Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He

Similar documents
Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge

Neutrinos and CP Violation. Silvia Pascoli

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

The Leptonic CP Phases

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

Duality in left-right symmetric seesaw

A Novel and Simple Discrete Symmetry for Non-zero θ 13

Interplay of flavour and CP symmetries

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Cosmological Family Asymmetry and CP violation

Neutrino Anomalies & CEνNS

Heavy Sterile Neutrinos at CEPC

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Leptonic CP violation theory

CP Violation Predictions from Flavour Symmetries

Recent progress in leptogenesis

Neutrino Mass Models

Minimal Neutrinoless Double Beta Decay Rates from Anarchy and Flavor Symmetries

Yang-Hwan, Ahn (KIAS)

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Prospects of Reactor ν Oscillation Experiments

Quarks and Leptons. Subhaditya Bhattacharya, Ernest Ma, Alexander Natale, and Daniel Wegman

New Jarlskog Determinant from Physics above the GUT Scale

Neutrino Physics. NASA Hubble Photo. Boris Kayser PASI March 14-15, 2012 Part 1

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Testing the low scale seesaw and leptogenesis

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

arxiv: v2 [hep-ph] 2 Mar 2018

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES *

arxiv: v3 [hep-ph] 3 Sep 2012

arxiv: v1 [hep-ph] 5 Jan 2012

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Yang-Hwan, Ahn (KIAS)

arxiv:hep-ph/ v1 26 Jul 2006

RG evolution of neutrino parameters

Modular Symmetry in Lepton Flavors

arxiv: v1 [hep-ph] 6 Mar 2014

Phenomenology at neutrino oscillation experiments

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Ratchet Baryogenesis during Reheating

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Updated three-neutrino oscillation parameters from global fits

Overview of mass hierarchy, CP violation and leptogenesis.

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

Higgs Bosons Phenomenology in the Higgs Triplet Model

Overview of Reactor Neutrino

The Standard Model of particle physics and beyond

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Theoretical Particle Physics Yonsei Univ.

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

arxiv: v4 [hep-ph] 17 May 2018

Electric Dipole Moment and Neutrino Mixing due to Planck Scale Effects

Flavor Symmetry L e L µ L τ, Atmospheric Neutrino Mixing and CP Violation in the Lepton Sector

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

Yang-Hwan Ahn Based on arxiv:

Status and prospects of neutrino oscillations

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

Updated S 3 Model of Quarks

Searching for non-standard interactions at the future long baseline experiments

Effects of Reheating on Leptogenesis

arxiv: v2 [hep-ph] 7 May 2013

Neutrino masses respecting string constraints

Neutrino Physics: Lecture 12

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

University College London. Frank Deppisch. University College London

Right-Handed Neutrinos as the Origin of the Electroweak Scale

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition

The KTY formalism and the neutrino oscillation probability including nonadiabatic contributions. Tokyo Metropolitan University.

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS

Neutrinos as a Unique Probe: cm

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Phenomenology of the Higgs Triplet Model at the LHC

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

Aspetti della fisica oltre il Modello Standard all LHC

Chart of Elementary Particles

Lifting degenerate neutrino masses, threshold corrections and maximal mixing

On Minimal Models with Light Sterile Neutrinos

arxiv:hep-ph/ v2 16 Feb 2003

Leptogenesis via varying Weinberg operator

Lepton Flavor Violation

arxiv: v2 [hep-ph] 21 May 2015

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

University College London. Frank Deppisch. University College London

Problems for SM/Higgs (I)

- Future Prospects in Oscillation Physics -

arxiv: v1 [hep-ph] 26 Nov 2013

Brave ν World. Northwestern University. Colloquium University of Virginia. April 27, 2018

Leptonic CP violation and neutrino mass models

12.2 Problem Set 2 Solutions

Transcription:

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking Tsinghua University 2009-1-13 Collaborators: Shao-Feng Ge & Fu-Rong Yin Based on arxiv:1001.0940 (and works in preparation)

Outline 1 Motivations Experimental Data Approximating µ τ & Dirac CP Symmetries 2 General Construction The Unique Model Solving Low Energy Parameters Correlation between θ 13 & θ 23 Low Energy Observables J & M ee 3 Connection with Leptogenesis Baryon Asymmetry η B CP Asymmetry Parameter ǫ 1 Prediction of Leptogenesis for Baryon Asymmetry η B Constrains of Leptogenesis on Low Energy Observables J & M ee 4 New Hidden Symmetry Dictating θ 12 Conjecture of Possible Hidden Symmetry Representation of the Hidden Symmetry 5 Summary

Experimental Data Current Neutrino Oscillation Data ν-parameters Lower Limit Best Value Upper Limit (2σ) (2σ) m 2 21 (10 5 ev 2 ) 7.31 7.67 8.01 m 2 31 (10 3 ev 2 ) 2.19 2.39 2.66 sin 2 θ 12 (θ 12 ) 0.278 (31.8 ) 0.312 (34.0 ) 0.352 (36.4 ) sin 2 θ 23 (θ 23 ) 0.366 (37.2 ) 0.466 (43.0 ) 0.602 (50.9 ) sin 2 θ 13 (θ 13 ) 0 (0 ) 0.016 (7.3 ) 0.036 (10.9 )

Approximating Symmetry Evidence of µ τ Symmetry at Low Energy Two small deviations (2σ level): 7.8 < θ 23 45 < 5.9, 0 < θ 13 < 10.9 with Best Fitted Value: θ 23 45 = 2.0, θ 13 = 7.3. µ τ Symmetric Limit as Good 0th Order Approximation: θ 23 = 45, θ 13 = 0. corresponding to mass matrix with Zero Dirac CP Phase: A B B M ν (0) = C D C

Assignment Model Assignment at Zeroth Order M (0) ν Minimal Seesaw & µ τ and CP Symmetries: T µτ (3) = 1 ( ) 1 T µτ (2) 1 = 1 1 T (3) µτ m D T (2) µτ m D & T (2) µτ M R T (2) µτ M R : a a ( ) m D = b c m22 m, M R = 23 m c b 23 m 33 with all elements being REAL. Seesaw Mass Matrix for light neutrinos (M ± m 22 ± m 23 ): m D M 1 R mt D = 2a 2 M + a(b+c) M + [ ] 1 (b+c) 2 2 M + + (b c)2 M a(b+c) M + [ 1 (b+c) 2 2 M + [ (b+c) 2 1 2 M + ] (b c)2 M ] + (b c)2 M

Assignment Common µ τ & CP Soft Breaking Approximate µ τ symmetry at Zeroth-Order vanishing θ 13 & Dirac CP Phase δ D ; So, µ τ breaking should be Small and Simultaneously generates δ D µ τ & Dirac CP broken by a Common Origin. Natural and Simple, so Tempting, to expect a Common Origin for all CP Phases; Conjecture: µ τ & CP Symmetries are Softly broken from a Common Origin which is Uniquely determined as: ( ) ( 1 R M R = m 22 R 1 ζe iω R m ) 23 m 22 Note: µ τ & CP Recover with ζ 0.

Assignment The Consequence: Main Predictions δ a ( θ 23 45 ) & δ x ( θ 13 ) Common Origin & Linear δ a δ x ; Once θ 23 well measured Predict θ 13! Dirac CP Phase δ D & Majorana CP Phases Common Origin Correlated; Once Dirac CP Phase δ D is measured J & M ee ; Vice Versa, Constrains from Leptogenesis. Normal Hierarchy with m 1 = 0. Fully reconstructed mass spectrum M ee ; Vice Versa.

Solving Low Energy Parameters Expanding Mass Matrix M ν Expanding the mass matrix M ν in terms of r & ζ up to Linear Order: M ν = M ν (0) + M ν (1) + O(r 2,rζ,ζ 2 ) M (0) ν = M (1) ν = with: (b c)2 0 0 0 1 1 (2 X)M 10 1 with an Overall Phase (No Physical Consequence) r (2 X) 2 a 2 (2 X)[(1 X)b + c]a (2 X)[b + (1 X)c]a (2 X) 2 [(1 X)b + c] 2 (1 X)(b + c) 2 + X 2 bc M 10 [b + (1 X)c] 2 eµ δm eτ (1) δm µµ (1) δm µτ (1) δm ττ (1) δm (1) ee δm (1) Reconstruction where r 1 R & X ζ r eiω and M 10 is the Zeroth-Order of the Lightest Eigenvalue of M R : M 10 = rm 22

Solving Low Energy Parameters Reconstruction of Light Neutrino Mass Matrix Note: Majorana Neutrino s mass matrix is Symmetric: m ee m eµ m eτ 1 M ν V D ν V = m µµ m µτ with D ν m m 2 m ττ where: V U UU, U diag(e iα 1,e iα 2,e iα 3 ), U diag(e iφ 1,e iφ 2,e iφ 3 ); c s c x s s c x s x e iδ D U s s c a c s s a s x e iδ D c s c a + s s s a s x e iδ D s a c x s s s a + c s c a s x e iδ D c s s a s s c a s x e iδ d c a c x (θ x θ 13,θ s θ 12,θ a θ 23 ) Note: of the Six Rephasing Phases, only Five are Independent. m 3

Solving Low Energy Parameters Reconstructed Mass Matrix Elements m ee = e i2α [ 1 c 2 s cx 2 m 1 + ss 2 cx 2 m 2 + sxe 2 ] 2iδD m 3, m µµ = e i2α [ 2 (ss c a c s s a s x e iδ D ) 2 m 1 + (c s c a + s s s a s x e iδ D ) 2 m 2 + sa 2 c2 x m ] 3, m ττ = e i2α [ 3 (ss s a + c s c a s x e iδ D ) 2 m 1 + (c s s a s s c a s x e iδ D ) 2 m 2 + ca 2 c2 x m ] 3, m eµ = e i(α 1 +α 2 )[ c s c x (s s c a c s s a s x e iδ D ) m 1 s s c x (c s c a + s s s a s x e iδ D ) m 2 +s a s x c x e iδd m 3 ], m eτ = e i(α 1 +α 3 )[ c s c x (s s s a +c s c a s x e iδ D ) m 1 s s c x (c s s a s s c a s x e iδ D ) m 2 c a s x c x e iδd m 3 ], m µτ = e i(α 2 +α 3 )[ (s s c a c s s a s x e iδ D )(s s s a + c s c a s x e iδ D ) m 1 with m i m i e 2iφ i. + (c s c a + s s s a s x e iδ D )(c s s a s s c a s x e iδ D ) m 2 s a c a c 2 x m 3],

Solving Low Energy Parameters Perturbation Parameters in Reconstructed M ν From: M (0) ν = 0 0 0 (b c)2 1 1 (2 X)M 10 1 we can get Two Vanishing Mass Eigenvalues: m 1 = m 2 = 0 Normal Hierarchy Nonzero m 2 : Besides: y m 2 m 3 O(r,ζ) δ a,δ x,z δm 3 m 3,δα i (α i α j + φ 3 )

Solving Low Energy Parameters Expanding Reconstructed Mass Matrix with: M (0) ν = 1 2 m 30e 2iα 20 M ν M (0) ν + M (1) ν 0 0 0 1 1, M ν (1) 1 δm ee (1) δm eµ (1) δm eτ (1) δm µµ (1) δm µτ (1) δm ττ (1) Note: Overall CP Phase (No Physical Consequences!!!) For Linear Order: δm (1) ee = m 30 s 2 s e 2i(α 10 φ 23 ) y δm µµ (1) 1 = 2 m 30e 2iα 20 [cs 2 ] e 2iφ 23y + z + 2δ a 2iδα 2 δm (1) 1 ττ = 2 m 30e 2iα 20 [c 2 ] s e 2iφ 23y + z 2δ a 2iδα 3 δm (1) eµ = δm (1) eτ = δm (1) µτ = 1 m 30 e i(α 10 +α 20 ) [ c ss se 2iφ 23y + e iδ ] D δ x 2 1 m 30 e i(α 10 +α 20 ) [ c ss se 2iφ 23y e iδ ] D δ x 2 1 2 m 30e 2iα 20 [ c 2 ] s e 2iφ 23y z + i(δα 2 + δα 3 ) Seesaw

Predictions Solutions: Lower Limit on θ 13 Zeroth-Order: m 10 = m 20 = 0, m 30 = 2(b c)2 (2 X)M 10, e2iα30 = r r Overall CP Phase (No Physical Consequence!) Linear Order: yss ζ δ x = 2 [ζ 2 4rζ cosδ D + 4r 2 ] 1/4 Correlations: δ a = yc s cosδ D ζ 2 [ζ 2 4rζ cosδ D + 4r 2 ] 1/4 2 X 2 X δ x = tanθ s δ a δ x tan s δ a cosδ D Solar Mixing Angle θ s Dictated by Dirac Mass Matrix m D : 2a tanθ s = b + c Will be elaborated later.

Predictions Correlation between θ 13 & θ 23 7 δ x = tanθ s cos δ D δ a Θ 13 6 5 4 3 Double Chooz RENO Daya Bay 2 1 0 10 5 0 5 Θ 23 45 0 Constrained Correlation

Low Energy Observables Jarlskog Invariant J 7 6 5 4 J = 1 4 sin2 2θ s sinδ D δ x + O ( ) δx 2,δ xδ a,δa 2 Θ 13 3 2 1 0 a 0.02 0.01 0.00 0.01 0.02 J Constrained Jarlskog

Low Energy Observables 0ν2β Decay Observable m ee M ee m 3 s 4 sy 2 + 2s 2 s cos2(δ D φ 23 )yδ 2 x + (δ 4 x 2s 2 sy 2 δ 2 x) 7 6 5 4 Θ 13 3 2 1 0 b 2.0 2.5 3.0 3.5 M ee mev Constrained M ee

Origin of Matter Origin of Matter: Baryon Asymmetry via Leptogenesis The Universe contains 4% Matter: η B = n B n B = (6.21 ± 0.16) 10 10 n γ where n γ is Photon Number Density & n B is Baryon Number Density. Leptogenesis Mechanism generates η B from Lepton Asymmetry Y L via Sphaleron Interactions which violate B + L but preserve B L: η B = ξ f Nf B L = ξ f Nf L = 3ξ 4f κ fǫ f where ξ (8N F + 4N H )/(22N F + 13N H ) = 28/79 for SM, and f = N rec γ /N γ is the Dilution Factor. Efficiency Factor: ( ) 1.16 κ 1 m 1 f 0.55 10 3 + 3.3 10 3 ev ev m 1 with m 1 ( m D m D) 11 /M 1 ( m D m D V R ).

CP Asymmetry Parameter ǫ 1 CP Asymmetry Parameter ǫ 1 CP Asymmetry Parameter ǫ 1 : ǫ 1 Γ[N 1 lh] Γ[N 1 lh ] Γ[N 1 lh] + Γ[N 1 lh ] = 1 4πv 2 F ( M2 M 1 { ) ) Im [( m D m D ( ) m D m D Complex m D differs Γ[N 1 lh] from Γ[N 1 lh ]. In Minimally Extended SM (Heavy Majorana Neutrinos): [ ( ) 1 + x F(x) x 1 (1 + x 2 2 )ln x 2 + 1 ] 1 x 2 = 3 ( ) 1 2x + O x 3 The expansion applies for x M 2 /M 1 5. 11 12 ] 2 } In Current Model: ǫ 1 = m 3 (4y ) 2 ζ 3M 2 4rζ cosδ D + 4r 2 1 4πv 2 128 (ζ 2 4rζ cosδ D + 4r 2 (4r cosδ D ζ)sinδ D ζ 2 ) where m 3 is obtained by RG-running m 3 from M Z to Leptogenesis Scale. RGE

Prediction of Leptogenesis for Baryon Asymmetry Prediction of Leptogenesis - η B /M 1 ( ) 2 η B = 3ξ 3 4y ζ M 1 4f κ m 3 M 2 4rζ cos δ D + 4r 2 1 f 4πv 2 128 ( ζ 2 4rζ cos δ D + 4r 2) (4r cos δ D ζ) sin δ D ζ 2 10 22 10 23 a Η B M 1 GeV 1 10 24 10 25 10 26 10 27 0 50 100 150 200 250 300 350 D Constrains on δ D

Prediction of Leptogenesis for Baryon Asymmetry Prediction of Leptogenesis - Lower Limit of M 1 M 1 = 4f 4πv 2 128(4r 2 4rζ cos δ D + ζ 2 ) η B [ ] 3ξ κ f m 2 3 3 4y 4r 2 4rζ cos δ D + ζ 2 (4r cos δ D ζ) sin δ D ζ 2 1013 GeV 10 19 10 18 a 10 17 M 1 GeV 10 16 10 15 10 14 10 13 0.02 0.01 0.00 0.01 0.02 J

Constrains of Leptogenesis on Low Energy Observables Upper Limit on Leptogenesis Scale M 1 M 1 = (b c)2 10 15 GeV m 3 10 16 M 1 GeV 10 15 10 14 b 10 13 0 100 200 300 400 500 b c GeV

Constrains of Leptogenesis on Low Energy Observables Lower Bound on θ 13 M 1 = 4f 4πv 2 128(4r 2 4rζ cos δ D + ζ 2 ) η B [ ] 3ξ κ f m 2 3 3 4y 4r 2 4rζ cos δ D + ζ 2 (4r cos δ D ζ) sin δ D ζ 2 1015 GeV 7 Θ 13 6 5 4 3 Double Chooz RENO Daya Bay 2 1 0 10 5 0 5 Θ 23 45 0 Free Correlation

Constrains of Leptogenesis on Low Energy Observables Constrained Jarlskog Invariant J 8 6 Θ 13 4 2 0 a 0.02 0.01 0.00 0.01 0.02 J Free Jarlskog

Constrains of Leptogenesis on Low Energy Observables Constrained 0ν2β Decay Observable M ee 8 6 Θ 13 4 2 0 b 2.0 2.5 3.0 3.5 M ee mev Free M ee

Conjecture θ s Determined by m D As we have seen: 2a tanθ s = b + c which holds before and after soft breaking! Fully Determined by m D : a a m D = b c c b Not Affected by µ τ and CP symmetry breaking in M R! Protected or Accidental?

Conjecture New Hidden Symmetry Dictating θ 12 θ s is Solely determined by m D ; Soft symmetry breaking comes from M R, m D is not affect; If extra symmetry exists, it shouldn t be affected by soft breaking; It only applies on m D, not M R. Can be realized by: ν L T s ν L, T s m D = m D N N Also respected by light neutrino s mass matrix M ν : T T s M ν T s = M ν which is Independent of M R.

Representation Representation of the Hidden Symmetry Neutrino mass matrix Invariant under transformation: Diagonalization Scheme: T T s M νt s = M s V T M ν V = D ν The effect of transformation is just a Diagonal Rephasing: V T T T s M νt s V = d ν D ν d ν = d ν V T M ν Vd ν with d 2 ν = I 3 which constrains d ν = diag(±, ±, ±). General consequence: T s V = Vd ν T s = Vd ν V

Representation Representaion of the Hidden Symmetry Two Nontrivial Independent possibilities of d ν : d (1) ν = 1 1, d (2) 1 ν = 1 1. 1 Mixing matrix with θ s parameterized in terms of k: V(k) = k 2+k 2 1 2+k 2 1 2+k 2 2 2+k 0 2 k 1 2(2+k 2 ) 2 1 2 k 2(2+k 2 ) Two Independent symmetry transformations: T s = 1 2 k2 2k 2k 2k k 2 2, 2 + k 2 T µτ = 1 1 2k 2 k 2 1 T µτ is 3D Representation of µ τ symmetry. T (3) µτ

Summary Summary Oscillation Data strongly support µ τ symmetry as a Good Approximate Flavor Symmetry. The µ τ symmetry predicts (θ 23,θ 13 ) = (45,0 ) & Vanishing Dirac CP Phase. Conjecture: both µ τ and CP are Softly Broken by a Common Origin in M R. With this conceptually Simple and Attractive construction, θ 13 is Correlated with θ 23 (Lower Bound on δ x / Upper Bound on δ a ). Strong supports for up-coming experiments. Predictions on Baryon Asymmetry through leptogenesis. Constrain by leptogenesis scale: Lower Bound on θ 13. Extra Z 2 dictating solar mixing angle θ 12.

Thank You Thank You!

Spare Slides - CP Phase Constrained by Leptogenesis Constrained CP Phase δ D by Leptogenesis r = ζ 2 η B = 3ξ M 1 4f κ m 3 M 1 3 (4y ζ 2 4rζ cos δ D + 4r 2) 2 f 4πv 2 128 ( ζ 2 4rζ cos δ D + 4r 2) (4r cos δ D ζ) sin δ D ζ 2 [ η B > 0 (4r cos δ D ζ)sinδ D > 0 cos δ D ± ] ss 4 y 2 ζ 2 16 δx 4 sin 2 δ D These two inequalities will lead to: ζ 4 δx 2 ss 2 y sin δ D cos 2 δ D 4 s 4 s δ 4 x y 2 ζ 2 Leptogenesis

Spare Slides - CP Phase Constrained by Leptogenesis Constrained CP Phase δ D v.s. J 0.02 a 0.01 J 0.00 0.01 0.02 0 50 100 150 200 250 300 350 D Leptogenesis

Spare Slides - CP Phase Constrained by Leptogenesis Constrained CP Phase δ D v.s. M ee 3.5 b Mee mev 3.0 2.5 2.0 0 50 100 150 200 250 300 350 D Leptogenesis

RGE RG Running Effect Low Energy Observables RGE High Energy Observables Only mass eigenvalues are obviously affected: m j (µ) = χ(µ,µ 0 )m j (µ 0 ) which can be expressed as: [ 1 t ] χ(µ,µ 0 ) exp 16π 2 α(t )dt 0 For leptogenesis: m j (M 1 ) = χ(m 1,M Z )m j (M Z ) with α 2g 2 2+6y 2 t +λ CP Asymmetry ǫ 1

RGE RG Running Effect 1.35 1.30 1.25 ΧΑ Μ m i m i 1.20 1.15 1.10 1.05 1.00 100 10 5 10 8 10 11 10 14 Μ GeV M H 115GeV CP Asymmetry ǫ 1