α)β L π (β)α dπ(α, β). (3.3) Li (Toronto) Groupoids and algebroids Waterloo 2013 18 / 22

Poisson groupoid Poisson manifold Poisson algebroid Poisson algebroids For a Poisson manifold (M, π), we define the Poisson algebroid T π M: T π M = T M; the anchor is π : T M TM, α ι α π; the bracket is the Koszul bracket [α, β] = L π (α)β L π (β)α dπ(α, β). (3.3) Coisotropic submanifold A coisotropic submanifold of (M, π) is a submanifold C M such that π (T M C ) TC. The conormal bundle N C is a Lie subalgebroid of the Poisson algebroid T π M. Li (Toronto) Groupoids and algebroids Waterloo 2013 18 / 22

Poisson groupoid Poisson groupoid Poisson groupoid Poisson groupoid A Poisson groupoid is a Lie groupoid G M with a Poisson structure σ on G such that the graph of multiplication Graph(m) = {(g, h, m(g, h)) (g, h) G s t G} (3.4) is coisotropic with respect to σ σ σ. Li (Toronto) Groupoids and algebroids Waterloo 2013 19 / 22

Poisson groupoid Poisson groupoid Poisson groupoid Poisson groupoid A Poisson groupoid is a Lie groupoid G M with a Poisson structure σ on G such that the graph of multiplication Graph(m) = {(g, h, m(g, h)) (g, h) G s t G} (3.4) is coisotropic with respect to σ σ σ. The pushforward π = s (σ) = t (σ) is Poisson on M. Li (Toronto) Groupoids and algebroids Waterloo 2013 19 / 22

Poisson groupoid Poisson groupoid Poisson groupoid Poisson groupoid A Poisson groupoid is a Lie groupoid G M with a Poisson structure σ on G such that the graph of multiplication Graph(m) = {(g, h, m(g, h)) (g, h) G s t G} (3.4) is coisotropic with respect to σ σ σ. The pushforward π = s (σ) = t (σ) is Poisson on M. Symplectic groupoid A symplectic groupoid is a Poisson groupoid (G, σ) (M, π) such that σ is non-degenerate. Li (Toronto) Groupoids and algebroids Waterloo 2013 19 / 22

Poisson groupoid Poisson groupoid Poisson groupoid Poisson groupoid A Poisson groupoid is a Lie groupoid G M with a Poisson structure σ on G such that the graph of multiplication Graph(m) = {(g, h, m(g, h)) (g, h) G s t G} (3.4) is coisotropic with respect to σ σ σ. The pushforward π = s (σ) = t (σ) is Poisson on M. Symplectic groupoid A symplectic groupoid is a Poisson groupoid (G, σ) (M, π) such that σ is non-degenerate. For a symplectic groupoid (G, σ), the graph Graph(m) is Lagrangian. Li (Toronto) Groupoids and algebroids Waterloo 2013 19 / 22

Poisson groupoid Lie bialgebroids Lie bialgebroid Lie bialgebroid Let (A, M, a, [, ]) be a Lie algebroid. If the dual bundle A carries a Lie algebroid structure (A, M, a, [, ] ) such that d [X, Y ] = L X d Y L Y d X, (3.5) where d is the A -differential and L is the Lie direvative with respect to A, then (A, A ) is a Lie bialgebroid. Li (Toronto) Groupoids and algebroids Waterloo 2013 20 / 22

Poisson groupoid Lie bialgebroids Lie bialgebroid Lie bialgebroid Let (A, M, a, [, ]) be a Lie algebroid. If the dual bundle A carries a Lie algebroid structure (A, M, a, [, ] ) such that d [X, Y ] = L X d Y L Y d X, (3.5) where d is the A -differential and L is the Lie direvative with respect to A, then (A, A ) is a Lie bialgebroid. Lie functor for Poisson groupoid For a Poisson groupoid (G, σ) (M, π), the Lie algebroids A =. Lie(G) and A =. N (id(m)) form a Lie bialgebroid, and we write Lie(G, σ) = (A, A ). (3.6) Li (Toronto) Groupoids and algebroids Waterloo 2013 20 / 22

Poisson groupoid Examples of Poisson groupoids and symplectic groupoids Examples: Poisson groupoids 1. Pair groupoid For a Poisson manifold (M, π), the pair groupoid Pair(M) = M M with the Poisson structrure π π is a Poisson groupoid. Li (Toronto) Groupoids and algebroids Waterloo 2013 21 / 22

Poisson groupoid Examples of Poisson groupoids and symplectic groupoids Examples: Poisson groupoids 1. Pair groupoid For a Poisson manifold (M, π), the pair groupoid Pair(M) = M M with the Poisson structrure π π is a Poisson groupoid. 2. Fundamental groupoid For a Poisson manifold (M, π), the fundamental groupoid Π 1 (M) with the Poisson structrure σ = (s, t) (π π) is a Poisson groupoid. Li (Toronto) Groupoids and algebroids Waterloo 2013 21 / 22

Poisson groupoid Examples of Poisson groupoids and symplectic groupoids Examples: Poisson groupoids 1. Pair groupoid For a Poisson manifold (M, π), the pair groupoid Pair(M) = M M with the Poisson structrure π π is a Poisson groupoid. 2. Fundamental groupoid For a Poisson manifold (M, π), the fundamental groupoid Π 1 (M) with the Poisson structrure σ = (s, t) (π π) is a Poisson groupoid. The Lie bialgebroid of (Pair(M), π π) and (Π 1 (M), σ) is (TM, T π M). If (M, π) is symplectic, then both (Pair(M), π π) and (Π 1 (M), σ) are symplectic groupoids. Li (Toronto) Groupoids and algebroids Waterloo 2013 21 / 22

Poisson groupoid Examples of Poisson groupoids and symplectic groupoids Examples: Poisson groupoids 3. (T M, ω 0 ) (M, 0) For a manifold M with the zero Poisson structure, the cotangent bundle T M with the canonical symplectic structrue ω 0 is a symplectic groupoid. Li (Toronto) Groupoids and algebroids Waterloo 2013 22 / 22

Poisson groupoid Examples of Poisson groupoids and symplectic groupoids Examples: Poisson groupoids 3. (T M, ω 0 ) (M, 0) For a manifold M with the zero Poisson structure, the cotangent bundle T M with the canonical symplectic structrue ω 0 is a symplectic groupoid. 4. (T G, ω 0 ) (g, π kks ) Let G be a Lie group, and let g be its Lie algebra. The dual g is equipped with the KKS Poisson structure π kks. The cotangent bundle (T G, ω 0 ) is a symplectic groupoid of (g, π kks ). The source and the target are left and right translations. Li (Toronto) Groupoids and algebroids Waterloo 2013 22 / 22