A Survey of Numerical Methods in Fractional Calculus

Similar documents
Numerical Fractional Calculus Using Methods Based on Non-Uniform Step Sizes. Kai Diethelm. International Symposium on Fractional PDEs June 3 5, 2013

SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm. Abstract

Fourth Order RK-Method

Numerical solution of the Bagley Torvik equation. Kai Diethelm & Neville J. Ford

Higher order numerical methods for solving fractional differential equations

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester

arxiv: v2 [math.ca] 13 Oct 2015

Initial-Value Problems for ODEs. Introduction to Linear Multistep Methods

AN EFFICIENT PARALLEL ALGORITHM FOR THE NUMERICAL SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm 1,2

Jim Lambers MAT 772 Fall Semester Lecture 21 Notes

A computationally effective predictor-corrector method for simulating fractional order dynamical control system

Comparing Numerical Methods for Solving Nonlinear Fractional Order Differential Equations

9.6 Predictor-Corrector Methods

Module 4: Numerical Methods for ODE. Michael Bader. Winter 2007/2008

CHAPTER 5: Linear Multistep Methods

This work has been submitted to ChesterRep the University of Chester s online research repository.

multistep methods Last modified: November 28, 2017 Recall that we are interested in the numerical solution of the initial value problem (IVP):

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 18. HW 7 is posted, and will be due in class on 4/25.

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Higher Order Numerical Methods for Fractional Order Differential Equations

Integration, differentiation, and root finding. Phys 420/580 Lecture 7

Applied Math for Engineers

16.7 Multistep, Multivalue, and Predictor-Corrector Methods

Scientific Computing: Numerical Integration

Numerical Methods for Differential Equations

Numerical Methods - Initial Value Problems for ODEs

Linear Multistep Methods I: Adams and BDF Methods

COSC 3361 Numerical Analysis I Ordinary Differential Equations (II) - Multistep methods

On the fractional-order logistic equation

On the Fractional Signals and Systems

Numerical Methods for Differential Equations

16.7 Multistep, Multivalue, and Predictor-Corrector Methods

HIGHER ORDER METHODS. There are two principal means to derive higher order methods. b j f(x n j,y n j )

MTH 452/552 Homework 3

On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions

Solving Ordinary Differential equations

NUMERICAL MATHEMATICS AND COMPUTING

5.6 Multistep Methods

Applied Numerical Analysis

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations

Lecture 10: Linear Multistep Methods (LMMs)

CS520: numerical ODEs (Ch.2)

Part IB Numerical Analysis

Multistep Methods for IVPs. t 0 < t < T

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods

Ordinary Differential Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

High Order Numerical Methods for the Riesz Derivatives and the Space Riesz Fractional Differential Equation

AN OVERVIEW. Numerical Methods for ODE Initial Value Problems. 1. One-step methods (Taylor series, Runge-Kutta)

8.1 Introduction. Consider the initial value problem (IVP):

2 Numerical Methods for Initial Value Problems

On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method

arxiv: v1 [math.ca] 30 Sep 2014

Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag Leffler Functions

APPM/MATH Problem Set 6 Solutions

On the Designing of Fractional Order FIR Differentiator Using Radial Basis Function and Window

Initial value problems for ordinary differential equations

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

5 Numerical Integration & Dierentiation

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

Mathematics for Engineers. Numerical mathematics

arxiv: v1 [math.na] 15 May 2015

Chapter 5 Exercises. (a) Determine the best possible Lipschitz constant for this function over 2 u <. u (t) = log(u(t)), u(0) = 2.

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science

Mathematics for chemical engineers. Numerical solution of ordinary differential equations

du dθ We wish to approximate the initial value problem for the fractional ordinary differential equation of order β :

Numerical Methods for Engineers. and Scientists. Applications using MATLAB. An Introduction with. Vish- Subramaniam. Third Edition. Amos Gilat.

CLASSICAL AND FRACTIONAL ASPECTS OF TWO COUPLED PENDULUMS

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Ch. 03 Numerical Quadrature. Andrea Mignone Physics Department, University of Torino AA

CS 257: Numerical Methods

Scientific Computing: An Introductory Survey

arxiv: v1 [math.ca] 28 Feb 2014

Calculus of Variations Summer Term 2014

Anomalous diffusion equations

A Doctor Thesis. High Accuracy Numerical Computational Methods for Fractional Differential Equations. Yuki Takeuchi

Computational Non-Polynomial Spline Function for Solving Fractional Bagely-Torvik Equation

INVESTIGATION OF THE BEHAVIOR OF THE FRACTIONAL BAGLEY-TORVIK AND BASSET EQUATIONS VIA NUMERICAL INVERSE LAPLACE TRANSFORM

FRACTIONAL-ORDER UNIAXIAL VISCO-ELASTO-PLASTIC MODELS FOR STRUCTURAL ANALYSIS

Outline. 1 Numerical Integration. 2 Numerical Differentiation. 3 Richardson Extrapolation

Numerical Differential Equations: IVP

5. Ordinary Differential Equations. Indispensable for many technical applications!

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 16. f(x) dx,

Name of the Student: Unit I (Solution of Equations and Eigenvalue Problems)

A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS

Math 128A Spring 2003 Week 11 Solutions Burden & Faires 5.6: 1b, 3b, 7, 9, 12 Burden & Faires 5.7: 1b, 3b, 5 Burden & Faires 5.

DOCTORAL THESIS Extended Abstract

Lecture 4: Numerical solution of ordinary differential equations

APPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

Fixed point iteration and root finding

On interval predictor-corrector methods

WORKSHOP ON FRACTIONAL CALCULUS AND ITS APPLICATIONS Roma Tre, March 11, 2015 PROGRAM

Modeling of Structural Relaxation By A Variable- Order Fractional Differential Equation

Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential Equations

SEVERAL RESULTS OF FRACTIONAL DERIVATIVES IN D (R + ) Chenkuan Li. Author's Copy

Fractional-order attractors synthesis via parameter switchings

Transcription:

A Survey of Numerical Methods in Fractional Calculus Fractional Derivatives in Mechanics: State of the Art CNAM Paris, 17 November 2006 Kai Diethelm diethelm@gns-mbh.com, k.diethelm@tu-bs.de Gesellschaft für numerische Simulation mbh, Braunschweig Institut Computational Mathematics, TU Braunschweig K. Diethelm, Numerical Methods in Fractional Calculus p. 1/21

Outline The basic problem Grünwald-Letnikov methods Lubich s fractional linear multistep methods Methods based on quadrature theory Examples Extensions K. Diethelm, Numerical Methods in Fractional Calculus p. 2/21

The Basic Problem Find a numerical solution for the fractional differential equation D α y(x) = f(x, y(x)) with appropriate initial condition(s), where D α is either the Riemann-Liouville derivative or the Caputo derivative. K. Diethelm, Numerical Methods in Fractional Calculus p. 3/21

Fundamental Definitions Riemann-Liouville integral: J α f(x) = 1 Γ(α) x 0 (x t) α 1 f(t)dt K. Diethelm, Numerical Methods in Fractional Calculus p. 4/21

Fundamental Definitions Riemann-Liouville integral: J α f(x) = 1 Γ(α) x 0 (x t) α 1 f(t)dt Riemann-Liouville derivative: D α f(x) = D n J n α f(x), n= α K. Diethelm, Numerical Methods in Fractional Calculus p. 4/21

Fundamental Definitions Riemann-Liouville integral: J α f(x) = 1 Γ(α) x 0 (x t) α 1 f(t)dt Riemann-Liouville derivative: D α f(x) = D n J n α f(x), n= α Caputo derivative: D α f(x) = J n α D n f(x), n= α K. Diethelm, Numerical Methods in Fractional Calculus p. 4/21

Fundamental Definitions Riemann-Liouville integral: J α f(x) = 1 Γ(α) x 0 (x t) α 1 f(t)dt Riemann-Liouville derivative: D α f(x) = D n J n α f(x), n= α natural initial condition for DE: D α k y(0) = y (k) 0, k =1, 2,..., n Caputo derivative: D α f(x) = J n α D n f(x), n= α K. Diethelm, Numerical Methods in Fractional Calculus p. 4/21

Fundamental Definitions Riemann-Liouville integral: J α f(x) = 1 Γ(α) x 0 (x t) α 1 f(t)dt Riemann-Liouville derivative: D α f(x) = D n J n α f(x), n= α natural initial condition for DE: D α k y(0) = y (k) 0, k =1, 2,..., n Caputo derivative: D α f(x) = J n α D n f(x), n= α natural initial condition for DE: D k y(0) = y (k) 0, k =0, 1,..., n 1 K. Diethelm, Numerical Methods in Fractional Calculus p. 4/21

Grünwald-Letnikov Methods Integer-order derivatives: D n 1 y(x) = lim h 0 h n k=0 ( 1) k Γ(n + 1) y(x kh) (n N) Γ(k + 1)Γ(n k + 1) K. Diethelm, Numerical Methods in Fractional Calculus p. 5/21

Grünwald-Letnikov Methods Integer-order derivatives: D n 1 y(x) = lim h 0 h n k=0 ( 1) k Γ(n + 1) y(x kh) (n N) Γ(k + 1)Γ(n k + 1) Fractional extension (Liouville 1832, Grünwald 1867, Letnikov 1868): DGLy(x) α 1 ( 1) k Γ(α + 1) = lim y(x kh) (α > 0) h 0 h α Γ(k + 1)Γ(α k + 1) k=0 K. Diethelm, Numerical Methods in Fractional Calculus p. 5/21

Grünwald-Letnikov Methods Integer-order derivatives: D n 1 y(x) = lim h 0 h n k=0 ( 1) k Γ(n + 1) y(x kh) (n N) Γ(k + 1)Γ(n k + 1) Fractional extension (Liouville 1832, Grünwald 1867, Letnikov 1868): x/h DGLy(x) α 1 ( 1) k Γ(α + 1) = lim y(x kh) (α > 0) h 0 h α Γ(k + 1)Γ(α k + 1) k=0 y defined only on [0, X]; thus assume y(x) = 0 for x < 0. K. Diethelm, Numerical Methods in Fractional Calculus p. 5/21

Grünwald-Letnikov Methods Integer-order derivatives: D n 1 y(x) = lim h 0 h n k=0 ( 1) k Γ(n + 1) y(x kh) (n N) Γ(k + 1)Γ(n k + 1) Fractional extension (Liouville 1832, Grünwald 1867, Letnikov 1868): x/h DGLy(x) α 1 ( 1) k Γ(α + 1) = lim y(x kh) (α > 0) h 0 h α Γ(k + 1)Γ(α k + 1) k=0 y defined only on [0, X]; thus assume y(x) = 0 for x < 0. D α GL y(x) = Dα y(x) if y is smooth. K. Diethelm, Numerical Methods in Fractional Calculus p. 5/21

Grünwald-Letnikov Methods Exact analytical expression: DGLy(x) α 1 = lim h 0 h α x/h k=0 ( 1) k Γ(α + 1) y(x kh) Γ(k + 1)Γ(α k + 1) K. Diethelm, Numerical Methods in Fractional Calculus p. 6/21

Grünwald-Letnikov Methods Numerical approximation: hd α GLy(x) = 1 h α x/h k=0 ( 1) k Γ(α + 1) y(x kh) Γ(k + 1)Γ(α k + 1) for some h > 0. K. Diethelm, Numerical Methods in Fractional Calculus p. 6/21

Grünwald-Letnikov Methods Numerical approximation: hd α GLy(x) = 1 h α x/h k=0 ( 1) k Γ(α + 1) y(x kh) Γ(k + 1)Γ(α k + 1) for some h > 0. Error = O(h) + O(f(0)) if f is smooth, i.e. slow convergence if f(0) = 0, completely unfeasible if f(0) 0. K. Diethelm, Numerical Methods in Fractional Calculus p. 6/21

Fractional Linear Multistep Methods Generalization of classical linear multistep methods for first-order ODEs (Lubich 1983 1986) General form: y m = α 1 j=0 y (j) 0 x j m j! + h α m j=0 ω m j f(x j, y j ) + h α s j=0 w m,j f(x j, y j ) K. Diethelm, Numerical Methods in Fractional Calculus p. 7/21

Fractional Linear Multistep Methods Generalization of classical linear multistep methods for first-order ODEs (Lubich 1983 1986) General form: y m = α 1 j=0 y (j) 0 x j m j! + h α m j=0 ω m j f(x j, y j ) + h α s j=0 w m,j f(x j, y j ) initial condition convolution weights starting weights K. Diethelm, Numerical Methods in Fractional Calculus p. 7/21

Fractional Linear Multistep Methods Generalization of classical linear multistep methods for first-order ODEs (Lubich 1983 1986) General form: y m = α 1 j=0 y (j) 0 x j m j! + h α m j=0 ω m j f(x j, y j ) + h α s j=0 w m,j f(x j, y j ) initial condition convolution weights starting weights Computation of convolution weights directly from coefficients of underlying classical linear multistep method K. Diethelm, Numerical Methods in Fractional Calculus p. 7/21

Fractional Linear Multistep Methods Computation of starting weights: Linear system of equations K. Diethelm, Numerical Methods in Fractional Calculus p. 8/21

Fractional Linear Multistep Methods Computation of starting weights: Linear system of equations Properties of linear system depend strongly on α: K. Diethelm, Numerical Methods in Fractional Calculus p. 8/21

Fractional Linear Multistep Methods Computation of starting weights: Linear system of equations Properties of linear system depend strongly on α: Assume underlying classical method to be of order p, and let A = {γ = j + kα : j, k = 0, 1,..., γ p 1}. Then, error of resulting fractional method = O(h p ), dimension of linear system = cardinality of A, condition of linear system depends on distribution of elements of A. K. Diethelm, Numerical Methods in Fractional Calculus p. 8/21

Fractional Linear Multistep Methods Further comments on linear system for starting weights: needs to be solved at every grid point, coefficient matrix always identical, coefficient matrix has generalized Vandermonde structure, right-hand sides change from one grid point to another, accuracy of numerical computation of right-hand side suffers from cancellation of digits. K. Diethelm, Numerical Methods in Fractional Calculus p. 9/21

Fractional Linear Multistep Methods A well-behaved example: p = 4, α = 1/3 A = { 0, 1, 2, 1, 4, 5,..., 3}. 3 3 3 3 card(a) = 10, highly regular spacing of elements of A (equispaced) Matrix of coefficients can be transformed to usual Vandermonde form mildly ill conditioned system special algorithms can be used for sufficiently accurate solution (Björck & Pereyra 1970) K. Diethelm, Numerical Methods in Fractional Calculus p. 10/21

Fractional Linear Multistep Methods A badly behaved example: p = 4, α = 0.33 A = {0, 0.33, 0.66, 0.99, 1, 1.32, 1.33,..., 2.97, 2.98, 2.99, 3} card(a) = 22, spacing of the elements of A is highly irregular (in particular, some elements are very close together) severely ill conditioned system no algorithms for sufficiently accurate solution known (Diethelm, Ford, Ford & Weilbeer 2006) K. Diethelm, Numerical Methods in Fractional Calculus p. 11/21

Quadrature-Based Methods Direct approach: Use representation D α 1 x y(x) = (x t) α 1 y(t)dt Γ( α) 0 (finite-part integral) in differential equation Discretize integral by classical quadrature techniques Example: Replace y in integrand by piecewise linear interpolant with step size h (Diethelm 1997) product trapezoidal method; Error = O(h 2 α ) Similar concept applicable to Caputo derivatives K. Diethelm, Numerical Methods in Fractional Calculus p. 12/21

Quadrature-Based Methods Indirect approach: (Diethelm, Ford & Freed 1999 2004) Rewrite Caputo initial value problem as integral equation α 1 y(x) = y (k) x k 0 k! + J α [f(, y( ))](x) k=0 Apply product integration idea to J α Example 1: Product rectangle quadrature fractional Adams-Bashforth method explicit method Error = O(h) K. Diethelm, Numerical Methods in Fractional Calculus p. 13/21

Quadrature-Based Methods Indirect approach (continued): Example 2: Product trapezoidal quadrature fractional Adams-Moulton method implicit method Error = O(h 2 ) P(EC) m E scheme: Combine Adams-Bashforth predictor and m Adams-Moulton correctors Error = O(h p ), p = min{2, 1 + mα} Similar concept applicable to Riemann-Liouville derivatives K. Diethelm, Numerical Methods in Fractional Calculus p. 14/21

Quadrature-Based Methods Common properties: Coefficients can be computed in accurate and stable way without problems Method is applicable for any type of differential equation Reasonable rate of convergence can be achieved K. Diethelm, Numerical Methods in Fractional Calculus p. 15/21

Example 1 D α y(x) = x 4 + 1 + 24 Γ(5 α) x4 α y(x), y(0) = 1 exact solution on [0, 2]: y(x) = x 4 + 1 Error at x=2 vs. no. of nodes Grünwald-Letnikov direct quadrature indirect quadrature multistep (BDF4) 0,01 0,0001 1e-06 1e-08 1e-10 α = 0.50 10 100 1000 K. Diethelm, Numerical Methods in Fractional Calculus p. 16/21

Example 1 D α y(x) = x 4 + 1 + 24 Γ(5 α) x4 α y(x), y(0) = 1 exact solution on [0, 2]: y(x) = x 4 + 1 Error at x=2 vs. no. of nodes Grünwald-Letnikov direct quadrature indirect quadrature multistep (BDF4) 0,01 0,0001 1e-06 1e-08 1e-10 α = 0.33 10 100 1000 K. Diethelm, Numerical Methods in Fractional Calculus p. 16/21

Example 1 D α y(x) = x 4 + 1 + 24 Γ(5 α) x4 α y(x), y(0) = 1 exact solution on [0, 2]: y(x) = x 4 + 1 Error at x=2 vs. no. of nodes Grünwald-Letnikov direct quadrature indirect quadrature multistep (BDF4) 0,01 0,0001 1e-06 1e-08 1e-10 α = 0.10 10 100 1000 K. Diethelm, Numerical Methods in Fractional Calculus p. 16/21

Example 2 D α y(x) = 40320 Γ(5 + α/2) Γ(9 α) x8 α 3 Γ(5 α/2) x4 α/2 + 9 Γ(α + 1) 4 + ( 1.5x α/2 x 4) 3 y(x) 3/2, y(0) = 0 exact solution on [0, 1]: y(x) = x 8 3x 4+α/2 + 2.25x α Error at x=1 vs. no. of nodes Grünwald-Letnikov direct quadrature indirect quadrature multistep (BDF4) 0,01 0,0001 1e-06 1e-08 α = 0.50 1e-10 10 100 1000 K. Diethelm, Numerical Methods in Fractional Calculus p. 17/21

Example 2 D α y(x) = 40320 Γ(5 + α/2) Γ(9 α) x8 α 3 Γ(5 α/2) x4 α/2 + 9 Γ(α + 1) 4 + ( 1.5x α/2 x 4) 3 y(x) 3/2, y(0) = 0 exact solution on [0, 1]: y(x) = x 8 3x 4+α/2 + 2.25x α Error at x=1 vs. no. of nodes Grünwald-Letnikov direct quadrature indirect quadrature multistep (BDF4) 0,01 0,0001 1e-06 1e-08 α = 0.33 1e-10 10 100 1000 K. Diethelm, Numerical Methods in Fractional Calculus p. 17/21

Example 2 D α y(x) = 40320 Γ(5 + α/2) Γ(9 α) x8 α 3 Γ(5 α/2) x4 α/2 + 9 Γ(α + 1) 4 + ( 1.5x α/2 x 4) 3 y(x) 3/2, y(0) = 0 exact solution on [0, 1]: y(x) = x 8 3x 4+α/2 + 2.25x α Error at x=1 vs. no. of nodes Grünwald-Letnikov direct quadrature indirect quadrature multistep (BDF4) 0,01 0,0001 1e-06 1e-08 α = 0.10 1e-10 10 100 1000 K. Diethelm, Numerical Methods in Fractional Calculus p. 17/21

Example 3 D α y(x) = x 1 α E 1,2 α ( x) + exp( 2x) y(x) 2, y(0) = 1 exact solution on [0, 5]: y(x) = exp( x) Error at x=5 vs. no. of nodes Grünwald-Letnikov direct quadrature indirect quadrature multistep (BDF4) 0,01 0,0001 1e-06 1e-08 α = 0.50 1e-10 10 100 1000 K. Diethelm, Numerical Methods in Fractional Calculus p. 18/21

Example 3 D α y(x) = x 1 α E 1,2 α ( x) + exp( 2x) y(x) 2, y(0) = 1 exact solution on [0, 5]: y(x) = exp( x) Error at x=5 vs. no. of nodes Grünwald-Letnikov direct quadrature indirect quadrature multistep (BDF4) 0,01 0,0001 1e-06 1e-08 α = 0.33 1e-10 10 100 1000 K. Diethelm, Numerical Methods in Fractional Calculus p. 18/21

Example 3 D α y(x) = x 1 α E 1,2 α ( x) + exp( 2x) y(x) 2, y(0) = 1 exact solution on [0, 5]: y(x) = exp( x) Error at x=5 vs. no. of nodes Grünwald-Letnikov direct quadrature indirect quadrature multistep (BDF4) 0,01 0,0001 1e-06 1e-08 α = 0.10 1e-10 10 100 1000 K. Diethelm, Numerical Methods in Fractional Calculus p. 18/21

Summary Grünwald-Letnikov: reliable but slowly convergent Linear multistep methods: very bad for some values of α, very good for others Quadrature-based methods: useful compromise, in particular because of simple speed-up possibility All types of basic routines available in GNS Numerical Fractional Calculus Library (presently FORTRAN77) K. Diethelm, Numerical Methods in Fractional Calculus p. 19/21

Extensions Application of methods to time-/space-fractional partial differential equations, fractional optimal control problems. Common problem: High arithmetic complexity due to non-locality of fractional operators. Solution for quadrature methods: Nested mesh concept (Ford & Simpson 2001). K. Diethelm, Numerical Methods in Fractional Calculus p. 20/21

Merci pour votre attention! contact: diethelm@gns-mbh.com K. Diethelm, Numerical Methods in Fractional Calculus p. 21/21