Songklanakarin Journal of Science and Technology SJST R1 Yaqoob. Hyperideals and Hypersystems in LA-hyperrings

Similar documents
Hyperideals and hypersystems in LA-hyperrings

On generalized fuzzy sets in ordered LA-semihypergroups

PROPERTIES OF HYPERIDEALS IN ORDERED SEMIHYPERGROUPS. Thawhat Changphas. Bijan Davvaz

ZARISKI TOPOLOGY FOR SECOND SUBHYPERMODULES

On weak Γ-(semi)hypergroups

On (m,n)-ideals in LA-Semigroups

On Γ-Ideals and Γ-Bi-Ideals in Γ-AG-Groupoids

European Journal of Combinatorics

Prime Hyperideal in Multiplicative Ternary Hyperrings

On the Hypergroups Associated with

DECOMPOSITION OF LOCALLY ASSOCIATIVE Γ-AG-GROUPOIDS 1

Γ-Semihyperrings: Approximations and Rough Ideals

Quotient and Homomorphism in Krasner Ternary Hyperrings

1 Introduction and preliminaries

Songklanakarin Journal of Science and Technology SJST R1 Yaqoob

TWIST PRODUCT DERIVED FROM Γ-SEMIHYPERGROUP

ON (m, n)-ideals OF AN ORDERED ABEL-GRASSMANN GROUPOID. Faisal Yousafzai, Asad Khan, and Aiyared Iampan

arxiv: v1 [math.gr] 20 Mar 2014

Prime filters of hyperlattices

A note on an Abel-Grassmann's 3-band. 1. Introduction

Left almost semigroups dened by a free algebra. 1. Introduction

FUZZY HYPERIDEALS IN TERNARY SEMIHYPERRINGS

Kyung Ho Kim, B. Davvaz and Eun Hwan Roh. Received March 5, 2007

SOME STRUCTURAL PROPERTIES OF HYPER KS-SEMIGROUPS

Completely Simple and Regular Semi Hypergroups

Neutrosophic Left Almost Semigroup

Characterizations of Intra-Regular Left Almost Semigroups by Their Fuzzy Ideals

On Uni-soft (Quasi) Ideals of AG-groupoids

Intuitionistic Fuzzy Hyperideals in Intuitionistic Fuzzy Semi-Hypergroups

arxiv: v1 [math.gr] 5 Oct 2015

Some Structural Properties of AG-Groups

An Investigation on Ordered Algebraic Hyperstructures

arxiv: v1 [math.ra] 25 May 2013

New types of bipolar fuzzy sets in -semihypergroups

Some remarks on hyper MV -algebras

Fuzzy congruence relations on nd-groupoids

On relations between right alternative and nuclear square AG-groupoids

Characterizations of Prime and Weakly Prime Subhypermodules

The Lie-Santilli admissible hyperalgebras of type D n

APPROXIMATIONS IN H v -MODULES. B. Davvaz 1. INTRODUCTION

Iranian Journal of Mathematical Sciences and Informatics Vol. 7, No. 2 (2012), pp 9-16

INTUITIONISTIC FUZZY IDEALS OF LA-SEMIGROUPS.

FUZZY SOFT Γ-HYPERMODULES

arxiv: v1 [math.gr] 21 Feb 2014

Prime and Irreducible Ideals in Subtraction Algebras

ON THE HYPERBANACH SPACES. P. Raja. S.M. Vaezpour. 1. Introduction

Mathematical prediction of Ying s twin universes

Ratio Mathematica, 21, 2011, pp Technological Institute of Chalkis, GR34400, Evia, Greece b. 54, Klious st., GR15561, Cholargos-Athens, Greece

Soft intersection Γ-nearrings and its applications

ATANASSOV S INTUITIONISTIC FUZZY SET THEORY APPLIED TO QUANTALES

DOI: /auom An. Şt. Univ. Ovidius Constanţa Vol. 25(1),2017, ON BI-ALGEBRAS

A Note on UNAR LA-Semigroup

VOL. 2, NO. 2, February 2012 ISSN ARPN Journal of Systems and Software AJSS Journal. All rights reserved

ROUGHNESS IN MODULES BY USING THE NOTION OF REFERENCE POINTS

Enumerating AG-Groups with a Study of Smaradache AG-Groups

Semigroups characterized by the properties of (α, β) -fuzzy ideals. Saleem Abdullah, Muhammad Aslam, Bijan Davvaz

P-Spaces and the Prime Spectrum of Commutative Semirings

Fuzzy Primal and Fuzzy Strongly Primal Ideals

International Journal of Mathematical Archive-7(1), 2016, Available online through ISSN

ON THE STRUCTURE OF GREEN S RELATIONS IN BQ Γ-SEMIGROUPS

NOWADAYS we are facing so many problems in practical

Scientiae Mathematicae Japonicae Online, Vol. 4, (2001), SOME CLASSIFICATIONS OF HYPERK-ALGEBRAS OF ORDER 3 M.M.Zahedi, R.A. Borzoei, H. Reza

Characterizations of Abel-Grassmann's Groupoids by Intuitionistic Fuzzy Ideals

Some Innovative Types of Fuzzy Bi-Ideals in Ordered Semigroups

SANDWICH SETS AND CONGRUENCES IN COMPLETELY INVERSE AG -GROUPOIDS

European Journal of Combinatorics. Enumeration of Rosenberg-type hypercompositional structures defined by binary relations

Fuzzy soft set approach to ideal theory of regular AG-groupoids

MATH 326: RINGS AND MODULES STEFAN GILLE

SOFT IDEALS IN ORDERED SEMIGROUPS

A study on fuzzy soft set and its operations. Abdul Rehman, Saleem Abdullah, Muhammad Aslam, Muhammad S. Kamran

A GENERALIZATION OF BI IDEALS IN SEMIRINGS

ANNIHILATOR IDEALS IN ALMOST SEMILATTICE

Ring Theory Problem Set 2 Solutions

Uni-soft hyper BCK-ideals in hyper BCK-algebras.

Abel-Grassmann s bands. 1. Introduction

International Journal of Computer Mathematics. Fuzzy congruence relations on nd-groupoids. Journal: International Journal of Computer Mathematics

Boolean Algebra and Propositional Logic

Solutions to Assignment 3

Subalgebras and ideals in BCK/BCI-algebras based on Uni-hesitant fuzzy set theory

Primitive Ideals of Semigroup Graded Rings

ON SOME GENERALIZED VALUATION MONOIDS

On two-sided bases of ternary semigroups. 1. Introduction

MAXIMAL ORDERS IN COMPLETELY 0-SIMPLE SEMIGROUPS

Semi Prime Ideals in Meet Semilattices

Scientiae Mathematicae Japonicae Online, Vol. 4(2001), FUZZY HYPERBCK IDEALS OF HYPERBCK ALGEBRAS Young Bae Jun and Xiao LongXin Received

2. Prime and Maximal Ideals

Soft subalgebras and soft ideals of BCK/BCI-algebras related to fuzzy set theory

TRANSITIVE AND ABSORBENT FILTERS OF LATTICE IMPLICATION ALGEBRAS

On Soft Mixed Neutrosophic N-Algebraic Structures

Prime k-bi-ideals in Γ-Semirings

P-Ideals and PMP-Ideals in Commutative Rings

MATH 433 Applied Algebra Lecture 22: Semigroups. Rings.

Fuzzy rank functions in the set of all binary systems

A RELATIONSHIP BETWEEN 2-PRIMAL MODULES AND MODULES THAT SATISFY THE RADICAL FORMULA. David Ssevviiri

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Congruences on Inverse Semigroups using Kernel Normal System

Bulletin of the Transilvania University of Braşov Vol 10(59), No Series III: Mathematics, Informatics, Physics, 67-82

On Geometric Hyper-Structures 1

N αc Open Sets and Their Basic Properties in Topological Spaces

Obstinate filters in residuated lattices

Transcription:

Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob Hyperideals and Hypersystems in LA-hyperrings Journal: Songklanakarin Journal of Science and Technology Manuscript ID SJST-0-0.R Manuscript Type: Original Article Date Submitted by the Author: 0-Aug-0 Complete List of Authors: Rehman, Inayatur Yaqoob, Naveed; Majmaah University, Mathematics Nawaz, Shah; Hazara University, Mathematics Keyword: Physical Sciences and Mathematics

Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob Page of 0 0 0 Hyperideals and Hypersystems in LA-hyperrings Inayatur Rehman, Naveed Yaqoob and Shah Nawaz Department of Mathematics and Science, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman. Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Zulfi, Saudi Arabia. Department of Mathematics, Hazara University, Mansehra, Pakistan E-mail: irehman@du.edu.om, nayaqoob@ymail.com, shahnawazawan@gmail.com Abstract: In this paper we introduce the concept of LA-hyperrings. We explore some useful characterizations of LA-hyperrings through their hyperideals and hypersystems.. Introduction Kazim and Naseeruddin () introduced the concept of left almost semigroups (LAsemigroups). A groupoid S is called an LA-semigroup if it satisfies the left invertive law: ( ab ) c = ( cb ) a for all ab,, c S. Protic and Stevanovic (a, b) called this structure as an Abel-Grassmann's groupoid (abbreviated as an AG-groupoid). An AG-groupoid is the midway structure between a commutative semigroup and a groupoid. Later, Kamran () extended the notion of LA-semigroup to left almost group (LA-group). A groupoid G is called a left almost group (LA-group), if there exists left identity e G (that is ea= a for all a G ), for a G there exists b G such that ba= e and left invertive law holds in G. Left almost ring (LA-ring) is actually an off shoot of LA-semigroup and LA-group. It is a noncommutative and non-associative structure and gradually due to its peculiar characteristics it has been emerging as useful non-associative class which intuitively would have reasonable contribution to enhance non-associative ring theory. By an LA-ring, we mean a non-empty set R with at least two elements such that ( R, + ) is an LA-group, ( R, ) is an LA-semigroup, both left and right distributive laws hold. For example, from a commutative ring ( R, +, ), we can always obtain an LA-ring ( R,, ) by defining for all ab, R, a b = bθa and a b is same as in the ring. Shah and Rehman (00) discussed left almost ring (LA-ring) of finitely nonzero functions which is in fact a generalization of a commutative semigroup ring. Shah et al. (0) applied the concept of intuitionistic fuzzy sets to non-associative rings and established some useful results. In (Rehman et al. (0) some computational work through Mace, has been done and some interesting characteristics of LA-rings have been explored. For some more study of LA-rings, we refer the readers to see (Rehman (0), Shah et al. (0a, 0b).

Page of Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob 0 0 0 The theory of algebraic hyperstructures which is a generalization of the concept of ordinary algebraic structures was first introduced by Marty () and since then many researchers have developed this theory. Nowadays, a number of different hyperstructures are widely studied from the theoretical point of view. Hyperstructures have a lot of applications to several domains of mathematics and computer science and they are studied in many countries of the world. In a recent book, Corsini and Leoreanu (00) have presented some of the numerous applications of algebraic hyperstructures, specially those from the last fifteen years, in the fields of geometry, hypergraphs, binary relations, lattices, fuzzy sets, rough sets, automata, cryptography, codes, median algebras, relation algebras, artificial intelligence and probabilities. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. A lot of papers and several books have been written on hyperstructure theory, see (Corsini (), Vougiouklis ()). Another book (Davvaz and Fotea (00)) is devoted especially to the study of hyperring theory. The volume ends with an outline of applications in chemistry and physics, analyzing several special kinds of hyperstructures: e-hyperstructures and transposition hypergroups. Many authors studied different aspects of semihypergroups, for instance, Abdullah et al. (0, 0), Ahmed et al. (0), Aslam et al. (0, 0), Bonansinga and Corsini (), Corsini and Crisrea (00), Davvaz (000), Davvaz and Poursalavati (000), Hasankhani (), Hila et al. (0), Leoreanu (000) and Onipchuk (). Recently, Hila and Dine (0) introduced the notion of LA-semihypergroups as a generalization of semigroups, semihypergroups and LA-semigroups. Yaqoob et al. (0) introduced intraregular class of left almost semihypergroups. Yaqoob and Gulistan (0) introduced the concept of partially ordered left almost semihypergroups. For more study of LAsemihypergroups we refer the readers to see (Amjad et al. (0a, 0b), Gulistan et al. (0), Yousafzai et al. (0). In this paper, first we introduce the notion of LA-hyperrings and then we establish some basic related results. We characterize LA-hyperrings based on their hyperideals and Hypersystems.. LA-hyperrings Before the definition of LA-hyperring, first we give the definition and examples of LAhypergroup. Definition. A hypergroupoid ( H, o ) is said to be an LA-hypergroup if it satisfies the following axioms: (i) for all x, y, z H, ( x oy ) oz = ( z oy ) o x, (ii) for every x H, x oh = H o x = H. Example. Let H = { ab,, c} be a set with the hyperoperations o, o and o defined as follows:

Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob Page of 0 0 0 o a b c o a b c o a b c a a H H a a H H a a H H b H { bc, } { bc, } b H { bc, } { bc, } b H { bc, } { bc, } c H b b c H { ab, } { ab, } c H H H Then ( H, o), ( H, o ) and ( H, o ) are LA-hypergroups. Definition. An algebraic system ( R,, ) is said to be an LA-hyperring, if (i) ( R, ) is an LA-hypergroup; (ii) ( R, ) is an LA-semihypergroup; (iii) is distributive with respect to. Example. Let R = { ab,, c} be a set with the hyperoperations and defined as follows: a b c a b c a a R R a a a a b R { bc, } { bc, } b a R c c R R R c a R R Then ( R,, ) is an LA-hyperring. One can see that ( R, ) and ( R, ) both satisfy left invertive law and also both are non-associative, see { bc, } = b ( b c) ( b b) c= R and { c} = b ( b c) ( b b) c= R.. Hyperideals in LA-hyperrings In this section, we discuss some elementary properties of hyperideals in an LA-hyperring with pure left identity e and specifically we prove the necessary and sufficient conditions for an LAhyperring to be a fully prime. Definition. Let ( R,, ) be an LA-hyperring. Then (i) R is called with left identity (resp., pure left identity), if there exists an element, say e R, such that x e x (resp., x= e x ), for all x R. (ii) an element r of an LA-hyperring R is called an idempotent (resp., weak idempotent) if r= r r (resp., r r r ). (iii) a non-empty subset A of R is said to be an LA-subhyperring of R if ( A,, ) is itself an LA-hyperring. Definition. If A is an LA-subhyperring of an LA-hyperring ( R,, ), then A is called a left hyperideal if R A A. Right hyperideal and two sided hyperideals are defined in the usual manner. The following proposition identify that every right hyperideal in an LA-hyperring is a two sided hyperideal. Proposition. If ( R,, ) is an LA-hyperring with left identity (or with pure left identity) e,

Page of Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob 0 0 0 then every right hyperideal is a left hyperideal. Proof. Let I be a right hyperideal of LA-hyperring R. This implies that I is an LAsubhyperring of R. If r R and i I, then r i ( e r) i= ( i r) e ( I R) R I. Thus I is also a left hyperideal of ( R,, ). The case for pure left identity can be seen in a similar way. Now onward by hyperideal in an LA-hyperring R with pure left identity e, we mean a right hyperideal. Definition. A hyperideal I of an LA-hyperring R is called minimal if it does not contain any hyperideal of R other than itself. Remark. Every LA-hyperring satisfies the law ( a b) ( c d) = ( a c) ( b d) for all ab,, c, d R. This law is known as medial law. Theorem. Let R be an LA-hyperring with pure left identity e. If I is a minimal left hyperideal of R, then a I is a minimal left hyperideal of R for every idempotent a. Proof. Let I be a minimal left hyperideal of an LA-hyperring R and a is an idempotent element. Consider a I = { a i : i I}. Let a i, a i a I. Then a i a i = a ( i i ) a I, and ( a i ) ( a i ) = ( a a) ( i i ) = a ( i i ) a I. Thus a I is an LA-subhyperring of R. For r R, a i a I, we have r ( a i) = a ( r i) a I. Thus a I is a left hyperideal of R. Next, let H be a non-empty left hyperideal of R which is properly contained in a I. Define K = { i I : a i H} and let y K. Then a y H, and so we get a ( r y) = r ( a y) R H H. This implies that r y K. Hence K is a left hyperideal properly contained in I. But this is a contradiction to the minimality of I. Thus a I is a minimal left hyperideal of LA-hyperring R. Lemma. If I is a right hyperideal of an LA-hyperring R with left identity (or with pure left identity) e, then I is a hyperideal of R. Proof. Let. Then we can write i x y, i I where x, y I. Consider

Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob Page of 0 0 0 i r ( x y) r ( x y) ( e r) = ( x e) ( y r) (by medial law) I I = I This implies that I is a right hyperideal and hence by Proposition., The case for pure left identity can be seen in a similar way.. I is a left hyperideal. Lemma. Intersection of two left (right) hyperideals of an LA-hyperring is again a left (right) hyperideal. Proof. Let I, J be two left hyperideals of an LA-hyperring R. Let ab, I J this implies that ab, I and ab, J. So, aθb I, aθb J and a b I and a b J. This implies that aθb I J and a b I J. Now let r R and a I J, so a I and a J. This implies r a I and r a J and hence r a I J. Thus I J is a left hyperideal. Addition of hyperideals I and J of an LA-hyperring R is defined as I J = { x y : x I, y J } R. If for every element x I J, there exist unique elements ab, such that a I, b J and x a b. Theorem. The sum of two left (right) hyperideals of an LA-hyperring is again a left (right) hyperideal. Proof. Let R be an LA-hyperring. Let I, J be left hyperideals of R. Suppose z, z I J. This implies z ( x y ) and z ( x y ). Now consider z ϴ z ( x y ) ϴ ( x y ) = (x ϴx ) (y ϴy ) I J, and z z = ( x y ) ( x y ) = ( x ( x y )) ( y ( x y )) = (( x x ) ( x y )) (( y x ) ( y y )) = (( x x ) ( y x )) (( x y ) ( y y )) I J. Again suppose z I J and r R, then z x y, for some x I, y J. Consider r z r ( x y) = ( r x) ( r y) I J. Thus I J is a left hyperideal. Corollary.0 If R is an LA-hyperring with pure left identity e, then (i) the sum of one left hyperideal and one right hyperideal of an LA-hyperring R is a left hyperideal of R. (ii) addition of left hyperideals is not commutative as well as not associative. Let I, J be hyperideals of an LA-hyperring R. Then the product of I and J is defined by

Page of Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob 0 0 0 I J = { x y = (...(( x y ) ( x y ))... ( x y )) : x I, y J}. finite i i n n i i Theorem. Let R be an LA-hyperring with pure left identity e. Product of two left hyperideals of R is again a left hyperideal. Proof. Straightforward. Lemma. Let R be an LA-hyperring with left identity (or with pure left identity) e. If I is a proper hyperideal of R, then e I. Proof. Assume on contrary that e I and let r R, then consider r e r I R I. This implies that R I, but I R. So, I = R. A contradiction. Hence e I. The case for pure left identity can be seen in a similar way. Definition. An LA-hyperring R is said to be fully idempotent if all hyperideals of R are idempotent. If R is an LA-hyperring with pure left identity e, then the principal left hyperideal generated by an element a is defined as a = R a= { r a : r R}. Remark. It is important to note that if I is a hyperideal of R then I = I, and also hyperideal of LA-hyperring R, hence I = I. I is a Proposition. If R is an LA-hyperring with pure left identity e and I, J are hyperideals of R, then the following assertions are equivalent: (i) R is fully idempotent, (ii) I J = I J, (iii)the hyperideals of R form a semilattice ( LS, ), where I J = I J. Proof. (i) (ii). Since I J I J, I J I J. Now let a I J. As a is principal left hyperideal generated by a fixed element a, so a a = a a I J. Hence I J = I J. (ii) (iii). I J = I J = I J = J I = J I and also I I = I I = I I = I. Hence ( LS, ) is a semilattice. (iii) (i). Now I = I I = I I = I I. Definition. A hyperideal P of an LA-hperring R is said to be prime hyperideal if and only if A B P implies either A P or B P, where A and B are hyperideals in R. Definition. A hyperideal P of an LA-hyperring R is called semi-prime if for any hyperideal I of R, I P implies that I P. Definition. An LA-hyperring R is said to be fully prime if every hyperideal of R is prime and it is fully semiprime if every hyperideal is semiprime.

Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob Page of 0 0 0 Definition. The set of hyperideals of an LA-hyperring R is said to be a totally ordered under inclusion if for all hyperideals I, J of R, either I J or J I and is denoted by hyperideal ( R ). Theorem.0 If R is an LA-hyperring with pure left identity e, then R is fully prime if and only if every hyperideal is idempotent and the set hyperideal ( R ) is totally ordered under inclusion. Proof. Let R is fully prime and I be any hyperideal of R. By Lemma., I is a hyperideal of R, and so I I. Also I I I which implies that I I. So, I = I and hence I is idempotent. Now let A, B be hyperideals of R and A B A, A B B which implies that A B A B. As A and B are prime hyperideals, so A B is also a prime hyperideal of R. Then A A B or B A B which implies that either A B or B A. Hence the set hyperideal ( R ) is totally ordered under inclusion. Conversely let every hyperideal of R is idempotent and hyperideal ( R ) is totally ordered under inclusion. Let L, M and N be any hyperideals of R with L M N such that L M. Now since L is idempotent, L= L = L L L M N. This implies that L N and hence R is fully prime.. Hypersystems in LA-hyperrings In this section, we discuss M -hypersystem, P-hypersystem, I-hypersystem and subtractive sets in an LA-hyperring with pure left identity e. We prove the equivalent conditions for a left hyperideal to be an M -hypersystem, P -hypersystem, I -hypersystem and establish that every M -hypersystem of elements of an LA-hyperring with pure left identity e is P -hypersystem. Definition. A non-empty subset S of an LA-hyperring R is called an M -hypersystem if for ab, S there exists r in R such that a ( r b) S. Example. Since we assume that any LA-hyperring R has pure left identity e, so any LAsemihypergroup of ( R, ) is an M -hypersystem. Definition. Let I be a left hyperideal of an LA-hyperring R. Then I is said to be a quasiprime if H K I implies that either H I or K I, where H and K are left hyperideals of R. For any left hyperideal H of R such that quasi-semiprime hyperideal., we have H I, then I is called H I Proposition. Let I be a left hyperideal of R with pure left identity e, then the following are equivalent: (i) I is quasi-prime hyperideal. (ii) H K = H K I implies that either H I or K I, where H and K are any left hyperideals of R. (iii) If H I and K I then H K I, where H and K are any left hyperideals of R.

Page of Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob 0 0 0 (iv) If h, k are elements of R such that h I and k I then h k I, then either h I or k I. (v) If h, k are elements of R satisfying h ( R k) I, then either h I or k I. Proof. (i) (ii) Let I is quasi-prime. Now by definition if H K = H K I, then obviously it implies that either H I or K I for all left hyperideals H and K of R. Converse is trivial. (ii) (iii) is trivial. (i) (iv) Let h k I, then either h I or k I, which implies that either h I or k I. (iv) (ii) Let H K I. If h H and k K, then h k I and hence by hypothesis either h I or k I. This implies that either H I or K I. (i) (iv) Let h ( R k) I, then R ( h ( R k)) R I I. Now using medial law and paramedial law, we have R ( h ( R k)) = ( R R) ( h ( R k)) = ( R h) ( R ( R k)) = ( R h) (( R R) ( R k)) = ( R h) (( k R) ( R R)) = ( R h) (( R R) k) = ( R h) ( R k) I. Since R h and R k are left hyperideals for all h H and k K, hence either h I or k I. Conversely, let H K I where H and K are any left hyperideals of R. Let H I then there exists l H such that l I. For all m K, we have l ( R m) H ( R K) H K I. This implies that K I and hence I is quasi-prime hyperideal of R. Proposition. A left hyperideal I of an LA-hyperring R with pure left identity e is quasiprime if and only if R \ I is an M -hypersystem. Proof. Suppose I is a quasi-prime hyperideal. Let ab, R \ I which implies that a I and b I. So by Proposition., a ( R b) I. This implies that there exists some r R such that a ( r b) I which further implies that a ( r b) R \ I. Hence R \ I is an M - hypersystem. Conversely, let R \ I is an M -hypersystem. Suppose a ( R b) I and let a I and b I. This implies that ab, R \ I. Since R \ I is an M -hypersystem, so there exists r R such that a ( r b) R \ I which implies that a ( R b) I. A contradiction. Hence either a I or b I. This shows that I is a quasi-prime hyperideal. Definition. A non-empty subset Q of an LA-hyperring R is called P -hypersystem if for all a Q, there exists r R such that a ( r a) Q. Proposition. If I is a left hyperideal of an LA-hyperring R with pure left identity e, then

Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob Page 0 of 0 0 0 the following are equivalent: (i) I is quasi-semiprime. (ii) H = H I H I, where H is any left hyperideal of R. (iii) For any left hyperideal H of R, H / I H / I. (iv) If a is any element of R such that a I, then it implies that a I. (v) For all a R, a ( R a) I a I. Proof. (i) (ii) (iii) is trivial. (i) (iv). Let a I. But by hypothesis I is quasi-semiprime, so it implies that a I which further implies that a I. (iv) (ii). For all left hyperideals H of R, let H = H I. If a H, then by hypothesis a I and this implies that a I. (i) (v) is straightforward. Hence it shows that H I. Proposition. A left hyperideal I of an LA-hyperring R with pure left identity e is quasisemiprime if and only if R \ I is a P -hypersystem. Proof. Let I is quasi-semiprime hyperideal of R and let a R \ I. On contrary suppose that there does not exist an element x R such that a ( x a) R \ I. This implies that a ( x a) I. Since I is quasi-semiprime, so by Proposition., a I which is a contradiction. Thus there exists x R such that a ( x a) R \ I. Hence R \ I is a P - hypersystem. Conversely, suppose for all a R \ I there exists x R such that a ( x a) R \ I. Let a ( R a) I. This implies that there does not exist x R such that a ( x a) R \ I which implies that a I. Hence by Proposition., I is quasi-semiprime. Lemma. An M -hypersystem of elements of an LA-hyperring R is a P -hypersystem. Proof. The proof is obvious. Definition.0 A hyperideal I of an LA-hyperring R is strongly irreducible if and only if for hyperideals H and K of R, H K I implies that H I or K I and I is said to be irreducible if for hyperideals H and K, I = H K implies that I = H or I = K. Lemma. Every strongly irreducible hyperideal of an LA-hyperring R with pure left identity e is irreducible. Proof. The proof is obvious. Proposition. A hyperideal I of an LA-hyperring R with pure left identity e is prime if and only if it is semiprime and strongly irreducible. Proof. The proof is obvious.

Page of Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob 0 0 0 Definition. A non-empty subset S of an LA-hyperring R is called an I -hypersystem if for all ab, S, ( a b ) S. Proposition. The following conditions on hyperideal I of an LA-hyperring R are equivalent: (i) I is strongly irreducible. (ii) For all ab, R : a b I implies that either a I or b I. (iii) R \ I is an I -hypersystem. Proof. (i) (ii) is trivial. (ii) (iii). Let ab, R \ I. Let ( a b ) R \ I =. This implies that a b I and so by hypothesis either a I or b I which is a contradiction. Hence ( a b ) R \ I. (iii) (i). Let H and K be hyperideals of R such that H K I. Suppose H and K are not contained in I, then there exist elements ab, such that a H \ I and b K \ I. This implies that ab, R \ I. So by hypothesis ( a b ) R \ I which implies that there exists an element c a b such that c R \ I. It shows that c a b H K I which further implies that H K I. A contradiction. Hence either H I or K I and so I is strongly irreducible. References Abdullah, S., Aslam, M. and Anwar, T. 0. A note on M-hypersystems and N-hypersystems in Γ -semihypergroups. Quasigroups and Related Systems., -. Abdullah, S., Hila, K. and Aslam, M. 0. On bi-γ -hyperideals of Γ -semihypergroups. U.P.B. Scientific Bulletin, Series A. (), -0. Ahmed, A., Aslam, M. and Abdullah, S. 0. ( α, β ) -fuzzy hyperideals of semihyperring. World Applied Sciences Journal. (), -. Amjad, V., Hila, K. and Yousafzai, F. 0a. Generalized hyperideals in locally associative left almost semihypergroups. New York Journal of Mathematics. 0, 0-0. Amjad, V. and Yousafzai, F. 0b. On pure LA-semihypergroups. Konuralp Journal of Mathematics. (), -. Aslam, M., Abdullah, S., Davvaz, B. and Yaqoob, N. 0. Rough M-hypersystems and fuzzy M-hypersystems in Γ -semihypergroups. Neural Computing and Applications. (), -. Aslam, M., Aroob, T. and Yaqoob, N. 0. On cubic Γ -hyperideals in left almost Γ -semihypergroups. Annals of Fuzzy Mathematics and Informatics. (), -. Bonansinga, P. and Corsini, P.. On semihypergroup and hypergroup homomorphisms. Bollettino della Unione Matematica Italiana., -. Corsini, P. and Leoreanu, V. 00. Applications of the hyperstructures theory. Advanced in Mathematics. Kluwer Academic Publishers. Corsini, P.. Prolegomena of hypergroup theory. Aviani editor. Corsini, P. and Cristea, I. 00. Fuzzy sets and non complete -hypergroups. Analele stiintifice ale Universitatii Ovidius Constanta, (), -. Davvaz, B. and Fotea, V.L. 00. Hyperring theory and applications. International Academic

Songklanakarin Journal of Science and Technology SJST-0-0.R Yaqoob Page of 0 0 0 Press, USA. Davvaz, B. 000. Some results on congruences on semihypergroups. Bulletin of the Malaysian Mathematical Sciences Society., -. Davvaz, B. and Poursalavati, N.S. 000. Semihypergroups and S-hypersystems. Pure Mathematics and Applications., -. Gulistan, M., Yaqoob, N. and Shahzad, S. 0. A note on Hv-LA-semigroups. UPB Scientific Bulletin, Series A. (), -0. Hasankhani, A.. Ideals in a semihypergroup and Green's relations. Ratio Mathematica., -. Hila, K., Davvaz, B. and Naka, K. 0. On quasi-hyperideals in semihypergroups. Communications in Algebra. (), -. Hila, K. and Dine, J. 0. On hyperideals in left almost semihypergroups. ISRN Algebra. Article ID, pages. Kazim, M.A. and Naseerudin, N.. On almost semigroups. Aligarh Bulletin of Mathematics., -. Kamran, M.S.. Conditions for LA-semigroups to resemble associative structures. Ph.D. Thesis, Quaid-i-Azam University, Islamabad. Leoreanu, V. 000. About the simplifiable cyclic semihypergroups. Italian Journal of Pure and Applied Mathematics., -. Marty, F.. Sur une generalization de la notion de groupe. th Congres Math. Scandinaves. Stockholm. -. Onipchuk, S.V.. Regular semihypergroups. Matematicheskiĭ Sbornik. (), -. Protic, P.V. and Stevanovic, N. a. AG-test and some general properties of Abel-Grassmann's groupoids. Pure Mathematics and Applications. (), -. Protic, P.V. and Stevanovic, N. b. The structural theorem for AG -groupoids. Series Mathematics Informatics. 0, -. Rehman, I. 0. On generalized commutative rings and related structures. Ph.D. Thesis, Quaid-i-Azam University, Islamabad. Rehman, I., Shah, M., Shah, T. and Razzaque, A. 0. On existence of non-associative LA-rings. Analele Stiintifice ale Universitatii Ovidius Constanta., -. Shah, T., Kausar, N. and Rehman, I. 0. Intuitionistics fuzzy normal subring over a non-associative ring. Analele Stiintifice ale Universitatii Ovidius Constanta. 0, -. Shah, T., Raees, M. and Ali, G. 0a. On LA-Modules. International Journal of Contemporary Mathematical Sciences., -00. Shah, M. and Shah, T. 0b. Some basic properties of LA-rings. International Mathematical Forum., -. Shah. T and Rehman, I. 00. On LA-rings of finitely non-zero functions. International Journal of Contemporary Mathematical Sciences., 0-. Vougiouklis, T.. Hyperstructures and their representations. Hadronic Press, Florida. Yaqoob, N., Corsini, P. and Yousafzai, F. 0. On intra-regular left almost semihypergroups with pure left identity. Journal of Mathematics. Article ID 0, 0 pages. Yaqoob, N. and Gulistan, M. 0. Partially ordered left almost semihypergroups. Journal of the Egyptian Mathematical Society., -. Yousafzai, F., Hila, K., Corsini, P. and Zeb, A. 0. Existence of non-associative algebraic hyperstructures and related problems. Afrika Matematika. (), -.