Building a Photometric Hubble Diagram from DES-SN Data

Similar documents
THE DARK ENERGY SURVEY: 3 YEARS OF SUPERNOVA

Present and Future Large Optical Transient Surveys. Supernovae Rates and Expectations

SNLS supernovae photometric classification with machine learning

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Cosmology of Photometrically- Classified Type Ia Supernovae

The Dark Energy Survey Public Data Release 1

MEASURING TYPE IA SUPERNOVA POPULATIONS OF STRETCH AND COLOR AND PREDICTING DISTANCE BIASES

Supernovae with Euclid

Constraining Dark Energy: First Results from the SDSS-II Supernova Survey

Data Processing in DES

arxiv: v2 [astro-ph] 21 Aug 2007

Photometric Redshifts, DES, and DESpec

Radial selec*on issues for primordial non- Gaussianity detec*on

DECAM SEARCHES FOR OPTICAL SIGNATURES OF GW Soares-Santos et al arxiv:

Photometric classification of SNe Ia in the SuperNova Legacy Survey with supervised learning

Supernovae Observations of the Expanding Universe. Kevin Twedt PHYS798G April 17, 2007

The shapes of faint galaxies: A window unto mass in the universe

The Large Synoptic Survey Telescope

SDSS-II: DETERMINATION OF SHAPE AND COLOR PARAMETER COEFFICIENTS FOR SALT-II FIT MODEL

An Introduction to the Dark Energy Survey

Challenges of low and intermediate redshift supernova surveys

Supernovae photometric classification of SNLS data with supervised learning

arxiv: v3 [astro-ph.co] 24 Jan 2019

Dark Energy Survey: Year 1 results summary

First results from the Stockholm VIMOS Supernova Survey

Precision cosmology with Type Ia Supernovae?

The J-PAS survey: pushing the limits of spectro-photometry

A new method to search for Supernova Progenitors in the PTF Archive. Frank Masci & the PTF Collaboration

SNAP Photometric Redshifts and Simulations

Type Ia SNe standardization accounting for the environment. Lluís Galbany CENTRA-IST, UTL, Lisbon

Cosmological constraints from the 3rd year SNLS dataset

HSC Supernova Cosmology Legacy Survey with HST

Reverberation Mapping in the Era of MOS and Time-Domain Surveys: from SDSS to MSE

TMT and Space-Based Survey Missions

Astronomical image reduction using the Tractor

SDSS-II Supernova Survey (continued) David Cinabro Wayne State University AIPW, Dubrovnik, Croatia 4-9 September 2006

Sample variance in the local measurements of H 0. Heidi Wu (Caltech OSU) with Dragan Huterer (U. Michigan) arxiv: , MNRAS accepted

Spectroscopy!in!the!Era!of!LSST!

The Dark Energy Survey - Supernova Survey

Dark Energy Survey. Josh Frieman DES Project Director Fermilab and the University of Chicago

Making Cosmologyʼs Best Standard Candles Even Better

Discussing the brighter-fatter correction. Augustin Guyonnet

NICMOS Status and Plans

Supernova and Star Formation Rates

arxiv: v2 [astro-ph.co] 2 Oct 2014

The Old Stellar Population Studies with Subaru Young-Wook Lee Yonsei Univ., Seoul, Korea

N- body- spectro- photometric simula4ons for DES and DESpec

Photometric Products. Robert Lupton, Princeton University LSST Pipeline/Calibration Scientist PST/SAC PST/SAC,

Bayesian Modeling for Type Ia Supernova Data, Dust, and Distances

R. Pain CSP 07 June 17,

Modern Image Processing Techniques in Astronomical Sky Surveys

The PRIsm MUlti-object Survey (PRIMUS)

Astrometry in Gaia DR1

Structure of the ICM and its Evolution with Redshift: : Status from SZE Observations

The Science Cases for CSTAR, AST3, and KDUST

Type Ia Supernovae meet Maximum Likelihood Estimators

Dependence of low redshift Type Ia Supernovae luminosities on host galaxies

SDSS-IV and eboss Science. Hyunmi Song (KIAS)

2-D Images in Astronomy

Cosmology with type Ia Supernovae

Supernovae and the Accelerating Universe

Exploring the Depths of the Universe

Quasar identification with narrow-band cosmological surveys

Shape Measurement: An introduction to KSB

arxiv: v1 [astro-ph] 3 Oct 2007

An end-to-end simulation framework for the Large Synoptic Survey Telescope Andrew Connolly University of Washington

CLASH MCT Program Progress Report. Progress Report on the CLASH Multi-Cycle Treasury Program By Marc Postman

Photometric Redshifts for the NSLS

Self-Organizing-Map and Deep-Learning! application to photometric redshift in HSC

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD

CFHT Large Area U-Band Deep Survey

Pan-STARRS1 Photometric Classifica7on of Supernovae using Ensemble Decision Tree Methods

Pushing the Redshi- Detec0on Limits of Supernovae

Refining Photometric Redshift Distributions with Cross-Correlations

Supplementary Information for SNLS-03D3bb a super- Chandrasekhar mass Type Ia supernova

A Hunt for Tidal Features in a Nearby Ultra Diffuse Galaxy

Introduction to SDSS -instruments, survey strategy, etc

Large Imaging Surveys for Cosmology:

Target Selection for future spectroscopic surveys (DESpec) Stephanie Jouvel, Filipe Abdalla, With DESpec target selection team.

1 A photometric probe for Pan-STARRS

High Redshift Universe

Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest

APLUS: A Data Reduction Pipeline for HST/ACS and WFC3 Images

LSST. Pierre Antilogus LPNHE-IN2P3, Paris. ESO in the 2020s January 19-22, LSST ESO in the 2020 s 1

The J-PAS Survey. Silvia Bonoli

From DES to LSST. Transient Processing Goes from Hours to Seconds. Eric Morganson, NCSA LSST Time Domain Meeting Tucson, AZ May 22, 2017

Ultra-compact binaries in the Catalina Real-time Transient Survey. The Catalina Real-time Transient Survey. A photometric study of CRTS dwarf novae

Large Synoptic Survey Telescope

LSST Cosmology and LSSTxCMB-S4 Synergies. Elisabeth Krause, Stanford

Supernova Surveys. Julien GUY PPC2010, Torino, July LPNHE - IN2P3 - CNRS - Universités Paris 6 et Paris 7

Stages of a Big Project ***

Mapping Dark Matter with the Dark Energy Survey

Imaging with Micado at the E-ELT. WORKSHOP: Imaging at the E-ELT

Interstellar Dust and Gas

SKA radio cosmology: Correlation with other data

Examining Dark Energy With Dark Matter Lenses: The Large Synoptic Survey Telescope. Andrew R. Zentner University of Pittsburgh

Lecture 15: Galaxy morphology and environment

Synergies between and E-ELT

Subaru/WFIRST Synergies for Cosmology and Galaxy Evolution

LSST, Euclid, and WFIRST

Transcription:

Building a Photometric Hubble Diagram from DES-SN Data R. Kessler University of Chicago SN ClassificaCon Workshop April 28 26

The Dark Energy Survey Survey project using 4 complementary techniques: I. Cluster Counts II. Weak Lensing III. Large-scale Structure IV. Supernovae Two multiband imaging surveys: 5 deg 2 grizy to 24th mag 3 deg 2 repeat griz (SNe) DECam on the Blanco New 3 deg 2 FOV camera on the Blanco 4m telescope Survey 23-28 (525 nights) Facility instrument for astronomy community (DES 3% time) Largest optical etendue (FoV x mirror-area) 2 www.darkenergysurvey.org www.darkenergydetectives.org

DES-SN Overview Visit each field once per week in griz 8 shallow fields (24 deg 2 ), depth 23.5 2 deep fields (6 deg 2 ), depth 24.5 Finished three `5-month seasons 3

Source of Photometry (Y+Y2+Y3) Forced Photometry (PSF-fi_ed fluxes) from Difference-Imaging Pipeline used to discover transients Subtracted images from A.Becker s hotpants CalibraCon tweaked few percent based on overlap of PS supercal (Scolnic et al 25) More refined photometry (Scene-Modeling) in progress, but not ready yet. 4

Source of Redshies Host Galaxy Spectroscopic redshies, mostly from OzDES using AAT (Yuan 25) Matching algorithm (DLR) from Gupta et al, 26 (arxiv:64.638) 5

SimulaCons ClassificaCon and HD Fikng make extensive use of SNANA simulacons. Simulate SNIa with SALT2 model (α SIM =.4, β SIM =3.2; c,x populacon from SK6) and intrinsic sca_er models that include chromacc variacons. Simulate CC based on 42 templates (from photometric challenge, 2). CC Rate, Ibc/II raco, and LF from Li 2. 6

Pre-Analysis PreparaCon: Analyze Fake SNIa Overlaid on Images Are photometry errors correct? à Yes, aeer correccng for surface brightness (see Figs 9- in arxiv:57.537) Does fast SNANA sim reproduce fake SNe? à yes, aeer scaling simulated error vs. PSF (see Sim-validaCon slides to follow) 7

Sim-ValidaCon: Overview SN Ia Fakes DiffImg Pipeline (weeks) SNANA SimulaCon (minutes) Analysis & fikng Compare DiffImg Fakes to SNANA sim 8

Empirical Flux-Error Adjustment for SNANA sim.5 Shallow Fields, Y+Y2.5 err(forcephoto) / err(snana Sim).4.3.2..9.8.5.4.3.2..9.8 2 3 4 5 PSF-g PSF-i g 2 3 4 5 i.4.3.2..9.8.5.4.3.2..9.8 2 3 4 5 PSF-r PSF-z r z 2 3 4 5 Scale simulated flux-errors by black curves at lee. Purple-dash curve is prediccon based on floacng background in PSF fit. forcephoto-error excess at small-psf is not understood. PSF units: sigma, pixels [ =.6 PSF(fwhm,arcsec) ] 9

Empirical Flux-Error Adjustment for SNANA sim.5 Shallow Fields, Y+Y2.5.5 Deep Fields, Y+Y2.5.4.4.4.4.3.3.3.3 err(forcephoto) / err(snana Sim).2..9.8.5.4.3.2..9.8 2 3 4 5 PSF-g PSF-i g 2 3 4 5 i.2..9.8.5.4.3.2..9.8 2 3 4 5 PSF-r PSF-z r z 2 3 4 5.2..9.8.5.4.3.2..9.8 2 3 4 PSF-g PSF-i g 2 3 4 i.2..9.8.5.4.3.2..9.8 2 3 4 PSF-r PSF-z r z 2 3 4 PSF units: sigma, pixels [ =.6 PSF(fwhm,arcsec) ]

Fake/Sim Overlays of Fi_ed Params 6 Shallow Fields, Y 6 6 4 4 4 4 2 4 2.5 SALT2c 2 3 2..2 err(c) 4 2 2 2 Fake SN à 2DiffImg 3 err(pkmjd) SNANA sim 75 5 5 25-2 2 PKMJD PKMJD true 4 3 2-5 5 SALT2x 2 25 SALT2mB 6 4 2 2 err(x)..2.3 err(mb).4.2 -.2 -.4.5.5. z phot -.25.25 err(z phot ) ZPHOT ZPHOT true.5 -.5 -.2.4.6.8.2.4.6.8 mean c vs z phot mean x vs z phot

Done with pre-analysis of fake SN Now start real analysis on data 2

Photometric SelecCon Box cuts: * 3 bands with obs having SNR>5 * at least one epoch with Trest < -2 * at least one epoch with Trest > + * x < 4 * FitProb >.5 (from SALT2 LC fit) 25 2 5 5 Nearest Neighbor (Sako 24) P Ia >.5 with >σ significance..2.3.4.5.6.7.8.9 P fit = Fit Prob 3

Nearest Neighbor (NN): 3D Space of Redshie, Stretch, Color DATA Fit color. Fit stretch 4

Nearest Neighbor (NN): 3D Space of Redshie, Stretch, Color DATA Sim(Ia+CC) Fit color. Fit color P Ia =8/2 True SNIa True SN CC Fit stretch Fit stretch NN Training finds opcmal radius of 3D sphere by maximizing Eff x Purity. 5

NN Performance on SimulaCon: Aeer box cuts: SNIa Purity 9% Aeer P NN,Ia > ½: SNIa Purity à 98% with 2% SNIa loss 6

Data/Sim Comparisons Box cuts + P NN,Ia > ½ Sim zhost tuned to match DES data (Eff zhost not known yet) No other sim tuning (except flux-errors to match fakes) µ(α=.4, β=3.2) 46 45 44 43 42 4 4 39 38 37 36 DATA, NN(z,s,c).2.4.6.8 zspec zspec µ(α=.4, β=3.2) 46 45 44 43 42 4 4 39 38 37 36 SIM, NN(z,s,c).2.4.6.8 zspec 7

Data Sim Data/Sim Comparisons 8 6 4 2 5 tuned.2.4.6.8 zhd 75 5 25 2 4 6 SNRMAX 5 5 5.5..5.2 err c 75 5 25.5.5 2 err x 5 5 5 5 -.5.5 SALT2-c -4-2 2 4 SALT2-x.5..5.2 err mb 2 3 err PKMJD 5 2 5 2 5 5 8 2 22 24 26 SALT2-mB.5.6.7.8.9 NN-P Ia 2 4 6 SNRMAX3.2.4.6.8 P fit 8

.5..5.2.5.5 2 c B 6 4 4 3 2 2.5.2 4 8 4 Data Sim.5..5.2 8 6 3 6 4 err c err x Data/Sim 2 Comparisons.5.5 2 err mb 75 5 err x (24.5 5 mag) 2 2 2 25 5 tuned.5.2.2.4.6.8 22 4 6-3 zhd SNRMAX err err c 5 2 4 PKMJD 6.2.4 5.6.8 SNRMAX3 Shallow Fields (23.5 mag) P fit 2 4 3 2 2 3 err PKMJD DEEP Fields 5 5 5 5.5..5.2 75 5 25.5.5 2 err x -.5.5 SALT2-c -4-2 2 4 SALT2-x.5..5.2 err mb 2 3 err PKMJD AX3 5 4 6 5 2.2.4.6.8 P fit 5 5 2 8 2 22 24 26 SALT2-mB.5.6.7.8.9 NN-P Ia 2 4 6 SNRMAX3.2.4.6.8 P fit 9

Data/Sim Comparisons NN(z,s,c) 2 DATA SIM (Ia+CC) SIM (CC-only) - -3-2 - 2 3 µ SN µ fit (SALT2mu fit) Sim CC/Tot =.6%. Data contaminacon is clearly few Cmes more. 2

When all else Fails, Tune the CC Sim 2 DATA SIM (Ia+CC) SIM (CC-only) Untuned: CC/Tot=.6% CC sim - 2 DATA SIM (Ia+CC) SIM (CC-only) CC.4 mag Brighter: CC/Tot=2.3% -3-2 - 2 3 µ SN µ fit (SALT2mu fit) - 2 - DATA SIM (Ia+CC) SIM (CC-only) -3-2 - 2 3 µ SN µ fit (SALT2mu fit) Double CC: CC/Tot=2.6% -3-2 - 2 3 µ SN µ fit (SALT2mu fit) Can tune CC to match μ-resid tail, but cannot fix shoulder problem. See Jones talk for tests with 9bg, Iax.... 2

Fikng the Hubble Diagram: CorrecCng for Biases and CC ContaminaCon 46 45 44 43 42 4 4 39 38 37 DATA, NN(z,s,c) z µ(α=.4, β=3.2) SIM, NN(z,s,c) Average Bias Corrected 36.2.4.6.8 zspec Distances zspec 22

Fikng the Hubble Diagram: Framework From Hlozek 2 L = L(Ia) + L(CC) μ μ model 4 3 2 - -2-3 -4 with NN.25.5.75 redshift 23

Fikng the Hubble Diagram: Framework From Hlozek 2 L = L(Ia) + L(CC) Fix cosmology params (w,ω M ) and fit for μ-offset in redshie bins (along with α,β): SALTmu program in SNANA, Marriner 2. Can then fit mu-offset vs. redshie with any cosmo program 24

Fikng the Hubble Diagram: CorrecQng for Biases and CC ContaminaCon Avg bias correccons from simulacon using color & stretch populacons from SK6: CorrecCons binned in 3D map of { z, x, c } 25

Fikng the Hubble Diagram: CorrecQng for Biases and CC ContaminaCon.6.5 c <.5 and x <.4.6.5 c <..6.5 x <.4 δ mb = m B m B,sim.4.3.2. -. αδ x = α(x x,sim ).4.3.2. -. < x < 2 βδ c = β(c c sim ).4.3.2. -. c >.2 c <. -.2 -.3 -.2 -.3 3 < x < 2 -.2 -.3 c <. -.4.2.4.6.8.2 redshift -.4.2.4.6.8.2 redshift -.4.2.4.6.8.2 redshift 26

Fikng the Hubble Diagram: CorrecCng for Biases : Sim SNIa only fit µ offset fit µ offset.8.6.4.2 -.2 -.4 -.6 -.8.8.6.4.2 -.2 -.4 -.6 -.8 a) chi2 only 2.9σ slope.2.4.6.8 redshift c) chi2 + 2ln(σ) 7.σ slope.2.4.6.8 redshift SNIa only (no CC) fit µ offset fit µ offset.8.6.4.2 -.2 -.4 -.6 -.8.8.6.4.2 -.2 -.4 -.6 -.8 b) chi2 + biascor 5.9σ slope.2.4.6.8 redshift d) chi2 + 2ln(σ) + biascor.σ slope.2.4.6.8 redshift Unbiased results require both ln(σ) term + biascor (leaving out either is bad): α fit /α SIM =.977(6) β fit /β SIM =.(8) 27

Fikng the Hubble Diagram: CorrecQng for Biases and CC ContaminaQon fit µ offset.8.6.4.2 -.2 -.4 -.6 -.8 Fit Ia + double-cc Sim c) ln(pa+pcc) 7.4σ slope redshift.2.4.6.8 redshift fit µ offset.8.6.4.2 -.2 -.4 -.6 -.8 redshift d) ln(pa+pcc) + biascor.σ slope.2.4.6.8 redshift Unbiased results Require biascor: α fit /α SIM =.986(2) β fit /β SIM =.999() S CC =.82() 28

Fikng the Hubble Diagram: CorrecQng for Biases and CC ContaminaQon fit µ offset.5..5 -.5 -. -.5 d) ln(pa+pcc) + biascor.5σ slope.2.4.6.8 redshift DES Data: Blind Analysis For data, SALT2mu program adds crazy μ-offset in each redshie bin unless explicitly asked to unblind. Fi_ed α, β, σ int are shown to compare with spec samples. 29

Final Caveat: Bias CorrecCon is Similar to NN Cut NN cut removes events where sim CC are majority in local {z,x,c} region Bias CorrecQon removes events where there are no sim-ia in local {z,x,c} bin (since correccon cannot be made) Requirement ater box cuts True CC/Tot raqo for sim with double CC None. Bias CorrecCon (no NN).39 NN (no bias correccon).26 NN + Bias correccon.24 3

Conclusions Overall data/sim agreement is good. Fake SN à photometry pipeline is important for tuning & validacng SNANA simulacon. Simulated Hubble Residuals underescmate high-side (faint) shoulder: Wrong LF? Wrong rate? Missing templates? New HD fikng method to simultaneously account for biases and CC contaminacon. 3