Elementary Particle Physics

Similar documents
Quantum Field Theory 2 nd Edition

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Contents. Preface to the First Edition Preface to the Second Edition

Introduction to Elementary Particles

An Introduction to the Standard Model of Particle Physics

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &.

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program

Elementary Particles, Flavour Physics and all that...

Gauge Theories of the Standard Model

The Standard Model and Beyond

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

The Strong Interaction and LHC phenomenology

FYS3510 Subatomic Physics. Exam 2016

QCD Collinear Factorization for Single Transverse Spin Asymmetries

Standard Model of Particle Physics SS 2012

Introduction to Quantum Chromodynamics (QCD)

Physics at Hadron Colliders

Standard Model of Particle Physics SS 2013

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Standard Model & Beyond

Oddelek za fiziko. Top quark physics. Seminar. Author: Tina Šfiligoj. Mentor: prof. dr. Svjetlana Fajfer. Ljubljana, february 2012

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

FYS3510 Subatomic Physics. Exam 2016

Remainder of Course. 4/22 Standard Model; Strong Interaction 4/24 Standard Model; Weak Interaction 4/27 Course review 5/01 Final Exam, 3:30 5:30 PM

Probing nucleon structure by using a polarized proton beam

QCD and Rescattering in Nuclear Targets Lecture 2

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Quantum Chromodynamics at LHC

Quarks, Leptons and Gauge Fields Downloaded from by on 03/13/18. For personal use only.

Standard Model of Particle Physics SS 2012

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep.

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS

The Strong Interaction and LHC phenomenology

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Event Generator Physics 2

Part III The Standard Model

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

Measurement of Collins Asymmetries in the inclusive production of hadron pairs

Lecture 11. Weak interactions

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

STUDY OF HIGGS EFFECTIVE COUPLINGS AT ep COLLIDERS

Particle physics today. Giulia Zanderighi (CERN & University of Oxford)

Scale dependence of Twist-3 correlation functions

Introduction to Jets. Hsiang nan Li ( 李湘楠 ) Academia Sinica, Taipei. July. 11, 2014

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

Theoretical study of rare B/D decays

Toward the QCD Theory for SSA

AN INTRODUCTION TO QCD

Introduction to perturbative QCD and factorization

Physics Highlights from 12 Years at LEP

Results on top physics by CMS

Electroweak unification

Electroweak Physics at the LHC Introductory Lecture

Confronting Theory with Experiment at the LHC

Studies of b b gluon and c c vertices Λ. Abstract

Physique des Particules Avancées 2

Patrick Kirchgaeßer 07. Januar 2016

Lecture 10: Weak Interaction. 1

(Heavy Quark) Flavour Physics at LHC

QCD at the LHC Joey Huston Michigan State University

Introduction to Perturbative QCD

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

The Standard Model Part. II

Factorization, Evolution and Soft factors

Introduction to Quantum Chromodynamics (QCD)

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator

Fundamental Symmetries - 2

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Flavour Physics Lecture 1

KSETA-Course: Accelelerator-Based Particle Physics

Lecture 6:Feynman diagrams and QED

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

BRIEF INTRODUCTION TO HERA PHYSICS

Recent results from rare decays

Particle Physics I Lecture Exam Question Sheet

How does the proton spin?

IoP Masterclass FLAVOUR PHYSICS. Tim Gershon, University of Warwick April 20 th 2007

Introduction to Perturbative QCD

Paul Langacker. The Standard Model and Beyond, Second Edition

The achievements of the CERN proton antiproton collider

Jet reconstruction in W + jets events at the LHC

Hard QCD and Hadronic Final State at HERA. Alice Valkárová, on behalf of H1 and ZEUS Collaborations

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

The Higgs Boson and Electroweak Symmetry Breaking

OPAL =0.08) (%) (y cut R 3. N events T ρ. L3 Data PYTHIA ARIADNE HERWIG. L3 Data PYTHIA ARIADNE HERWIG

Parity violation. no left-handed ν$ are produced

Electroweak Physics and Searches for New Physics at HERA

Search for new physics in rare D meson decays

Top, electroweak and recent results from CDF and combinations from the Tevatron

Abdelhak DJOUADI ( LPT Orsay)

Physics at Hadron Colliders Part II

Theory of CP Violation

Top Physics at CMS. Intae Yu. Sungkyunkwan University (SKKU), Korea Yonsei University, Sep 12 th, 2013

Acknowledgements An introduction to unitary symmetry The search for higher symmetries p. 1 The eight-baryon puzzle p. 1 The elimination of

Hadronic decay of top quarks as a new channel to search for the top properties at the SM & physics beyond the SM

Search for the Higgs boson in fermionic channels using the CMS detector

Beyond the Standard Model

Transcription:

Yorikiyo Nagashima Elementary Particle Physics Volume 2: Foundations of the Standard Model WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA

Contents Preface XI Acknowledgments XV Color Plates XVII Part One Electroweak Dynamics 1 1 The Standard Model 3 1.1 Introduction 3 1.2 Weak Charge and SU(2) x 1/(1) Symmetry 4 1.3 Spontaneous Symmetry Breaking 10 1.3.1 An Intuitive Picture of Spontaneous Symmetry Breaking 10 1.3.2 Higgs Mechanism 12 1.3.3 Unitary Gauge 14 1.3.4 Mass Generation 15 1.4 Gauge Interactions 18 1.5 Higgs Interactions 22 1.6 Feynman Rules of Electroweak Theory 23 1.7 Roles ofthe Higgs in Gauge Theory 28 2 Neutral Current 39 2.1 Discovery of the Neutral Current 39 2.2 v e Scattering 41 2.3 vn-+v + X 49 2.4 Parity Violation in the Electromagnetic Processes 54 2.4.1 Atomic Process 54 2.4.2 Polarized e-d Scattering 58 2.5 Electroweak Unification at High Q2 64 2.6 Asymmetry in the e~e+ -> 11, cc, bb 66 2.7 Asymmetry in q + q y I + I 76 3 W 81 3.1 Discovery of W, Z 81 3.2 Basic Formulas 87 3.2.1 Decay Width 87

VI I Contents 3.2.2 Hadronic Production of W, Z 89 3.3 Properties of W 93 3.3.1 Asymmetry of Decay Leptons from W, Z 93 3.3.2 Spin of W, Z 95 3.3.3 Mass of W 96 3.3.4 Decay Width of W 99 3.3.5 Triple Gauge Coupling 103 4 Physics at Z Resonance 109 4.1 Born Approximation 110 4.2 Improved Born Approximation 124 4.3 Experimental Arrangements 125 4.3.1 Detectors 125 4.3.2 Luminosity Monitor 127 4.3.3 Energy Determination 128 4.3.4 Heavy Quark Tagging 135 4.4 Observations 142 4.4.1 Event Characteristics 142 4.4.2 Mass, Widths and Branching Ratios 143 4.4.3 Invisible Width 145 AAA Asymmetries 147 4.5 Weinberg Angle and p Parameter 155 5 Precision Tests of the Electroweak Theory 157 5.1 Input Parameters 157 5.2 Renormalization 161 5.2.1 Prescription 161 5.2.2 Self-Energy ofgauge Bosons 164 5.3 /x Decay 170 5.3.1 Ar.p.Aa 170 5.3.2 Running Electromagnetic Constant 174 5.3.3 Residual Corrections and Numerical Evaluation 175 5.4 Improved Born Approximation 176 5.4.1 y-z Mixing 277 5.4.2 aorgf? 178 5.4.3 Vertex Correction 280 5.5 Effective Weinberg Angle 282 5.6 Weinberg Angle in the M S Scheme 182 5.7 Beyond the Standard Model 287 6 Cabibbo-Kobayashi-Maskawa Matrix 293 6.1 Origin of the CKM Matrix 193 6.2 CKM Matrix Elements 198 6.3 The Unitarity Triangle 205 6.4 Formalism ofthe Two Neutral Meson System 207 6.4.1 Mass Matrix, Mixing and CP Parameters 207

6.4.2 CP Parameters ofthe KMeson 210 6.4.3 Mixing in the B -B System 211 6.4.4 D -D Mixing 220 6.5 Theoretical Evaluation ofthe Mass Matrix 224 6.5.1 Mass Matrix of the K Meson 225 6.5.2 Mass Matrix of the B Meson 229 6.6 CP Violation in the B Sector 232 6.6.1 Indirect CP Violation 232 6.6.2 Direct CP Violation 233 6.6.3 CP Violation in Interference 238 6.6.4 Coherent B B Production 240 6.7 Extraction of the CKM Phases 246 6.7.1 Using B B Mixing 246 6.7.2 Penguin Pollution 248 6.7.3 Experiments at the 8-factory 249 6.8 Test of Unitarity 253 6.8.1 Rare Decays of the K Meson 253 6.8.2 Global Fit of the Unitarity Triangle 256 6.9 CP Violation beyond the Standard Model 257 Contents J VII Part Two QCD Dynamics 259 7 QCD 261 7.1 Fundamentals of QCD 264 7.1.1 Lagrangian 264 7.1.2 The Feynman Rules 267 7.1.3 Gauge Invariance and the Gluon Self-Coupling 269 7.1.4 Strength of the Color Charge 272 7.1.5 QCD Vacuum 274 7.2 Renormalization Gtoup Equation 279 7.2.2 Running Coupling Constant 279 7.2.2 Asymptotic Freedom 282 7.2.3 Scale Dependence of Observables 286 7.2.4 Running Mass 289 7.2.5 Quark Masses 294 7.3 Gluon Emission 296 7.3.1 Emission Probability 297 7.3.2 Collinear and Infrared Divergence 301 7.3.3 Leading Logarithmic Approximation 303 7.3.4 Transverse Kick 305 8 Deep Inelastic Scattering 307 8.1 Introduction 307 8.2 The Parton Model Revisited 311 8.2.1 Structure Functions 314 8.2.2 Equivalent Photons 317

VIII j Contents 8.3 QCD Corrections 319 8.3.1 Virtual Compton Scattering 319 8.3.2 Factorization 321 8.3.3 Power Expansion of the Evolution Equation 326 8.3.4 Cascade Branching of the Partons 328 8.4 DGLAP Evolution Equation 330 8.4.1 Gluon Distribution Function 330 8.4.2 Regularization of the Splitting Function 332 8.4.3 Factorization Scheme 335 8.5 Solutions to the DGLAP Equation 337 8.5.1 Method ofmoments 337 8.5.2 Double Logarithm 343 8.5.3 Monte Carlo Generators 347 8.6 Drell-Yan Process 351 8.6.1 Factorization in Hadron Scattering 358 9 jets and Fragmentations 361 9.1 Partons and Jets 361 9.1.1 Fragmentation Function 363 9.1.2 Jet Shape Variables 367 9.1.3 Applications of Jet Variables 3 72 9.1.4 Jet Separation 375 9.2 Parton Shower Model 380 9.3 Hadronization Models 384 93.1 Independent Fragmentation Model 385 9.3.2 String Model 389 9.3.3 Cluster Model 392 9.3.4 Model Tests 393 9.4 Test of the Asymptotic Freedom 398 9.4.1 Inclusive Reactions 398 9.4.2 Jet Event Shapes 408 9.4.3 Summary of the Running as(22) 415 10 Gluons 417 10.1 Gauge Structure of QCD 417 10.1.1 Spin ofthe Gluon 417 10.1.2 Self-Coupling 10.1.3 Symmetry of QCD of the Gluon 421 423 10.2 Color Coherence 424 10.2.1 Angular Ordering 425 10.2.2 String Effect 428 10.3 Fragmentation at Small x 430 10.3.1 DGLAP Equation with Angular Ordering 430 10.3.2.v/as Dependence and N = 1 Pole in the Anomalous Moment 433 10.3.3 Multiplicity Distribution 434 10.3.4 Humpback Distribution: MLLA 435

10.4 Gluon Fragmentation Function 441 10.5 Gluon Jets vs. Quark Jets 445 11 Jets in Hadron Reactions 451 11.1 Introduction 451 11.2 Jet Production with Large pt 452 11.3 2-^2 Reaction 456 11.3.1 Kinematics and Cross Section 456 11.3.2 Jet Productions Compared with pqcd 460 11.4 Jet Clustering in Hadronic Reactions 464 11.4.1 Cone Algorithm 466 11.4.2 fet Algorithm 468 11.5 Reproducibility of the Cross Section 469 11.5.1 Scale Dependence 469 11.5.2 Parton Distribution Function 470 11.6 Multijet Productions 472 11.7 Substructure ofthe Partons? 474 11.8 Vector Particle Production 475 11.8.1 Direct Photon Production 476 11.8.2 W : pr Distribution 479 11.9 Heavy Quark Production 484 11.9.1 Cross Sections 484 11.9.2 Comparisons with Experiments 489 11.9.3 Top Quark Production 496 Appendix A Gamma Matrix Traces and Cross Sections 501 Appendix B Feynman Rules for the Electroweak Theory 507 Appendix C Radiative Corrections to the Gauge Boson Self-Energy Appendix D 't Hooft's Gauge 525 Appendix E Fierz Transformation 531 Appendix F Collins-Soper Frame 535 Appendix G Multipole Expansion of the Vertex Function 537 Appendix H SU(N) 543 Appendix I Unitarity Relation 551 Appendix J a Model and the Chiral Perturbation Theory 563 Appendix K Splitting Function 573 Appendix L Answers to the Problems 583 References 591 Index 607