Elements of 3D Seismology Second Edition

Similar documents
A Petroleum Geologist's Guide to Seismic Reflection

FUNDAMENTALS OF SEISMIC EXPLORATION FOR HYDROCARBON

Static Corrections for Seismic Reflection Surveys

PART A: Short-answer questions (50%; each worth 2%)

Reflection Seismic Method

An Introduction to Geophysical Exploration

INTEGRATED GEOPHYSICAL INTERPRETATION METHODS FOR HYDROCARBON EXPLORATION

3. Magnetic Methods / 62

Oil and Gas Research Institute Seismic Analysis Center Faults Detection Using High-Resolution Seismic Reflection Techniques

Case History. 3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs. Antonio C. B. Ramos and Thomas L.

Rock Physics and Quantitative Wavelet Estimation. for Seismic Interpretation: Tertiary North Sea. R.W.Simm 1, S.Xu 2 and R.E.

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence

INTERPRETATION Petroleum Geoengineer MSc

New Frontier Advanced Multiclient Data Offshore Uruguay. Advanced data interpretation to empower your decision making in the upcoming bid round

Principles of 3-D Seismic Interpretation and Applications

Hydrogeophysics - Seismics

Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study

INTRODUCTION TO APPLIED GEOPHYSICS

3D Converted Wave Data Processing A case history

Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains

Kurt Marfurt Arnaud Huck THE ADVANCED SEISMIC ATTRIBUTES ANALYSIS

THE ROCK PHYSICS HANDBOOK

SeisLink Velocity. Key Technologies. Time-to-Depth Conversion

AFI (AVO Fluid Inversion)

Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions

Th Guided Waves - Inversion and Attenuation

A Petroleum Geologist s. Guide to Seismic Reflection. William Ashcroft

DE128. Seismic Inversion Techniques. H.H. Sheik Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E

Department of Geosciences M.S. Thesis Proposal

Maximize the potential of seismic data in shale exploration and production Examples from the Barnett shale and the Eagle Ford shale

We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough

P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties

HampsonRussell. A comprehensive suite of reservoir characterization tools. cgg.com/geosoftware

Improved image aids interpretation: A case history

PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR

Chapter 7: Reflection Seismology Homework Solutions (Jan. 2010)

23855 Rock Physics Constraints on Seismic Inversion

The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study

An empirical method for estimation of anisotropic parameters in clastic rocks

THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS

AVO analysis of 3-D seismic data at G-field, Norway

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc.

Sadewa Field is in Kutei Basin in the Makassar Strait between

The SPE Foundation through member donations and a contribution from Offshore Europe

Oil and Natural Gas Corporation Ltd., VRC(Panvel), WOB, ONGC, Mumbai. 1

11301 Reservoir Analogues Characterization by Means of GPR

Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field

Application of Seismic Reflection Surveys to Detect Massive Sulphide Deposits in Sediments-Hosted Environment

Heriot-Watt University

An integrated study of fracture detection using P-wave seismic data

Geophysical Applications Seismic Reflection Processing

Fracture characterization from scattered energy: A case study

SEG Houston 2009 International Exposition and Annual Meeting. that the project results can correctly interpreted.

Tan K. Wang National Taiwan Ocean University, Keelung, Taiwan, R.O.C.

Reservoir Characterization using AVO and Seismic Inversion Techniques

Analysis of multicomponent walkaway vertical seismic profile data

Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin

Interpretation of baseline surface seismic data at the Violet Grove CO 2 injection site, Alberta

Sensitivity Analysis of Pre stack Seismic Inversion on Facies Classification using Statistical Rock Physics

ERTH3021: Exploration and Mining Geophysics

Using multicomponent seismic for reservoir characterization in Venezuela

Complex-beam Migration and Land Depth Tianfei Zhu CGGVeritas, Calgary, Alberta, Canada

RC 2.7. Main Menu. SEG/Houston 2005 Annual Meeting 1355

ERTH2020 Introduction to Geophysics The Seismic Method. 1. Basic Concepts in Seismology. 1.1 Seismic Wave Types

Theory and Design for Mechanical Measurements

Pre-stack (AVO) and post-stack inversion of the Hussar low frequency seismic data

Using high-density OBC seismic data to optimize the Andrew satellites development

AVAZ inversion for fracture orientation and intensity: a physical modeling study

27105 High Resolution Diffraction Imaging of Small Scale Fractures in Shale and Carbonate Reservoirs

Seismic reservoir characterization in offshore Nile Delta.

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

Practical aspects of AVO modeling

3D beam prestack depth migration with examples from around the world

Rock Physics Perturbational Modeling: Carbonate case study, an intracratonic basin Northwest/Saharan Africa

SEISMIC COLLEGE Geophysics MSc course

Shaly Sand Rock Physics Analysis and Seismic Inversion Implication

THE BETTER SUBSURFACE IMAGING USING A QUALITY SEISMIC PROCESSING

Noise suppression and multiple attenuation using full-azimuth angle domain imaging: case studies

Multiple horizons mapping: A better approach for maximizing the value of seismic data

Shear wave statics in 3D-3C : An alternate approach

Petrophysics. Theory and Practice of Measuring. Properties. Reservoir Rock and Fluid Transport. Fourth Edition. Djebbar Tiab. Donaldson. Erie C.

Quantitative interpretation using inverse rock-physics modeling on AVO data

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico

Synthetic Seismogram A Tool to Calibrate PP & PS Seismic Data

Use of spectral decomposition to detect dispersion anomalies associated with gas saturation. M. Chapman, J. Zhang, E. Odebeatu, E. Liu and X.Y. Li.

Kurt Marfurt Arnaud Huck THE ADVANCED SEISMIC ATTRIBUTES ANALYSIS

Processing and interpretation of 2d land seismic reflection survey over bishop wood Yorkshire, England

Envelope of Fracture Density

RC 1.3. SEG/Houston 2005 Annual Meeting 1307

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

SEG/San Antonio 2007 Annual Meeting. Summary

Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field

3D Time-lapse Seismic Modeling for CO2 Sequestration

Chapter 7. Seismic imaging. 7.1 Assumptions and vocabulary

Reservoir properties inversion from AVO attributes

Statics preserving projection filtering Yann Traonmilin*and Necati Gulunay, CGGVeritas

Observations of Azimuthal Anisotropy in Prestack Seismic Data

Full Waveform Modelling for Converted Waves Seismic Reflections in Mountainous and Marine Environment

2011 SEG SEG San Antonio 2011 Annual Meeting 771. Summary. Method

Transcription:

Elements of 3D Seismology Second Edition Copyright c 1993-2003 All rights reserved Christopher L. Liner Department of Geosciences University of Tulsa August 14, 2003

For David and Samantha And to the memory of Ruben Liner, Sr. June 18, 1909 - August 8, 2003 i

Contents Acknowledgements Seismic data and software............................... Changes from the first edition............................. xv xv xvi Figures......................................... xvii Errata.......................................... xvii Introduction xviii Scope.......................................... xviii A brief history of seismology............................. xviii Why 3D?........................................ xx Getting started..................................... xx I Waves: The foundation of seismology 1 1 General properties of waves 2 1.1 Mechanical waves................................. 2 ii

1.2 Particle motion.................................. 3 1.3 Polarization.................................... 4 1.4 Elastic properties................................. 4 1.5 Wavespeed.................................... 7 1.6 Display of wavefield data............................. 8 1.7 Waveform..................................... 9 1.8 Impulse response................................. 15 1.9 Reciprocity.................................... 17 1.10 Source and receiver directivity......................... 17 1.11 Wavefront and rays................................ 18 1.12 Huygens principle................................ 20 1.13 Fermat s principle................................ 20 1.14 Snell s law..................................... 24 1.15 Critical angle................................... 26 1.16 Dimensional effects................................ 27 1.16.1 Waveform................................. 27 1.16.2 Energy density and geometric spreading................ 28 2 Waves in fluids 33 2.1 Why fluids?.................................... 33 2.2 Parameters.................................... 34 2.3 Equation of motion................................ 36 2.4 The big picture.................................. 40 2.5 Velocity variation................................. 41 iii

2.6 What about density?............................... 46 2.7 Fine layering................................... 46 3 Understanding seismic events 51 3.1 Half space..................................... 51 3.1.1 Uncertainty analysis applied to direct waves.............. 53 3.2 Reflection..................................... 55 3.2.1 Travel time................................ 55 3.2.2 Reflection coefficient........................... 63 3.2.3 Fresnel zone................................ 72 3.3 Head wave..................................... 76 3.4 The point source: Tying it all together..................... 82 3.5 Diffraction..................................... 86 3.6 Ghost....................................... 89 3.7 Velocity layering................................. 93 3.7.1 More events................................ 93 3.7.2 Multiples................................. 94 3.8 Classification................................... 96 4 Reservoir Fluid Properties 99 4.1 Pressure and Temperature Range........................ 99 4.2 Gas........................................ 100 4.3 Oil......................................... 101 4.4 Brine........................................ 105 iv

4.5 Fluid Mixture................................... 109 5 Waves in solids 114 5.1 Strain....................................... 115 5.2 Stress....................................... 116 5.3 Hooke s law and elastic parameters....................... 117 5.4 Equations of motion............................... 119 5.5 Wave types and speeds.............................. 121 5.6 Mode conversion................................. 124 5.7 Snell s law and critical angles.......................... 125 5.8 Velocity layering................................. 126 5.9 Elastic reflection coefficient........................... 128 5.10 Reflection coefficient approximations...................... 129 5.11 Anisotropy.................................... 133 6 Waves in porous solids 136 6.1 Rock as a porous solid.............................. 136 6.2 Empirical relationships.............................. 137 6.3 Parameters.................................... 140 6.4 Equation of motion................................ 140 6.5 Wave types.................................... 141 6.6 Rock density................................... 141 6.7 Gassmann theory and wave speeds....................... 142 6.8 Attenuation and dispersion........................... 145 v

6.9 Rock velocity ranges............................... 150 II Acquisition: Gathering seismic data 153 7 2D Land acquisition 154 7.1 Historical summary................................ 154 7.2 hardware..................................... 155 7.2.1 Source................................... 155 7.2.2 Receiver.................................. 159 7.2.3 Recording system............................. 161 7.3 Field procedure.................................. 163 7.3.1 Vertical stack............................... 163 7.3.2 Roll and cabling............................. 164 7.4 SEGY headers and sorting............................ 166 8 Financial Aspects of 3D Seismic 172 8.1 The Big Picture: Stock Price.......................... 172 8.2 Economics..................................... 174 8.3 The Exploration Process............................. 174 8.4 A Savings/Gain Model.............................. 175 8.4.1 Savings.................................. 176 8.4.2 Gains................................... 177 8.4.3 Net value, profit, and rate of return.................. 177 vi

8.5 Some Industry Trends.............................. 181 9 Survey predesign 186 9.1 Acquisition Parameters............................. 187 9.2 Time sample rate................................. 187 9.3 Offset range.................................... 189 9.4 Listen time.................................... 190 9.5 Spatial sampling and aliasing.......................... 191 9.6 Total signal-to-noise improvement....................... 194 10 Land shooting geometry 200 10.1 Coordinates and related quantities....................... 200 10.2 Cross spread method............................... 202 10.3 Swath method.................................. 207 10.4 Fringe....................................... 208 10.5 Perimeter or loop method............................ 212 10.6 Cabling, template shooting, and fold...................... 218 10.7 Crooked line 2D................................. 221 11 Land 3D design optimization 224 11.1 Optimization and inversion........................... 225 11.2 Assumptions, target variables, and constraints................. 226 11.3 A direct method................................. 229 11.4 Method 2..................................... 230 11.5 Examples..................................... 231 vii

12 Marine acquisition methods 237 12.1 Towed receiver systems.............................. 237 12.1.1 Receiver cable.............................. 238 12.1.2 Source array............................... 241 12.1.3 Acquisition geometry........................... 244 12.1.4 Flip-flop shooting............................. 245 12.1.5 Positioning................................ 245 12.1.6 Cable feathering............................. 248 12.2 Fixed receiver systems.............................. 252 12.3 Marine acquisition and the environment.................... 254 13 Data dimensionality and components 257 III Data processing: Creating the seismic image 262 14 Processing and binning overview 263 14.1 Why Do We Need to Process Seismic Data?.................. 263 14.2 Filtering and noise removal........................... 266 14.3 Processing Flow.................................. 268 14.4 Bins........................................ 272 14.4.1 Bin Size Calculation........................... 274 14.4.2 Effects of Fold and Offset Variation.................. 278 14.4.3 Anatomy of a Bin............................ 278 viii

15 Computing 284 15.1 RAM and Disk Storage............................. 284 15.2 2D Survey Size.................................. 287 15.3 3D Survey Size.................................. 287 15.4 Processing Speed................................. 288 15.5 Speed and 3D Migration............................. 290 16 Creating the CMP stack 292 16.1 Gain........................................ 292 16.2 Deconvolution................................... 293 16.3 Sorting....................................... 299 16.4 Normal moveout................................. 299 16.5 Dip moveout................................... 310 16.6 Common midpoint stacking........................... 312 16.7 Statics....................................... 314 17 Migration I: Concepts 320 17.1 Constant velocity migration and modeling pairs................ 321 17.2 Dip from Seismic Slope............................. 327 17.3 Migration Distance................................ 328 17.4 Variable velocity migration and modeling pairs................ 330 17.5 3D Migration................................... 330 17.6 2D and 3D Lateral Resolution.......................... 331 17.7 Survey design for Linear v(z).......................... 338 ix

18 Migration II: Classification and velocity analysis 342 18.1 Kinds of migration................................ 342 18.2 Stolt migration theory.............................. 347 18.3 Overview of algorithms.............................. 350 18.4 Kirchhoff depth migration methodology.................... 351 18.5 Migration velocity analysis........................... 356 19 Historical perspective 361 19.1 Progress in seismic processing.......................... 361 19.1.1 Dip moveout............................... 362 19.1.2 Anisotropy................................ 362 19.1.3 3D processes............................... 363 19.1.4 Depth migration............................. 364 19.2 A brief account of dip moveout......................... 365 19.2.1 Dip moveout just isn t normal..................... 366 19.2.2 Velocity variation............................. 372 19.2.3 Anisotropy................................ 376 IV Color Plates 378 V Interpretation: Extracting geologic information from seismic data 401 20 Synthetic seismogram, tuning, and resolution 402 x

20.1 Creating the synthetic seismogram....................... 402 20.1.1 Earth model............................... 403 20.1.2 Travel times................................ 405 20.1.3 Reflection coefficients.......................... 405 20.1.4 Wavelet.................................. 407 20.1.5 Convolutional model........................... 409 20.1.6 Examples................................. 411 20.1.7 Transmission loss............................. 418 20.2 Tuning....................................... 422 20.3 Resolution..................................... 427 21 Introduction to Interpretation 433 21.1 What Does It Mean to Interpret Seismic Data?................ 433 21.2 Background Information............................. 434 21.3 Interactive Interpretation Systems....................... 438 21.4 Interactive Interpretation Project Components................ 439 22 Data Volume 442 22.1 Data 2D subsets................................. 443 22.2 Display of Seismic Data............................. 445 22.3 Interpretation Products............................. 446 23 Structure 449 23.1 Fault detection and mapping.......................... 450 23.2 Time structure and horizon tracking...................... 456 xi

23.3 Time-to-depth conversion methods....................... 458 23.4 A vertical ray case history............................ 460 23.5 Structural uncertainty.............................. 463 23.6 Extreme velocity variation............................ 463 24 Stratigraphy 467 24.1 Stratigraphy and 2D seismic data........................ 469 24.2 Stratigraphy and 3D seismic data........................ 476 24.3 Stacked Channel Systems............................ 477 24.4 Stratigraphy and structure: A case history................... 480 24.5 Carbonates.................................... 482 25 Seismic attributes 484 25.1 Definition and history.............................. 484 25.2 Classification schemes.............................. 485 25.2.1 General and relative........................... 485 25.2.2 Dimensional................................ 486 25.2.3 Reflection characteristic......................... 486 25.2.4 Procedural................................ 488 25.3 Prediction of reservoir properties........................ 490 25.3.1 Procedure................................. 490 25.3.2 Case history................................ 490 25.3.3 Multiattribute analysis.......................... 492 25.4 Selected general attributes............................ 494 xii

25.4.1 Complex trace.............................. 494 25.4.2 Dip, azimuth, curvature, and gradient................. 495 25.4.3 Coherence................................. 495 25.4.4 Spectral decomposition......................... 498 25.4.5 Impedance................................ 500 25.4.6 Spice.................................... 502 26 Amplitude in space, time, and offset 505 26.1 Prestack amplitude factors............................ 505 26.2 Stack amplitude and R 0............................. 506 26.3 Predictive rock model.............................. 507 26.4 Calibrated rock model for Glenn sandstone.................. 508 26.5 Lateral and time-lapse effects.......................... 510 26.5.1 Gas.................................... 511 26.5.2 Porosity.................................. 512 26.5.3 Oil saturation............................... 512 26.5.4 Lithology: Sandstone-limestone..................... 512 26.5.5 Temperature (steamflood)........................ 514 26.5.6 Lithology: Sandstone-clay........................ 516 26.5.7 Permeability............................... 516 26.5.8 Summary and discussion......................... 517 26.6 Time-lapse 3D seismic.............................. 517 26.7 Offset effects (AVO)............................... 523 xiii

A Fourier Transform 528 A.1 Definitions..................................... 528 A.2 Frequency domain................................ 530 A.3 Spike input.................................... 533 A.4 Properties of the Fourier transform....................... 536 A.5 Two spikes.................................... 538 A.6 The discrete case................................. 538 A.7 Detection of periodic signals........................... 540 A.8 2D Fourier transform............................... 541 B Glossary of Terms 545 C Conversion Factors 556 D Bibliography 557 xiv