Research Article Numerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model

Similar documents
Anisotropic permeabilities evolution of reservoir rocks under pressure:

The Effect of Stress Arching on the Permeability Sensitive Experiment in the Su Lige Gas Field

Permeability of Dual-Structured Porous Media

Pore Scale Analysis of Oil Shale/Sands Pyrolysis

Research Article Studies on a Foam System of Ultralow Interfacial Tension Applied in Daqing Oilfield after Polymer Flooding

Analysis of flow characteristics of a cam rotor pump

An Improved Differential Strain Analysis Method for Super Deep Wells

Numerical and Laboratory Study of Gas Flow through Unconventional Reservoir Rocks

Numerical and Laboratory Study of Gas Flow through Unconventional Reservoir Rocks

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

Numerical Simulation of the Oil-water Distribution Law in X Block Geology by Using the STARS Mode

Th P06 05 Permeability Estimation Using CFD Modeling in Tight Carboniferous Sandstone

Stress and Wear Analysis of the Disc Cutter of Rock Tunnel Boring Machine

PERMEABILITY PREDICTION IN POROUS MEDIA WITH COMPLEX 3D ARCHITECTURES IN A TRI- PERIODIC COMPUTATIONAL DOMAIN

Temperature Dependent Mechanical Properties of Reservoir s Overburden Rocks During SAGD Process

Open Access Study on Reservoir-caprock Assemblage by Dual Logging Parameter Method

INFLUENCE OF WATER-SOAKING TIME ON THE ACOUSTIC EMISSION CHARACTERISTICS AND SPATIAL FRACTAL DIMENSIONS OF COAL UNDER UNIAXIAL COMPRESSION

Study on the change of porosity and permeability of sandstone reservoir after water flooding

Relative Permeability Measurement and Numerical Modeling of Two-Phase Flow Through Variable Aperture Fracture in Granite Under Confining Pressure

1 Modeling Immiscible Fluid Flow in Porous Media

Effect Of The In-Situ Stress Field On Casing Failure *

WELLBORE STABILITY ANALYSIS IN CHEMICALLY ACTIVE SHALE FORMATIONS

Open Access An Experimental Study on Percolation Characteristics of a Single-Phase Gas in a Low-Permeability Volcanic Reservoir Under High Pressure

Open Access Support Technique of Horse Head in Weakly Cemented Soft Rock

Modeling seismic wave propagation during fluid injection in a fractured network: Effects of pore fluid pressure on time-lapse seismic signatures

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress

EXPERIMENTAL STUDY ON DYNAMIC FRACTURES INDUCED BY WATER FLOODING IN LOW PERMEABILITY RESERVOIRS

NUMERICAL INVESTIGATION OF THE DEPENDENCE OF RESIDUAL OIL SATURATION ON GEOMETRY, WETTABILITY, INITIAL OIL SATURATION AND POROSITY

3D simulations of an injection test done into an unsaturated porous and fractured limestone

American Journal of Energy Engineering

PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD

Open Access Establishment of Mathematical Model and Sensitivity Analysis of Plugging Capacity of Multi-Component Foam Flooding

SCA : A STRUCTURAL MODEL TO PREDICT TRANSPORT PROPERTIES OF GRANULAR POROUS MEDIA Guy Chauveteau, IFP, Yuchun Kuang IFP and Marc Fleury, IFP

Study on Numerical Simulation of Steam Huff and Puff Based on Deformable Medium Model

The Analytic Hierarchy Process for the Reservoir Evaluation in Chaoyanggou Oilfield

Prediction of Rock Mechanical Properties of Shale Gas Reservoir based on Relevant Finite Element Models

Chapter 1 INTRODUCTION

Finite Element Method in Geotechnical Engineering

Reservoir Rock Properties COPYRIGHT. Sources and Seals Porosity and Permeability. This section will cover the following learning objectives:

Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

SIMULATING IN-SITU CONDITIONS FOR DIGITAL CORE ANALYSIS

A new method for multi-exponential inversion of NMR relaxation measurements

The Effect of Well Patterns on Surfactant/Polymer Flooding

The Mine Geostress Testing Methods and Design

Experiment Study on Rheological Model of Soft Clay

Estimating Permeability from Acoustic Velocity and Formation Resistivity Factor

Rheological properties of polymer micro-gel dispersions

A Multi-Continuum Multi-Component Model for Simultaneous Enhanced Gas Recovery and CO 2 Storage in Stimulated Fractured Shale Gas Reservoirs Jiamin

The experimental study on displacement pressure in fractured reservoir of Mudstone

If your model can t do this, why run it?

MODELING GEOMATERIALS ACROSS SCALES JOSÉ E. ANDRADE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING EPS SEMINAR SERIES MARCH 2008

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

A multiscale framework for lubrication analysis of bearings with textured surface

Petroleum Geomechanics for Shale Gas

Reservoir Simulator Compaction Modelling: A Predictor for Accelerated Coupled Rock Mechanics -- Reservoir Simulation

Faculty Curriculum Vitae

Triple Medium Physical Model of Post Fracturing High-Rank Coal Reservoir in Southern Qinshui Basin

Research Article Experimental Study of the Composition and Structure of Granular Media in the Shear Bands Based on the HHC-Granular Model

A MICRO-CT STUDY OF CHANGES IN THE INTERNAL STRUCTURE OF DAQING AND YAN AN OIL SHALES AT HIGH TEMPERATURES

Anisotropy of Shale Properties: A Multi-Scale and Multi-Physics Characterization

Unjacketed bulk compressibility of sandstone in laboratory experiments. R. M. Makhnenko 1 and J. F. Labuz 1

DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC. Presented to :

THE EFFECT OF WATER SATURATION ON GAS SLIP FACTOR BY PORE SCALE NETWORK MODELING

Research Article Comprehensive Fractal Description of Porosity of Coal of Different Ranks

1.8 Unconfined Compression Test

Numerical Simulation for Flow and Heat Transfer Characteristics of L- Type Chaotic Channel

MICRO-CT IMAGING AND MICROFLUIDICS FOR UNDERSTANDING FLOW IN COAL SEAM RESERVOIRS

Rock visualization using micro-ct scanner and X-ray transparent triaxial apparatus

Simulating Fluid-Fluid Interfacial Area

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations

GENERALISATION OF THE TWO-SCALE MOMENTUM THEORY FOR COUPLED WIND TURBINE/FARM OPTIMISATION

Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump

Differential relations for fluid flow

Eluozo, S N. Keywords: modeling and simulation, flow net velocity, permeability and gravel formation

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

FRACTURE REORIENTATION IN HORIZONTAL WELL WITH MULTISTAGE HYDRAULIC FRACTURING

Research Article. Experimental Analysis of Laser Drilling Impacts on Rock Properties

NUMERICAL ANALYSIS OF THE THREE-MATERIAL DOWNHOLE FLOW FIELD IN HYDROTHERMAL JET DRILLING

Lattice-Boltzmann Simulations of Multiphase Flows in Gas-Diffusion-Layer (GDL) of a PEM Fuel Cell. Introduction

Hydrocarbon Reservoirs and Production: Thermodynamics and Rheology

Dilation occurrence analysis in gas storage based on the different constitutive models response

In situ permeability measurements inside compaction bands using X-ray CT and lattice Boltzmann calculations

Optimization of the nozzles structure in gas well

Test Study on Strength and Permeability Properties of Lime-Fly Ash Loess under Freeze-Thaw Cycles

Characterization of Pore Structure Based on Nondestructive Testing Technology

The effective pressure law for permeability of clay-rich sandstones

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis

dynamics of f luids in porous media

Fractal Description of Pores in Low Permeability Sandstone and the Inside Nonlinear Fluid Flow

Numeric Simulation for the Seabed Deformation in the Process of Gas Hydrate Dissociated by Depressurization

Adsorption Research of Polymer on Oil Sands in Qidongyi Block of Xinjiang Conglomerate Reservoir

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field

Novel Approaches for the Simulation of Unconventional Reservoirs Bicheng Yan*, John E. Killough*, Yuhe Wang*, Yang Cao*; Texas A&M University

Apparent Permeability Effective Stress Laws: Misleading Predictions Resulting from Gas Slippage, Northeastern British Columbia

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

Slow Velocity Flow Fields in Composite Materials

DETERMINING THE SATURATION EXPONENT BASED ON NMR PORE STRUCTURE INFORMATION

Role of lithological layering on spatial variation of natural and induced fractures in hydraulic fracture stimulation

Introduction to Marine Hydrodynamics

Transcription:

e Scientific World Journal, Article ID 140206, 8 pages http://dx.doi.org/10.1155/2014/140206 Research Article Numerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model Jianjun Liu, 1,2 Rui Song, 2 and Mengmeng Cui 3 1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China 2 School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China 3 School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China Correspondence should be addressed to Rui Song; songrui0506@126.com Received 12 March 2014; Revised 2 April 2014; Accepted 2 April 2014; Published 17 April 2014 Academic Editor: Sushanta K. Mitra Copyright 2014 Jianjun Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson s ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-ct scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-ct images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. 1. Introduction Above all fluid transport properties of porous media at in situ conditions, permeability has been conducted as a critical topic in many research fields such as oil and gas production, carbon dioxide storage, underground gas storage, coal mining, and fuel cell [1 4]. Wide ranges of stress dependent permeability tests application in porous media have led to myriad experimental research [5 8]. However, it is difficult to investigate the inner process of the rock matrix deformation and the fluid flow. Besides, there are an infinite number of possible fluid arrangements in terms of saturations and displacement series to constitute a comprehensive set of experimental measurements. The almost universal practice in the oil industry is to measure the permeability of certain core samples at one initial condition and then use empirical models, of limited accuracy, to predict the whole behavior for in situ cases [9]. In recent years, pore-scale modeling representing microstructures of porous media has been widely used for fluid transport properties prediction. Breakthrough in this fieldcanbesummarizedastwoaspects:latticeboltzmann method (LBM) and finite element method (FEM). In LBM, the discrete form of Boltzmann equation, which is solved over a regular lattice grid, is used to conduct the simulation of fluid flow in the porous media [10, 11]. While Navier-Stokes equations are usually adopted in FEM [12], two-dimensional (2D) [13, 14] and three-dimensional (3D) [15 17] pore networks of heterogeneous porous media are used in these simulations. The 2D models usually reproduce disorder system in porous media properly but are unable to reproduce the spatial interconnectivity of pore systems.

2 The Scientific World Journal 120 100 Stress (MPa) 80 60 40 20 (a) 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Strain (%) Stress (a) (b) Figure 1: Sandstone samples and equipment used in this research. (a) is initial sandstone samples; (b) is Micro X CT-400. (b) And in most 3D models, different sizes of spheres and cylinders serve as pores and throats of the porous stone. GAO has made breakthroughs in reconstructing the 3D real shape porous model based on micro-ct images using the lattice Boltzmann method [18]. Yet, the hydromechanical coupling at in situ condition has not been taken into consideration in the LBM simulations. This paper proposes a novel approach of reconstructing the 3D finite elements model from natural porous media images employing the commercial software MIMICS [19] and ICEM [20], which are prior to the pore network model basedonsomebasicassumptions.these3dfemmodels are able to reproduce the real shape of natural porous media compared to most LBM models. And the FEM-based software ANSYS [20] andcfx[20] canrealizethetwo-way hydromechanical coupling through workbench platform. The tetra finite volume elements of different sizes are used to represent the origin microstructures of porous media rather than some regular shapes (sphere or cylinder, etc.). Parameters of the sandstone samples, such as the stressstrain curve, Poisson s ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. Four physical models possessing the same pore and rock matrix characteristics as the natural sandstones have been developed. Hereby, permeability of four samples under different pore pressure and confining pressure has been Figure 2: Basic data for rock mechanics experiment and CT imaging. (a) is stress-strain curve; (b) is cross-section image of sandstone sample S1. predicted. The results between the numerical simulation and experiment are compared, accordingly. 2. Sample Preparation Sandstone core samples used in this paper are provided by the Daqing Oilfield in China. As is shown in Figure 1(a), sandstone samples taken from adjacent parts of the same block of rock are used as input for the rock properties test including Young s modulus, Poisson s ratio, permeability, and porosity. All of these parameters are measured by standardized equipment in laboratory. Micro-CT scanner (Figure 1(b)) is employed to image the samples. Stress-strain curve of the sandstone sample, which is used as material property for the structural analysis in the simulation, is shown in Figure 2(a). In the imaging process, small cylinders are drilled out of larger core samples for scanning. Then, the pore space is evacuatedtoinjectamixedresinofepoxyresinandstruers Caldofix, which is typical for embedding of materialographic specimens. The resin is impregnated into the samples to

The Scientific World Journal 3 (a) (b) (c) Figure 3: Reconstruction model, matrix, and pore space finite element model of S2. maintain the integrity of sandstones during the physically destructive drilling to obtain small size samples. The small samples are imaged by the Micro X CT scanner in the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation in Southwest Petroleum University. One crosssection of micro-ct images is shown in Figure 2(b). Atotal of four sandstone images (numbered S1, S2, S3, and S4) are used in this paper. And a cube of voxels is extracted from the origin micro-ct images. For example, 400 400 400 pixels of S1 are selected and used to construct the pore-scale model, whichismarkedbytheredblockinfigure 2(b). 3. Finite Elements Model for Rock Matrix and Pore Space A challenging problem in numerical simulation of fluid properties in porous medium is how to build mesh models forporespace,aswellasfortherockmatrix.moreover, both of the models must match each other perfectly to ensure the accuracy of hydromechanical simulation. Here, MIMICS software is employed to establish the 3D finite elements models based on the micro-ct images. The rock matrixandporespacearedistinguishedbythethreshold of different color, after importing the micro-ct image data with a.raw suffix to the MIMICS software. Then surface meshes are transformed into tetrahedral elements wrapping thesolidandtheporemodels.basedonsurfacemeshes, mapping algorithm is adopted to generate 4-node tetrahedral element meshes. To ensure the accuracy of the simulation, the rock matrix and pore boundaries must be fitted to each other. Thus, nonmanifold assembly function in MIMICS is used when generating the volume meshes, which means the volume meshes of rock matrix and pore space are generated as assembly. The reconstructed model as well as the finite element models of S2 is shown in Figure 3. Meanwhile, the boundary meshes are selected to form the different parts in ICEM software, making preparations for the application of the boundary conditions into the numerical simulation. And basic parameters of the models used in this study are listed in Table 1.The element quality of both pore space and rock matrix models is shown in Figure 4. Normalized frequency 0.25 0.20 0.15 0.10 0.05 0.00 0.0 0.2 0.4 0.6 0.8 1.0 Element quality S1 pore S2 pore S3 pore S4 pore S1 matrix S2 matrix S3 matrix S4 matrix Figure 4: Element quality of reconstructed FEM models. 4. Mathematical Model The continuity equation represents conservation of mass for fluid flow, which can be written as [14], Δ V =0. (1) Here V representsthevelocityoffluidflow.thefluidis assumedtobecontinuousandincompressible. Navier-Stokes equation, representing conservation of momentum for the fluid flow, can be written as [14], ρ[ V t + (V ) V] = p p +ρg+μ( V + T ). (2) Here V is velocity of fluid flow, ρ is density of fluid, μ is dynamic viscosity of fluid, p p is fluid pressure, and g isaccelerationduetogravity.fluidisassumedtobe incompressible and Newtonian.

4 The Scientific World Journal Pressure inlet p i (fluid model) Confining pressure p c (matrix model) Fluid-solid interface for both matrix model and fluid Z X Y Pressure outlet p o (fluid model) Figure 5: Boundary conditions in the simulation. Table 1: Parameters of sandstone samples used in this study. Number Resolution (μm) Size Finite elements number Matrix Pore Porosity Φ Origin sample D = 2.5 cm, L=5cm 15.34% S1 3.845 400 400 400 pixels 1336224 230207 21.03% S2 5.133 300 300 300 pixels 289757 222188 18.33% S3 5.133 300 300 300 pixels 546717 365739 17.28% S4 5.133 300 300 300 pixels 279167 376709 11.22% By the CFX software, the outlet flow rate Q can be acquired. Then the absolute permeability will be calculated in the following term: K= μq LΔp. (3) Here, L is the length of the cubic sandstone finite element model. The pressure on the fluid-solid interface is transferred to each other by the following equation, which is called principle of effective stress firstly proposed by Terzaghi [21]: f i =p c αp p. (4) The three-dimensional geometric equations of the rock matrix are [22] ε x = u x, γ xy = V x + u y, γ zx = w x + u z. ε y = V y, ε z = w z, γ yz = V z + u y, Here ε x, ε y,andε z are the normal strain, γ xy, γ yz,andγ zx are the shear strain, and u,v, and w are the displacement components. The elastic physical equations are [20] (6) Here p c is the confining pressure, and α is the coefficient, ranging from 0 to 1. In the simulation, it is defined as 1. The three-dimensional equilibrium differential equation is [22] σ ij +f j x i =0. (5) j ε x = 1 E [σ x μ(σ y +σ z )], ε y = 1 E [σ y μ(σ x +σ z )], ε z = 1 E [σ z μ(σ y +σ x )], γ xy = 2(1+μ) τ E xy, γ yz = 2(1+μ) τ E yz, γ zx = 2(1+μ) τ E zx. (7) Here σ ij is the stress tensor, and f i is the body force. Here E is modulus of elasticity and μ is Poisson s ratio.

The Scientific World Journal 5 1.25e + 03 ANSYS R14.5 7.99e 01 ANSYS R14.5 1.56e + 03 7.19e 01 1.40e + 03 6.39e 01 1.25e + 03 5.59e 01 1.06e + 03 4.79e 01 9.36e + 02 4.00e 01 7.80e + 02 3.20e 01 6.24e + 02 2.40e 01 4.68e + 02 1.60e 01 3.12e + 02 7.99e 02 (a) (b) Type: equivalent (von-mises) stress Unit: Pa Time: 1 Max: 2.02958e8 Min: 0 2.0295e8 Max 1.7214e7 1.578e7 1.4345e7 1.2911e7 1.1476e7 1.0042e7 8.6072e6 7.1727e6 5.7381e6 4.3036e6 2.8691e6 1.4345e6 0 Min (m) 0 0.001 Type: equivalent (von-mises) stress Unit: Pa Time: 1 2014/3/616:22 2.0426e8 Max 2.4621e7 2.2569e7 2.0518e7 1.8466e7 1.6414e7 1.4362e7 1.2311e7 1.0259e7 8.0271e6 6.1553e6 4.1035e6 2.0518e6 0 Min (m) 0 0.001 0.0005 0.0005 (c) Scale 100 (d) Scale 100 Figure 6: Simulation results images. (a) and (b) are the images of fluid pressure contours and velocity vectors at the pressure gradient 10 MPa/m (p i = 1538 Pa, p o =0Pa), (c) is the von-mises stress field of S2 rock matrix at the pore pressure of 20 MPa (p i = 2e7 + 1538 Pa, p o =0Pa), and (d) is the von-mises stress field of S2 rock matrix at the condition of p c p p =20MPa. 5. Fluid-Solid Coupling Simulation The structural analysis for matrix model and fluid flow for pore model are solved by ANSYS solver and CFX solver, respectively. As a result, boundary conditions of the matrix model and pore model should be set in ANSYS workbench separately. Firstly, confining pressure (p c ) for structural analysis is added to the four sides of the cubic matrix models. The data of the stress-strain curve shown in Figure 2(a) is assigned as material parameters of rock matrix. Poisson s ratio of the origin sandstone sample tested by triaxial test is 0.341. Andthecontactsurfacesofsolidandfluidinsidetherock are defined as fluid-solid interface, through which pressure is transmitted between the solid and fluid. Meanwhile, pressure inlet and outlet conditions are applied to the top and the bottom of the pore model along z direction. Water is used as thefluidmediuminthesimulation.fluidfieldwillbesolved bycfxsolveratthebeginningofsimulation.afterthefluid pressure on the fluid-solid interface is transferred to ANSYS structural solver, the meshes on the fluid-solid interface of

6 The Scientific World Journal 50 0.70 0.65 p p =2MPa Flow rate ( 10 7 kg/s) 40 30 20 10 Permeability k (md) 0.60 0.55 0.50 0.45 0.40 0.35 0 0 2 4 6 8 10 Pore pressure only Realistic Pressure gradient (MPa/m) Figure 7: Flow rate of outlet versus fluid pressure gradient. The red curve is traditional simulation that does not consider the hydromechanical coupling; the black curve illustrates the state of hydromechanical coupling when the confining pressure is regarded as 0 and the pore pressure is 2 MPa. 0.30 0 5 10 15 20 25 30 35 40 Confining pressure (MPa) S1 S2 S3 Figure 9: Permeability versus confining pressure at the condition of p p =2MPa. S1, S2, S3, and S4 are simulation results; S0 is the experimental data. S4 S0 Permeability k (md) 0.75 0.70 0.65 0.60 0.55 0.50 0.45 p c p p =3MPa 0.40 0 5 10 15 20 25 30 35 40 Pore pressure (MPa) S1 S2 S3 Figure 8: Permeability versus pore pressure at the condition of p c p p =3MPa. S1, S2, S3, and S4 are simulation results; S0 is the experimental data. both rock matrix and pore model will be remeshed according to the deformation data. The iteration of the fluid field and deformation of rock matrix is continued until the models converge. The brief schematic of boundary conditions in the simulation is shown in Figure 5. A laminar flow is assumed. The pressure-corrections scheme SIMPLE is used for velocity-pressure coupling. All simulations are converged at different iterations under the condition that the absolute convergence criteria are set to 1E-5 for all equations, under the condition of which default relaxation factors are used. S4 S0 The images of fluid pressure contours and velocity vectors along z direction are shown in Figures 6(a) and 6(b). It canbeseenthatfluidflowalongsomechannelswithgood connectivity mainly. This phenomenon has been verified by classical microfluid experiment in porous media. As mentioned before, most simulation on seepage mechanism in pore-scale models of porous media has not taken hydromechanical coupling into consideration, which do not keep up with the actual condition. Due to the fact that the tested samples are cylindrical, the benchmark experimental data is merely along z direction. The same boundary conditions are adoptedinthesimulation.here,porepressure(p p =2MPa) is adapted to simulation for its effect on the rock permeability. Figure 7 shows that the seepage flow rate of the outlet is higher under fluid-solid coupling condition when taking the pore pressure into consideration than that in traditional simulation. Actually, the confining pressure is usually greater than the pore pressure to guarantee the accuracy in the experiments. In this paper, the same boundary conditions are adopted for both simulation and experiment. As is shown in Figure 8, curves of rock permeability versus pore pressure at the condition of p c p p = 3MPa are plotted. It is found that the rock permeability changes at the fixed effective pressure level. The rock permeability increases along with the increase of pore pressure at the same effective pressure initially and curves become relatively flatter when pore pressure exceeds 15 20 MPa. It is a common sense that permeability of porous media depends on the size and connectivity of throats (the narrow openings connecting the pores). In fact, when fluid is injected into the porous media, the pore space will be extendedly driven by the pore pressure. Moreover, stress concentration usually occurs because of the irregular matrix shape of the porous media. As is shown in Figure6(c),

The Scientific World Journal 7 large deformation occurs under the pore pressure at some weak zone, which eventually leads to the increase of rock permeability. This reveals that the phenomenon of how water flooding microscopically, the most widely used well stimulation in the development of oil field, promotes the permeability of oil reservoir. Meanwhile, curves of rock permeability versus confining pressure at the condition of p p = 2MPa are plotted in Figure 9.Thepermeabilitydecreaseswiththeincreaseofconfining pressure at the beginning and curves become less steep when confining pressure exceeds 20 25MPa. Analogically, Figure 6(d) shows that when p c p p = 20MPa, the rock matrix is compressed and stress concentration occurs in the same parts as Figure 6(c). The trends of simulation result agree well with the experimental result. All of these verify the feasibility of the simulation and the necessity of conducting hydromechanical coupling analysis when predicting the fluid properties in porous media. 6. Conclusion Based on micro-ct images scanned by the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation in the Southwest Petroleum University, four sandstone 3D finite element models are generated using MIMICS and ICEM software. Through the hydromechanical coupling simulation on fluid transport properties in pore-scale models of porous media by ANSYS and CFX software, permeability of sandstone samples under different pore pressure and confining pressure is predicted. Good agreements are acquired on simulation result against the benchmark data. This indicates that the hydromechanical coupling analysis is able to promote the accuracy of permeability prediction of rock through reproducing its stress state underground. It should be noted that this study provides a preliminary study for microfluids in deformable porous media using finite element methods. Though examples used in this study mainly focus on the petroleum industry, it can also be widely applied to hydromechanical coupling analysis in other relevant area. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgments This paper is financially supported by the Natural Science Foundation of China (Grant no. 51174170) and the National Science and Technology Major Project of China under Grant no. 2011ZX05013-006. References [1] B. Markicevic and N. Djilali, Analysis of liquid water transport in fuel cell gas diffusion media using two-mobile phase Pore network simulations, Power Sources, vol.196,no.5, pp. 2725 2734, 2011. [2] P. Guo and Y. Cheng, Permeability prediction in deep coal seam: a case study on the no. 3 coal seam of the Southern Qinshui Basin in China, The Scientific World Journal, vol. 2013, Article ID 161457, 10 pages, 2013. [3] L.You,K.Xue,Y.Kang,Y.Liao,andL.Kong, Porestructure and limit pressure of gas slippage effect in tight sandstone, The Scientific World Journal, vol.2013,articleid572140,7pages, 2013. [4] S.Lukman,M.H.Essa,N.D.Mu azu,anda.bukhari, Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil, The Scientific World Journal, vol.2013,articleid346910,9pages, 2013. [5] V.H.Nguyen,N.Gland,J.Dautriat,C.David,J.Wassermann, and J. Guélard, Compaction, permeability evolution and stress path effects in unconsolidated sand and weakly consolidated sandstone, International Rock Mechanics and Mining Sciences,vol.67,pp.226 239,2014. [6] Z. Meng and G. Li, Experimental research on the permeability of high-rank coal under a varying stress and its influencing factors, Engineering Geology, vol. 162, pp. 108 117, 2013. [7] J.-J. Dong, J.-Y. Hsu, W.-J. Wu et al., Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A, International Rock Mechanics and Mining Sciences, vol. 47, no. 7, pp. 1141 1157, 2010. [8] K. Zeng, J. Xu, P. He, and C. Wang, Experimental study on permeability of coal sample subjected to triaxial stresses, Procedia Engineering,vol.26,pp.1051 1057,2011. [9] M. J. Blunt, Flow in porous media Pore-network models and multiphase flow, Current Opinion in Colloid and Interface Science,vol.6,no.3,pp.197 207,2001. [10] M. A. Camargo, P. C. Facin, and L. F. Pires, Lattice boltzmann method for evaluating hydraulic conductivity of finite array of spheres, The Scientific World JOURNAL, vol. 2012, ArticleID 527618, 8 pages, 2012. [11] Y. Chen, H. Ohashi, and M. Akiyama, Prandtl number of lattice Bhatnagar-Gross-Krook fluid, Physics of Fluids,vol.7,no.9,pp. 2280 2282, 1995. [12] A. C. Gunde, B. Bera, and S. K. Mitra, Investigation of water and CO 2 (carbon dioxide) flooding using micro-ct (microcomputed tomography) images of Berea sandstone core using finite element simulations, Energy, vol. 35, no. 12, pp. 5209 5216, 2010. [13] J. Liu, R. Song, and J. Zhao, Numerical simulation research on seepage mechanism in Pore-scale deformable porous media, Disaster Advances,vol.6,pp.49 58,2013. [14] M. Taghilou and M. H. Rahimian, Investigation of twophase flow in porous media using lattice Boltzmann method, Computers & Mathematics with Applications, vol.67,no.2,pp. 424 436, 2014. [15] S. Bakke and P.-E. Øren, 3-D Pore-scale modelling of sandstones and flow simulations in the Pore networks, SPE Journal, vol. 2, no. 2, pp. 136 149, 1997. [16] M. J. Blunt, M. D. Jackson, M. Piri, and P. H. Valvatne, Detailed physics, predictive capabilities and macroscopic consequences for Pore-network models of multiphase flow, Advances in Water Resources,vol.25,no.8 12,pp.1069 1089,2002. [17] D. Bauer, S. Youssef, M. Fleury, S. Bekri, E. Rosenberg, and O. Vizika, Improving the estimations of petrophysical transport behavior of carbonate rocks using a dual Pore network approach combined with computed microtomography, Transport in Porous Media,vol.94,no.2,pp.505 524,2012.

8 The Scientific World Journal [18] J. Gao, H. Xing, Z. Tian, and H. Muhlhaus, Lattice Boltzmann modeling and evaluation of fluid flow in heterogeneous porous media involving multiple matrix constituents, Computers & Geosciences, vol. 62, pp. 198 207, 2014. [19] Mimics 14 Tutorials, Materialize, 2011. [20] ANSYS User s Guide,ANSYS,2012. [21] W. Arairo, F. Prunier, I. Djeran-Maigre, and A. Millard, On the use of effective stress in three-dimensional hydro-mechanical coupled model, Computers and Geotechnics,vol.58,pp.56 68, 2014. [22] M. H. Sadd, Elasticity:Theory,Applications,andNumerics, Academic Press, 2009.

Energy International Rotating Machinery Wind Energy The Scientific World Journal Structures Industrial Engineering Petroleum Engineering Solar Energy Submit your manuscripts at Fuels Engineering Advances in Power Electronics International High Energy Physics Photoenergy International Advances in Combustion Nuclear Energy Renewable Energy International Advances in Science and Technology of Tribology Nuclear Installations Aerospace Engineering