at HESR (FAIR GSI) Introduction Spin filtering in the APR PAX experiment Conclusions

Similar documents
Spin-physics with Polarized Antiprotons at GSI

Towards Polarized Antiprotons at FAIR

PAX. EXperiments) SPIN Physics at GSI. (Polarized. Antiproton. Spokespersons: Paolo Lenisa Frank Rathmann


Antiproton Polarization Studies for FAIR

Status of the PAX experiment

The PAX experiment. Paolo Lenisa Università di Ferrara and INFN - Italy. Tbilisi, July 10 th PAX - Polarized Antiprotons

Polarized Antiproton

The physics program of PAX at COSY

Status and Perspectives of Hadron Physics in Europe. Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Polarization of a stored beam by spin filtering

Physics with the PANDA Detector at FAIR

Physics with PANDA at FAIR

Polarisation Experiments in Storage Rings

Storage Ring Experiments

Milano Fisica conantiprotoni al progetto FAIR del GSI

A method to polarise antiprotons in storage rings and create polarised antineutrons

Prospects for a Storage Ring EDM-Facility at COSY

Spin-Filtering Studies at COSY

Charmonium Physics with PANDA at FAIR. FZ-Juelich & Uni Bochum

Antiproton-Proton Scattering Experiments with Polarization

General Introductory Remarks. gamardshoba. me war germaniidan CGSWHP 04. Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

An Electron-Nucleon Collider at FAIR

Polarization of a stored beam by spin-filtering

QCD aspects of the antiproton program at GSI

Physics Program at COSY-Jülich with Polarized Hadronic Probes

Spin observables for polarizing antiprotons. Donie O Brien

Nuclear and Hadron Physics with Antiprotons

Quarkonium Production at J-PARC

Donie O Brien Nigel Buttimore

SPIN2010. I.Meshkov 1, Yu.Filatov 1,2. Forschungszentrum Juelich GmbH. 19th International Spin Physics Symposium September 27 October 2, 2010

Spin Filtering at COSY - First Results

The PANDA experiment at FAIR

Study of the hadron structure using the polarised Drell-Yan process at COMPASS

Antiproton-Proton Scattering Experiments with Polarization. PAX Collaboration

The polarized electron-nucleon collider project ENC at GSI/FAIR

Review of Polarized Targets

arxiv:hep-ph/ v1 4 Feb 1997

HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon

PANDA. antiproton Annihilation at DArmstadt

Long term performance of the COSY/Jülich polarized ion source

The PANDA Detector at FAIR

Spin physics at COMPASS p. 1/43

Measurement of the Spin Dependence of the pp Interaction at the AD Ring

Polarised Drell-Yan Process in the COMPASS Experiment

PAX Polarized. Antiproton. EXperiment. PAX Collaboration. Paolo Lenisa. Universita and INFN - Sezione di Ferrara.

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

Measurements of unpolarized azimuthal asymmetries. in SIDIS at COMPASS

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN)

ERC Advanced Grant Research proposal (Part B2)

Probing nucleon structure by using a polarized proton beam

From COSY to HESR and EDM Storage Ring

The future COMPASS-II Drell-Yan program

Progress on the DVCS program at Compass E. Burtin CEA Saclay Irfu/SPhN GDR nucléon, Ecole Polytechnique, 12 décembre 2008

Sixth International Conference on Perspectives in Hadronic Physics May Highlights from the COMPASS experiment at CERN.

Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at HERMES

Meson Structure with Dilepton Production

Simulation and data analysis with the BGO-OD experiment

Outline. Generalized Parton Distributions. Elastic Form Factors and Charge Distributions in Space. From Form Factors to Quark Spin Distributions

Hadron multiplicities at the HERMES experiment

Tensor Polarized Deuteron at and EIC

Monte Carlo Simulations for PANDA

The PANDA Experiment. Lars Schmitt, GSI on behalf of the PANDA Collaboration Open PANDA, Mainz, November 19th 2009.

International Workshop on Heavy Quarkonium Oct. 2007, DESY Hamburg. Prospects for Panda. Charmonium Spectroscopy

Challenges in optics requirement and control of Storage Rings for Precision Measurement of EDM

A Next-generation Low-energy Antiproton Facility

PANDA FAIR. Anastasios Belias for the PANDA Collaboration GSI, Darmstadt, Germany. EXA2017, Vienna September 15th, 2017

The Electromagnetic Form Factors of the Nucleon

Theory of electron cooling

FAIR - Facility for Antiproton and Ion Research

Nucleon Spin Structure: Overview

Search for Electric Dipole Moments with Polarized Beams in Storage Rings

DESIGN OF THE INTERLOCK SYSTEM OF A TEST-BENCH FOR SILICON DETECTORS

Polarized Molecules: A new Option for Internal Storage-Cell Targets?

Single Spin Asymmetries on proton at COMPASS

FAIR. Reiner Krücken for the NUSTAR collaboration

Analysis of, decays from CLAS. Moskov Amaryan

Charmonium production in antiproton-induced reactions on nuclei

Study of the proton structure with (polarized) antiprotons at FAIR

Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14

Experimental Program of the Future COMPASS-II Experiment at CERN

Simulation studies of the PANDA detector at GSI

Plans to measure J/ψ photoproduction on the proton with CLAS12

Nucleon Valence Quark Structure

SSA Measurements with Primary Beam at J-PARC

The achievements of the CERN proton antiproton collider

Measuring Form Factors and Structure Functions With CLAS

and Charmonium Prospects at FAIR

COMPASS Drell-Yan. Michela Chiosso, University of Torino and INFN. TMD ECT* Workshop April 2016

Design Consideration on a Polarized Gas Target for the LHC

The Detector Design of the Jefferson Lab EIC

Transverse Spin Structure with muon beam and Drell-Yan measurements at COMPASS

erhic: Science and Perspective

A SPIN ON THE PROTON FOR SEEKING NUCLEON STRUCTURE. Nigel Buttimore

Measurement of Collins Asymmetries in the inclusive production of hadron pairs

Electron-Ion Collider for Nuclear and Particle Physics. Hugh Montgomery Jefferson Lab

Physics at Hadron Colliders Partons and PDFs

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS

The PANDA experiment at FAIR

Transcription:

Spin Physics with Polarized Antiprotons at HESR (FAIR GSI) E. Steffens 1, P. Lenisa 2 *, Frank Rathmann 3 *, P. Ferretti-Dalpiaz 2, M. Contalbrigo 2, A. Kacharava 1,3, D. Reggiani 1, S. Yashchenko 1,3 for the PAX Collaboration 1 Physik. Inst., Univ. of Erlangen-Nürnberg, 2 Univ. of Ferrara and INFN, 3 Inst. für Kernphysik, FZ Jülich * Spokespersons PAX Collaboration Introduction Spin filtering in the APR PAX experiment FILTEX test experiment at the TSR Heidelberg (1992) Conclusions E. Steffens DPG Berlin 2005 1

Introduction New opportunities at FAIR for the study of antiprotonproton interactions High-energy storage ring HESR: LEAR data can be extended to high energies The Study of spin dependence of pp requires polarized antiprotons Proposal by PAX collaboration to add a dedicated Antiproton Polarizer Ring (APR) to FAIR Design of a low-energy APR in progress: P>30% possible! Note: in PAX-LoI (Jan.04) without APR we assumed P=5-10% E. Steffens DPG Berlin 2005 2

Central Physics Issue Transversity distribution of the nucleon: last leading-twist missing piece of the QCD description of the partonic structure of the nucleon directly accessible in a unique way via the double transverse spin asymmetry A TT in the Drell-Yan production of lepton pairs theoretical expectations for A TT in DY, 30-40% transversely polarized antiprotons transversely polarized proton target definitive observation of h 1q (x,q 2 ) of the proton for the valence quarks E. Steffens DPG Berlin 2005 3

Other Physics Topics Single-Spin Asymmetries Electromagnetic Form Factors Hard Scattering Effects Soft Scattering Low-t Physics Total Cross Section p-p interaction E. Steffens DPG Berlin 2005 4

Polarized Antiprotons Proposal to polarize p s stored in LEAR, with Ecool and storage cell target: E. St., et al, LEAR-WS Tignes 1985 Experimental test in the Heidelberg TSR by the FILTEX Collaboration in 1992: build-up of proton pol. measured! 01/04: PAX LoI on spin physics at HESR submitted to FAIR 07/04: QCD-PAC requested the design of a world class facility for polarized antiprotons Techn. Proposal (TP) submitted by PAX in Jan.05, plus recent addendum: see at www.fz-juelich.de/ikp/pax E. Steffens DPG Berlin 2005 5

Spin Filter Method E. Steffens, B. Povh, Th. Walcher et al, 3rd LEAR Workshop, Tignes (1985) σ tot = σ 0 + σ P Q + σ (P k)(q k) P beam polarization Q target polarization k beam direction τ I I beam τ + pol (t) (t) For initially equally populated spin states: (m=+½) and (m=-½) = = = = ( σ σ I0 2 I0 2 σ 0 pol e e transverse case: tot ± τ τ c 1 Q d t t beam t beam = σ 1 + σ ) d f t rev e e 0 f τ + τ rev t pol t pol ± σ Q P(t) I(t) longitudinal case: ( σ + σ ) Q E. Steffens DPG Berlin 2005 6 = = σ tot ± + + + + + = σ = 0 ± Time dependence of P and I I I I I I I t = tanh τ I 0 e τ t beam pol t cosh τ pol

Polarization Buildup: Optimum Interaction Time Measuring time t to achieve a certain error is inversely prop. to Figure of Merit FOM = P2 IP Optimimum time for Polarization Buildup given by maximum of FOM(t) t filter = 2 τ beam I/I 0 0.8 0.6 0.4 FOM =P 2 I Beam Polarization P 0.2 0 2 4 6 t/τ beam E. Steffens DPG Berlin 2005 7

Experimental Results from Filter Test Protons, T=23 MeV F. Rathmann. et al., PRL 71, 1379 (1993) Observed build-up: dp/dt = ± (1.24 ± 0.06) % h -1 Expected build-up: P(t) (t/tpol) pp phase shifts: σ 1 = 122mb 1/τ pol = σ 1 Qd t f = 2.4 % h -1 about factor 2 larger! Low energy pp scattering σ 1 <0 σ tot+ <σ tot- Expectation Target Beam E. Steffens DPG Berlin 2005 8

Experimental Results from Filter Test Protons, T=23 MeV F. Rathmann. et al., PRL 71, 1379 (1993) Horowitz & Meyer, PRL 72, 3981 (1994) H.O. Meyer, PRE 50, 1485 (1994) Refined analysis: Three effects! *Selective removal through scattering beyond Ψacc=4.4 mrad: σ R =83 mb *Small angle scatt. of target protons into ring acceptance: σ S =52 mb *Spin Spin transfer from polarized electrons of the target atoms to the stored protons: σ EM =70 mb (-) Low energy pp scattering σ 1 <0 σ tot+ <σ tot- Correction: σ eff = (83+52-70)mb = 65mb Theory: 1/τ pol = 1.28%/h Experiment: (1.24±0.06)%/h EM spin transfer confirmed! E. Steffens DPG Berlin 2005 9

Exploitation of Spin Transfer PAX will employ spin-transfer from polarized electrons of the target to antiprotons r r p + e p + QED Process: calculable! e Hydrogen gas target: 1+2 in strong field (300 mt) P e =0.993 P p =0.007 σ EM (mb) 600 500 400 300 200 100 Atomic Electrons σ EM = 2 σ EM Free Electrons 1 10 100 T (MeV) E. Steffens DPG Berlin 2005 10

Dedicated Antiproton Polarizer (APR) σ EM = 2 σ EM r Q Injection p Injection B B Siberian Snake Siberian Snake CSR ESR e-cooler Electron Cooler ABS ABS AP APR 100 m Polarizer Target Polarizer Target β=0.2 m d b =ψ acc β 2 d t =d t (ψ acc ) q=1.5 10 17 s -1 l b =40 cm (=2 β) T=100 K d f =1 cm, l f =15 cm Longitudinal pol. (B guide = 300 mt) Extraction Extraction e-cooler Electron Cooler Internal Experiment Experiment PAX Polarization Buildup in AP parallel to measurement in CSR and/or HESR F. Rathmann et al., PRL 94, 014801 (2005) E. Steffens DPG Berlin 2005 11

FOM after t=2τ beam 15 Optimum Beam Energies for Buildup in APR APR Space charge limit ψ acc = 50 mrad Ψ acc (mrad) Maximum FOM at T opt τ beam (h) 10 1.2 20 30 40 2.2 4.6 9.2 P(2τ beam ) T opt (MeV) 0.19 163 0.29 88 0.35 61 0.39 47 10 40 mrad 50 16.7 0.42 38 5 30 mrad 20 mrad 10 mrad 1 10 100 T (MeV) E. Steffens DPG Berlin 2005 12

Performance of Polarized Internal Targets Example: HERMES (Stored Positrons) Hydrogen P T = 0.795 ± 0.033 HERMES Transverse Field (B = 297mT) Similar performance for IUCF and COSY targets Targets work very reliably (many months of stable operation) E. Steffens DPG Berlin 2005 13

Transversity in Drell-Yan processes at PAX Polarized Antiproton Beam Polarized Proton Target (both transversely polarized) Q l + Q T l - Q 2 =M 2 p Q L p 2 q 2 q 2 e h (x, M )h (x, M ) q 1 1 1 2 A dσ dσ q TT = â TT 2 2 dσ + dσ e q(x, M )q(x, M 2 ) q q 1 2 q = u, u,d, d,... M invariant Mass of lepton pair E. Steffens DPG Berlin 2005 14

A TT for PAX kinematic conditions PAX: M 2 ~10 GeV 2, s~30-50 GeV 2, x 1 x 2 =M 2 /s ~ 0.2-0.3 Exploration 22 GeV/c of fixed valence target quarks 15 GeV/c fixed [h 1q (x,q 2 ) large] A TT /a TT up to 0.3 Models predict h 1u >> h 1d u 2 u 2 h (x,m )h (x,m ) A = 1 1 1 1 TT â TT 2 2 u(x,m )u(x, M ) (where q 1 p = q p 1 = q) Fixed Target vs Asymmetric Collider A TT /â TT 0.3 0.2 0.1 15 fixed 15+3.5 collider 15 + 15 collider 30 1000 22 fixed 45 80 200 400 Main contribution to Drell-Yan events at PAX from x 1 ~x 2 : deduction of x-dependence of h 1u (x,m 2 ) s = 10000 0 0 0.2 0.4 0.6 0.8 1 x F Anselmino et al. PLB 594,97 (2004) E. Steffens DPG Berlin 2005 15

A TT for PAX kinematic conditions PAX: M 2 ~10 GeV 2, s~30-50 GeV 2, x 1 x 2 =M 2 /s ~ 0.2-0.3 Exploration 22 GeV/c of fixed valence target quarks 15 GeV/c fixed [h 1q (x,q 2 ) large] Fixed Target vs Asymmetric Collider A TT /â TT 0.3 0.2 15 fixed 15+3.5 collider 30 22 fixed 45 80 Collider Options for Transversity measurement: 15 GeV/c + 15 GeV/c s = 1000 GeV 2, too high 15 GeV/c + 3.5 GeV/c s = 220 GeV 2, ideal 0.1 15 + 15 collider 1000 s = 10000 200 400 0 0 0.2 0.4 0.6 0.8 1 x F Anselmino et al. PLB 594,97 (2004) E. Steffens DPG Berlin 2005 16

Towards an Asymmetric Polarized pp Collider I. CSR at FAIR (3.5 GeV/c) a. Formfactor measurement pp e + e - - unpolarized antiproton beam on polarized internal proton target HESR p p injection p CSR PAX PANDA E. Steffens DPG Berlin 2005 17

Towards an Asymmetric Polarized pp Collider I. CSR at FAIR (3.5 GeV/c) a. Formfactor measurement pp e + e - - unpolarized antiproton beam on polarized internal proton target b. CSR + AP: p p elastic HESR p p injection p Injector p CSR AP PAX PANDA E. Steffens DPG Berlin 2005 18

Towards an Asymmetric Polarized pp Collider I. CSR at FAIR (3.5 GeV/c) a. Formfactor measurement pp e+e- - unpolarized antiproton beam on polarized internal proton target b. CSR + AP: p p elastic II. Asymmetric Collider p p : 3.5 GeV/c protons + 15 GeV/c antiprotons (also fixed target experiment possible) HESR p p injection p Injector p CSR AP PAX PANDA E. Steffens DPG Berlin 2005 19

Conceptual Detector Design ~3 m E. Steffens DPG Berlin 2005 20

Expected precision of the h 1 measurement One year of data taking at 50 % eff. (180 d), A TT /a TT =0.3 Safe region (M > 4 GeV)! Collider mode: 5 10 30 cm -2 s -1 Fixed Target: 2.7 10 31 cm -2 s -1 Anselmino et al. PLB 594,97 (2004); Efremov et al., Eur.Phys.J. C35,207 (2004) J/Ψ region can be included! Cross section increases by two orders from M=4 to M=3 GeV E. Steffens DPG Berlin 2005 21

Conclusions Polarized Antiprotons lead to new physics at HESR Unique access to a wealth of new observables Central physics issue: h q 1 (x,q 2 ) of the proton measured in DY Note: High statistics by inclusion of J/Ψ region! Other issues: Electromagnetic Formfactors Polarization effects in Hard and Soft Scattering processes differential cross sections, analyzing powers, spin correlation parameters Asymmetric Collider: 15 GeV/c + 3.5 GeV/c ideal conditions for Transversity measurements Projections for HESR fed by a dedicated APR: P beam > 0.30 5.6 10 10 polarized antiprotons Luminosity: - Fixed target: L 2.7 10 31 cm -2 s -1 - Collider: L 2 10 30 cm -2 s -1 (first estimate ) E. Steffens DPG Berlin 2005 22

170 PAX Collaborators, 27 Institutions (17 EU, 17 non-eu) Yerevan Physics Institute, Yerevan, Armenia Department of Subatomic and Radiation Physics, University of Gent, Belgium University of Science & Technology of China, Beijing, P.R. China Department of Physics, Beijing, P.R. China Centre de Physique Theorique, Ecole Polytechnique, Palaiseau, France High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia Nuclear Physics Department, Tbilisi State University, Tbilisi, Georgia Forschungszentrum Jülich, Institut für Kernphysik Jülich, Germany Institut für Theoretische Physik II, Ruhr Universität Bochum, Germany Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany Physikalisches Institut, Universität Erlangen-Nürnberg, Germany Department of Mathematics, University of Dublin, Dublin, Ireland University del Piemonte Orientale and INFN, Alessandria, Italy Dipartimento di Fisica, Universita di Cagliari and INFN, Cagliari, Italy Instituto Nationale di Fisica Nucleare, Ferrara, Italy Dipartimento di Fisica Teorica, Universita di Torino and INFN, Torino, Italy Instituto Nationale di Fisica Nucleare, Frascati, Italy Dipartimento di Fisica, Universita di Lecce and INFN, Lecce, Italy Unternehmensberatung und Service Büro (USB), Gerlinde Schulteis & Partner GbR, Langenbernsdorf, Germany Soltan Institute for Nuclear Studies, Warsaw, Poland Petersburg Nuclear Physics Institute, Gatchina, Russia Institute for Theoretical and Experimental Physics, Moscow, Russia Lebedev Physical Institute, Moscow, Russia Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia Laboratory of Particle Physics, Joint Institute for Nuclear Research, Dubna, Russia Budker Institute for Nuclear Physics, Novosibirsk, Russia High Energy Physics Institute, Protvino, Russia Institute of Experimental Physics, Slovak Academy of Sciences and P.J. Safarik University, Faculty of Science, Kosice, Slovakia Department of Radiation Sciences, Nuclear Physics Division, Uppsala University, Uppsala, Sweden Collider Accelerator Department, Brookhaven National Laboratory, USA RIKEN BNL Research Center, Brookhaven National Laboratory, USA E. Steffens University DPG of Wisconsin, Berlin 2005 Madison, USA 23 Department of Physics, University of Virginia, Virginia, USA