Thermodynamics Introduction and Basic Concepts

Similar documents
Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

Energy: The ability to cause changes. thermodynamics stems from therme (heat) and dynamis (power).

MAHALAKSHMI ENGINEERING COLLEGE

first law of ThermodyNamics

Chapter 5. Mass and Energy Analysis of Control Volumes

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY

ME2320 Thermodynamics I. Summer I Instructor: Dr. William W. Liou

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

The First Law of Thermodynamics. By: Yidnekachew Messele

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Common Terms, Definitions and Conversion Factors

Chapter 17 Temperature and heat

DEPARTMENT OF MECHANICAL ENGINEERING ME6301-ENGINEERING THERMODYNAMICS

CAE 331/513 Building Science Fall 2017

CAE 331/513 Building Science Fall 2015

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Psychrometrics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

Chapter 5: The First Law of Thermodynamics: Closed Systems

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

ME Thermodynamics I. Lecture Notes and Example Problems

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

Topics to be covered. Fundamental Concepts & Definitions: Thermodynamics; definition and scope. Microscopic

International Academy Invitational Tournament Keep the Heat Test Team Name. Team Number. Predicted Water Temp C

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1)

Chapter 1: 20, 23, 35, 41, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 104.

- Apply closed system energy balances, observe sign convention for work and heat transfer.

Engineering Thermodynamics

Chapter 1: Basic Definitions, Terminologies and Concepts

Chapter 3 PROPERTIES OF PURE SUBSTANCES

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

ME Thermodynamics I

Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition

ME 2202 ENGINEERING THERMODYNAMICS TWO MARKS QUESTIONS AND ANSWERS UNIT I BASIC CONCEPTS AND FIRST LAW

S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks : 100

Classification following properties of the system in Intensive and Extensive

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli

Thermodynamics INTRODUCTION AND BASIC CONCEPTS. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(ii) the total kinetic energy of the gas molecules (1 mark) (iii) the total potential energy of the gas molecules (1 mark)

PROGRAM OF PHYSICS. Lecturer: Dr. DO Xuan Hoi Room A

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Basic Thermodynamics Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Chapter 7. Dr Ali Jawarneh. Department of Mechanical Engineering Hashemite University

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Put sufficient ice cubes into water (1 M) and wait for equilibrium (both exist) (1 M)

20 m neon m propane. g 20. Problems with solutions:


S6. (a) State what is meant by an ideal gas...

Today lecture. 1. Entropy change in an isolated system 2. Exergy

SKMM 2413 Thermodynamics

First Law of Thermodynamics

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

GAS. Outline. Experiments. Device for in-class thought experiments to prove 1 st law. First law of thermodynamics Closed systems (no mass flow)

Chapter 11. Energy in Thermal Processes

Chapter 3 PROPERTIES OF PURE SUBSTANCES

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name:

Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch

Chapter: Heat and States

Chapter 1 Introduction and Basic Concepts

Thermodynamics System Surrounding Boundary State, Property Process Quasi Actual Equilibrium English

Chapter 7. Entropy: A Measure of Disorder

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER 17 EXAMINATION

Introduction CHAPTER Prime Movers. 1.2 Sources of Energy

! =!"#$% exerted by a fluid (liquid or gas) !"#$ =!"# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

Chapter 10 Test Form B

Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Eng Thermodynamics I conservation of mass; 2. conservation of energy (1st Law of Thermodynamics); and 3. the 2nd Law of Thermodynamics.

Chapter 2 Heat, Temperature and the First Law of Thermodynamics

Department of Mechanical Engineering Indian Institute of Technology New Delhi II Semester MEL 140 ENGINEERING THERMODYNAMICS

INTRODUCTION AND BASIC CONCEPTS. Chapter 1. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

PTT 277/3 APPLIED THERMODYNAMICS SEM 1 (2013/2014)

Name... Class... Date... Specific heat capacity and specific latent heat

Part III: Planes, Trains, and Automobiles: Making Heat Work for You

Lecture 1 INTRODUCTION AND BASIC CONCEPTS

8.21 The Physics of Energy Fall 2009

Lecture 2: Zero law of thermodynamics

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

CHAPTER 8 ENTROPY. Blank

Thermodynamics I Chapter 2 Properties of Pure Substances

Why do we need to study thermodynamics? Examples of practical thermodynamic devices:

ENGG 3260: Thermodynamics. Home Assignment 1 (Chapter 1) (Answer)

Entropy and the Second Law of Thermodynamics

Course: MECH-341 Thermodynamics II Semester: Fall 2006

The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power

level of heat heat intensity

Transcription:

Thermodynamics Introduction and Basic Concepts by Asst. Prof. Channarong Asavatesanupap Mechanical Engineering Department Faculty of Engineering Thammasat University

2 What is Thermodynamics? Thermodynamics is the study that concerns with the ways energy is stored within a body and how energy transformations, which involve heat and work, may take place. Conservation of energy principle, one of the most fundamental laws of nature, simply states that energy cannot be created or destroyed but energy can change from one form to another during an energy interaction, i.e. the total amount of energy remains constant.

3 Thermodynamic systems or simply system, is defined as a quantity of matter or a region in space chosen for study. Surroundings boundary. are physical space outside the system Surroundings System Boundary Boundary is the surface that separates the system from its surroundings

4 Closed, Open, and Isolated Systems The systems can be classified into (1) Closed system consists of a fixed amount of mass and no mass may cross the system boundary. The closed system boundary may move.

5 (2) Open system (control volume) has mass as well as energy crossing the boundary, called a control surface. Examples: pumps, compressors, and water heaters.

6 (3) Isolated system is a general system of fixed mass where no heat or work may cross the boundaries. mass No energy No An isolated system is normally a collection of a main system and its surroundings that are exchanging mass and energy among themselves and no other system.

7 Properties of a system Any characteristic of a system is called a property. Some familiar properties are volume V, mass m, density r, pressure P, temperature T and etc.

Density is defined as mass per unit volume Water@ 20 C, 1 atm r = 998 kg/m 3 The reciprocal of density is the specific volume, which is defined as Specific Gravity SG is defined as the ratio of the density of a substance to the density of some standard substance at a specified temperature (usually water at 4C).

Temperature (T) is a measure of the average energy of motion, or kinetic energy, of particles in matter. (or a measure of hotness and coldness) Temperature scales Common scale: Celsius scale C SI unit Fahrenheit scale F English unit The Celsius scale is related to the Fahrenheit scale by Thermodynamic scale(absolute scale): Kelvin K SI unit Rankine R English unit

Temperature scales The common scales are related to the absolute scale by SI unit English unit Example: Water boils at 100C at one atmosphere pressure. At what temperature does water boil in F, K and R. T( F) = 100x1.8 + 32 = 212 F T(K) = 100 + 273.15 = 373.15 k T(R) = 212 + 459.67 = 671.67 F

11 Pressure(P) is the force per unit area applied in a direction perpendicular to the surface of an object P = F A N m 2 (Pa) For English system,

12 Pressure scales Absolute scale: Absolute pressure is the pressure that is measured relative to absolute zero pressure (absolute vacuum). Gage scale: Gage pressure is the pressure that is indicated on a pressure-measuring device (called a pressure gage). Generally, the device is calibrated to read zero in the atmosphere.

13 Vacuum pressure Pressures below atmospheric pressures are called vacuum pressures. A device that is used to measure vacuum pressure is called a vacuum gage. Pressure Absolute Gage Symbol P a P g Pressure Absolute Gage Eng. unit psia psig

14 Example A pressure gage connected to a valve stem of a truck tire reads 240 kpa at a location where the atmospheric pressure is 100 kpa. What is the absolute pressure in the tire, in kpa and in psia? P P P abs atm gage 100 kpa 240 kpa 340 kpa The pressure in psia is P abs 340 kpa 14. 7 psia 1013. kpa 49. 3 psia What is the gage pressure of the air in the tire, in psig? P P P gage abs atm 49. 3psia 14. 7 psia 34. 6 psig

15 Intensive and Extensive properties Intensive properties are those that are independent of the mass of a system. Extensive properties are those whose values depend on the size or extent of the system.

16 Internal energy (U) is defined as the sum of all the microscopic forms of energy of a system. It is related to the molecular structure and the degree of molecular activity and can be viewed as the sum of the kinetic and potential energies of the molecules. Properties Symbol Unit Extensive U J [Joule] Intensive u=u/m J/kg Gas: U = C V T = m c V T [kj/kg] where C V = heat capacity at constant volume [kj/k] c V = specific heat capacity [kj/kg-k]

17 Enthalpy (H) is a measure of the total energy of a thermodynamic system and is defined as the summation of the internal energy and the flow work (PV); H = U + PV. Properties Symbol Unit Extensive H J [Joule] Intensive h=h/m J/kg Gas: H = C P T = m c P T [kj/kg] where C P = heat capacity at constant pressure [kj/k] c P = specific heat Capacity [kj/kg-k]

18 Specific heats (c) is defined as the energy required to raise the temperature of a unit mass of a substance by one degree. In thermodynamics, we are interested in two kinds of specific heats: specific heat at constant volume c v and specific heat at constant pressure c p. 1 kg Water DT = 1 C 1 kg air DT = 1 C 1 kg air DT = 1 C 4.18 kj 0.72 kj 1.00 kj

19 How to identify the state of a substance? 1.Equations of state 2.Property tables 3.Property diagrams

20 Ideal gas law PV = nr u T Pv = RT where P and T are absolute pressure and temperature, respectively. R is a gas constant = R /M u [kj/kg.k or kpa.m 3 /(kg.k)] R u is a universal gas constant = 8.314 kj/(kmol.k) n is the number of moles = m/m M is Molar mass

21 Example 1 A room of the size 4m x 5m x 6m contains air at P = 100 kpa and T = 25 C. Determine the mass of air inside the room. Assume that Ra = 0.287 kpa.m3/kg.k PV 100kPa 120m 3 m 140.3kg 3 RaT 0.287kPa m / kg K (25 273) K

22 Example 2 The pressure in an automobile tire depends on the temperature of the air in the tire. When the air temperature is 25 C, the pressure gage reads 210 kpa. If the volume of the tire is 0.025 m3, determine the pressure rise in the tire when the air temperature in the tire rises to 50 C

23 Liquid and vapor phases of a substance Compressed liquid (subcooled liquid): A substance that it is not about to vaporize. Saturated liquid: A liquid that is about to vaporize. Saturated vapor: A vapor that is about to condense. Saturated liquid vapor mixture: The state at which the liquid and vapor phases coexist in equilibrium. Superheated vapor: A vapor that is not about to condense (i.e., not a saturated vapor).

24 Examples of property tables. g = gaseous phase (saturated vapor) f = liquid phase (saturated liquid)

25 Examples of property tables.

Examples of property tables 26

27 Example 3 Find the the density, specific internal energy, and specific enthalpy of water at T = 25 C and P = P atm. From table A-4: r w 1 v w 1 0.001003 m 997.01kg / 3 / kg m 3 uw u f @ 25C 104.83kJ / kg hw hf @ 25C 2441.7kJ / kg

Example 4 Determine the amount of energy required to increase the temperature of 1-kg water in example 2 to 150C. 28 Phase-change process 1. Liquid water at 25C 2. Liquid water at 100C 3. Vapor water at 100C From table A-4: hw, 1 h f @25C 104.83kJ / From table A-4: hw, 2 h f @100C 419.17kJ / kg kg From table A-4: hw, 3 hg @100C 2675.6kJ / kg Q Q 12 23 m Dh 1(419.17 104.83) 314.34kJ m Dh 1(2,675.6 419.17) 2,256.43kJ

29 Example 4 Determine the amount of energy required to increase the temperature of 1-kg water in example 3 to 150C. Phase-change process 3. Vapor water at 100C 4. Super heated water at 150C From table A-4: hw, 3 hg @100C 2675.6kJ / kg From table A-6: hw, 4 hsuperheat@150c 2776.6kJ / kg Q 34 m Dh 1 (2,776.6 2,675.6) 101.0kJ

30 Example of property diagrams. Water

31 Psychrometric chart Air

32 Moist air ( Air/Water vapor mixture) properties Dry-bulb temperature: The air temperature indicated by a standard thermometer. Wet-bulb temperature: The air temperature indicated by a thermometer with a wet wick attached to it bulb. % Relative Humidity: The amount of water vapor held in the air as a percent of the maximum amount of water vapor the air can hold at a specific temperature. Enthalpy: The total heat contained in the air. Dew point: The air temperature at which condensation begins. Humidity ratio: The mass of water vapor held in 1 kilogram of dry air.

Example 5 Find the the density, specific enthalpy, humidity ratio and dew-point temperature of air at T = 25 C and %RH = 50%. 33 h a 50kJ / kg T dp 14C 0.10kg / kg a w a r a 1 v a 1 0.86 1.16kg / m 3

34 Example 6 Condensation within the 1 m 2 wall h i = 10 W/(m 2.K) Brick Fiberglass Gypsum h o = 40 W/(m 2.K) 25C, 50% 35C, 48% k B = 0.68 W/(m.K)] k F = 0.038 W/(m.K)] k G = 0.48 W/(m.K)] 0.1m 0.15m 0.01m

35 Example 6 (cont.) Dx R wall KA 1 R air ha R th, tot R tot R i R b R f R g R o R th The heat flux is, tot 0.1 0.147 3.947 0.021 0.03 4.24 ( m 2 K) / W q R DT th, tot (35 25) K 4.24 ( m 2. K) / W 2.35W / m 2

36 Fiberglass Example 6 (cont.) 2 1 35C, 70% 28C 25C, 50% 4 3 D T q R th, i D.35 0.03 0.07C T 34. 93C T a 2 1 D.35 0.02 0.05C T 34. 43C T g 2 2 Condensation forms within the fiberglass layer. D.35 3.947 9.27C T 25. 15C T f 2 3

37 Example 7 Preventing condensation on cold air ducts. Ambient air 25C, 50% T surface = 12 C Cold air

38 Example 7 (cont.) Preventing condensation on cold air ducts. Ambient air 25C, 50% From the example 1, the dp temperature = 16 C T surface < dp temperature T surface = 12 C Cold air Water drops form on the cold duct wall where the surface temperature is below the dewpoint temperature.

39 Example 7 (cont.) Preventing condensation on cold air ducts. Ambient air 25C, 50% From the example 1, the dp temperature = 16 C qconv Before h 0 = 30 W/(m 2 K) T surface = 12 C q conv h( T ambient T surface 30(25 12) 390W ) / m 2 Cold air

40 Example 7 (cont.) Preventing condensation on cold air ducts. To prevent condensation, Insulation is needed on the duct. Ambient air 25C, 50% T s =? C Insulator b =? Cold air Fiberglass is used, k= 0.038 W/(m.K)]

41 Example 7 (cont.) Preventing condensation on cold air ducts. Ambient air 25C, 50% T s =? C Insulator h =? After Cold air q k ( T s T surface b ) h( T ambient T s) (16 12) 0.038 30(25 16) b b 0.00056 m Heat gain 2 q 270W / m????

42 Example 7 (cont.) Preventing condensation on cold air ducts. What will happen, if h = 2.5 cm? ( T 12) 0.038 s 30(25 Ts ) 0.025 T s 24. 37C (no condensation) Heat gain q 18.9 W / m 2 (-93%)

43 First Law of Thermodynamics is an expression of the conservation of energy principle. E in E out = DE sys where DE sys = E final E init

1 st Law for closed systems (1) Energy transferred across the boundary of the closed system can be divided into 2 forms: Heat and Work (2) Energy stored in the closed system is represented by the total internal energy (U) Therefore, the first law of thermodynamics is written as 44 (Q in + W in ) (Q out +W out ) = DU+DEp+DEk DQ DW = DU+DEp+DEk

45 1 st Law for closed systems If the system does not move with a velocity and has no change in elevation, the conservation of energy equation reduces to DQ DW = U 2 -U 1 [kj] where 1 represents initial state 2 represents final state Q W du dt [kw ] No motion (DKE=0) + No elevation change (DPE=0)

46 Example 7 A closed tank has a volume of and is filled with 200 kg of water at the temperature of 30 C. The water is heated by a 30kW electric heater. How long does it take for water to reach 45C. Water 200 kg. Q W du dt ( u2 u1) 20kW 0 W mw Dt 20 kw heater Dt 200kg (188.43125.73) kj 30kW / kg Dt 418 s

47 Note: 20kW 0W m m w w ( u2 u1) Dt cv ( T2 T Dt 4.178(45 30) kj / kg Dt 200kg 30kW 417.8 s 1 )

1 st Law for Open systems Energy and material transfer into or out of the system boundary. For steady flow, 48 in m out m [ kg / s] Q W 2 2 V V m ( h gz) m ( h 2 2 out in gz) [ kw ]

49 Example 8 Determine the amount of energy removed for space cooling if the infiltration mass flow is 0.35 kg/s To = 35 C %RH = 70 Ti = 25 C %RH = 50 Energy removed for space cooling, (Q inf )

50 Example 6 (cont.) Mass balance: m in m out m inf 0.35 kg / s Energy balance: 0 Q inf W m inf ( Dh 0 2 V D 2 0 Dgz) Q inf m inf ( h in h out )

51 HW#1 1. student living in a 4-m x 6-m x 6-m dormitory room turns on her 150-W fan before she leaves the room on a summer day, hoping that the room will be cooler when she come back in the evening. Assume all the doors and windows are tightly closed and disregarding any heat transfer through the walls and the windows, determine the temperature in the room when she comes back 10 h later. Use specific heat values at room temperature, and assume the room to be at 100 kpa and 15 C in the morning when she leaves. 2. The air in a room is 20C and 50% relative humidity. Will moisture condense on a window whose surface is 7C? If the room is 4.5m 2 and 2.5 m high, how much water is contained in the room? 3. A chilled-water line carries chilled water at 7C through a room at 21C and 60%RH. How much fiber glass insulation is needed on the pipe to avoid condensation?