DOWNLOAD FULL SOLUTION MANUAL FOR MICROBIOLOGY A SYSTEMS APPROACH 3RD EDITION BY COWAN

Similar documents
Full file at

Chapter 2 The Chemistry of Biology. Dr. Ramos BIO 370

Chapter 002 The Chemistry of Biology

Microbiology: A Systems Approach, 2 nd ed. Chapter 2: The Chemistry of Biology

Chapter 02 Testbank. 1. Anything that occupies space and has mass is called. A. an electron. B. living. C. matter. D. energy. E. space.

Chapter 02 Testbank. 1. Anything that occupies space and has mass is called. A. an electron. B. living. C. matter. D. energy. E. space.

Foundations in Microbiology Seventh Edition

Chapter 02 The Chemistry of Biology

2/25/2013. Electronic Configurations

Chapter 02 Chemistry of Life

Chapter 02 Chemistry of Life

Chapter 2. Lecture Outline. See separate PowerPoint slides for all figures and tables pre-inserted into PowerPoint without notes.

Chapter 2 Chemical Aspects of Life

Basic Chemistry. Chapter 2 BIOL1000 Dr. Mohamad H. Termos

the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together Chemical structure Covalent bond Ionic bond

Biology 30 The Chemistry of Living Things

Full file at

Microbiology with Diseases by Taxonomy, 5e (Bauman) Chapter 2 The Chemistry of Microbiology. 2.1 Multiple Choice Questions

2) Matter composed of a single type of atom is known as a(n) 2) A) element. B) mineral. C) electron. D) compound. E) molecule.

Hole s Human Anatomy and Physiology Eleventh Edition. Chapter 2

The Chemistry of Microbiology

Teacher Instructions

Unit 2: Basic Chemistry

2: CHEMICAL COMPOSITION OF THE BODY

Chapter 2: Chemical Basis of Life

Chapter 2: Fundamentals of Chemistry. Question Type: Multiple Choice. 1) Which of the following pairs is mismatched?

Hole s Human Anatomy and Physiology Tenth Edition. Chapter 2

Name: Block: Date: Microbiology Chapters 1 and 2 Review

MULTIPLE CHOICE. Circle the one alternative that best completes the statement or answers the question.

Human Biology. The Chemistry of Living Things. Concepts and Current Issues. All Matter Consists of Elements Made of Atoms

Ch. 2 BASIC CHEMISTRY. Copyright 2010 Pearson Education, Inc.

A Brief Overview of Biochemistry. And I mean BRIEF!

Chapter 2. Chemical Principles

Figure ) Letter E represents a nucleic acid building block known as a. Answer: nucleotide Diff: 3 Page Ref: 54

Chemical Principles and Biomolecules (Chapter 2) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1)

CORE CONCEPTS & TERMINOLOGY FALL 2010

Chapter 2. The Structure of Atoms. The Structure of Atoms. The Structure of Atoms

W2. Chemical structures of protein and DNA

Ch 3: Chemistry of Life. Chemistry Water Macromolecules Enzymes

Chemical Principles. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Matter and Substances Section 3-1

Chapter 2 Concepts of Chemistry

Biology Midterm Review

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Figure 2.1

Microbiology: An Introduction, 12e (Tortora) Chapter 2 Chemical Principles. 2.1 Multiple Choice Questions

Chapter 2: The Chemical Basis of Life

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter:

1) What are the four major elements found in the chemicals that comprise the human body?

Essentials of Human Anatomy and Physiology, 12e (Marieb) Chapter 2 Basic Chemistry. 2.1 Multiple Choice Part I Questions

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Biology of Humans: Concepts, Applications, and Issues, 6e (Goodenough) Chapter 2 Chemistry Comes to Life

An atom is the smallest unit of an element. It has: A general understanding of chemistry is necessary for understanding human physiology.

EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen

UNIT 2 CHEMISTRY. Atomic Structure: Ionic Bond: Covalent Bond: Hydrogen Bond:

Chapter 02 - Life, Matter, and Energy. Multiple Choice Questions

`1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø

Nature of matter. Chemical bond is a force that joins atoms

AP Biology Review

Chemistry Comes to Life

CHAPTER 2 THE CHEMICAL BASIS OF LIFE

Objectives. in living cells.

BIOCHEMISTRY GUIDED NOTES - AP BIOLOGY-

UNIT 2 CHEMISTRY. Atomic Structure: Ionic Bond: Covalent Bond: Hydrogen Bond:

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

2.1 Atoms, Ions, and Molecules

Chemical Basis of Life

Chemistry Basics. Matter anything that occupies space and has mass Energy the ability to do work. Chemical Electrical Mechanical Radiant. Slide 2.

Topic 1: The Chemical Context of Life, Holtzclaw and Holtzclaw, 2014

Chapter 2: The Chemical Level of. Organization. Copyright 2009, John Wiley & Sons, Inc.

REVIEW 1: BIOCHEMISTRY UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

2.1 Basic Chemistry 1

PRESENTATION TITLE. Chemistry. Chemistry

Essentials of Human Anatomy and Physiology, 11e (Marieb) Chapter 2 Basic Chemistry. 2.1 Multiple Choice Part I Questions

Chapter 02 Chemical Basis of Life. Multiple Choice Questions

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C is FALSE?

The Chemical Level of Organization

Chapter Two: The Chemistry of Biology. The molecules of life make up the structure of cells Chemistry of biological molecule

Full file at Essentials of Anatomy & Physiology (Martini/ Bartholomew) Chapter 2 The Chemical Level of Organization

2: CHEMICAL COMPOSITION OF THE BODY

Chapter 2: Chemical Basis of Life I. Introduction A. The study of chemistry is essential for the study of physiology because

Chapter 02 Chemical Composition of the Body

1/23/2012. Atoms. Atoms Atoms - Electron Shells. Chapter 2 Outline. Planetary Models of Elements Chemical Bonds

Unit Two Chemistry of the Human Body

What Mad Pursuit (1988, Ch.5) Francis Crick (1916 ) British molecular Biologist 12 BIOLOGY, CH 1

Introduction to Life Science. BSC 1005 Fall 2011 Homework 1! Connect Due Date: 9/18/ :59PM. Multiple Choice Portion

Chapter 2 Introduction to the Chemical Level of Organization

2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules. 2.1 Atoms, Ions, and Molecules

Guided Notes Unit 1: Biochemistry

BIOL 1030 Introduction to Biology: Organismal Biology. Spring 2011 Section A. Steve Thompson:

BIOCHEMISTRY 10/9/17 CHEMISTRY OF LIFE. Elements: simplest form of a substance - cannot be broken down any further without changing what it is

Chapter 2: Chemical Level of Organization

AP BIOLOGY BIOCHEMISTRY MULTIPLE CHOICE EXAM (RAVEN CHAPTERS 2, 3)

The Chemistry of Life

UNIT 1: BIOCHEMISTRY

Full file at

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Basic Chemistry. Chemistry Review. Bio 250: Anatomy & Physiology

chapter A solution is a mixture composed of two or more substances that are physically blended but not chemically combined.

Human Anatomy & Physiology. Chapter 2: Chemistry Comes Alive. Copyright 2010 Pearson Education, Inc.

Transcription:

DOWNLOAD FULL SOLUTION MANUAL FOR MICROBIOLOGY A SYSTEMS APPROACH 3RD EDITION BY COWAN Link dowload: https://testbankservice.com/download/solution-manual-for-microbiologya-systems-approach-3rd-edition-by-cowan/ Chapter 1 The Main Themes of Microbiology This chapter introduces the student to the world of microbiology, both the positive aspects and the detrimental. The chapter reveals the scope of microbiology and gives a broad overview of the areas of science included in this topic. The student will receive an introduction to the history of microbiology, covering the major scientific contributions to the development of microbiology including the development of the microscope and the formation of the germ theory. The student will also be introduced to the hierarchy of classification. The basis of taxonomy is discussed and the order of assigning specific names is clearly presented. Different systems of classification are outlined. There is also a discussion of the origin and evolution of microorganisms that should trigger a good classroom discussion. Learning Objectives 1.01 List the various types of microorganisms. 1.02 Identify multiple types of professions using microbiology. 1.03 Describe the role and impact of microbes on the earth. 1.04 Differentiate between evolution and the theory of evolution. 1.05 Explain the ways that humans manipulate organisms for their own uses. 1.06 Summarize the relative burden of human disease caused by microbes. 1.07 Differentiate between prokaryotic and eukaryotic microorganisms. 1.08 Identify a third type of microorganism. 1.09 Compare and contrast the relative sizes of the different microbes. 1.10 Make a timeline of the development of microbiology from the 1600s to today. 1.11 List some recent microbiology discoveries of great impact. 1.12 Explain what is important about the scientific method. 1.13 Differentiate between the terms nomenclature, taxonomy and classification. 1.14 Create a mnemonic device for remembering the taxonomic categories. 1.15 Correctly write the binomial name for a microorganism. 1.16 Draw a diagram of the three major domains. 1.17 Explain the difference between traditional and molecular approaches to taxonomy. Chapter Outline 1.1. The Scope of Microbiology A. The study of organisms too small to be seen without magnification. B. Including bacteria, viruses, fungi, protozoa, algae and helminthes. C. Includes agricultural microbiology, biotechnology, food microbiology, dairy microbiology, aquatic microbiology, genetic engineering, public health microbiology and epidemiology, and immunology. 1.2. The Impact of Microbes on Earth: Small Organisms with a Giant Effect A. First bacterial-type organisms on the planet for 3.5 billion years B. First eukaryotic cell types arose 1.8 billion years ago C. Ubiquitous D. Energy and nutrient flow A. Biotechnology and genetic engineering

B. Bioremediation A. Pathogens B. Worldwide infectious disease statistics C. Emerging diseases A. Cellular organization 1. Prokaryotic cells 2. Eukaryotic cells B. A note on viruses C. Microbial dimensions: How small is small? 1. Millimeters to nanometers D. Life-styles of microorganisms 1. Parasites 2. Hosts A. The development of the microscope: "Seeing Is Believing" 1. Hooke 2. Leeuwenhoek B. The establishment of the scientific method 1. Hypothesis 2. Deductive approach 3. The theory C. The development of medical microbiology 1. The discovery of spores and sterilization 2. The development of aseptic technique 3. The discovery of pathogens and the germ theory of disease 1.7. Taxonomy: Naming, Classifying, and Identifying Microorganisms A. Nomenclature B. Taxonomy C. The levels of classification D. Assigning specific names D. The origin and evolution of microorganisms E. Systems of presenting a universal tree of life 1. Five-kingdom system: Whittaker 2. Three-domain system: Woese-Fox Key Terms and Phrases Emerging diseases Microbiology Bacteria Pathogens Microscopic Viruses Bioremediation Microorganisms Fungi Genetic engineering Microbes Protozoa Algae Prokaryote Scientific methods Macroscopic Eukaryote Hypotheses Adaptability Parasites Deduction Immunology Hosts Deductive Epidemiology Spontaneous generation Theories Biotechnology Abiogenesis Law Infectious Biogenesis Sterilization

Aseptic techniques Class Genetics Germ theory of disease Order Eubacteria Nomenclature Family Archaebacteria Taxonomy Genus Kingdom Procaryotae Taxa Hierarchies Kingdom Protista Classification Scientific method Kingdom Myceteae Identification Species Kingdom Animalia Domain Scientific names Kingdom Plantae Kingdom Evolutionary Phylum Morphology Division Physiology Topics for Discussion Students may wish to discuss the historical events of the past 200 years and how much technology has affected the study of microbiology. Another good class discussion examines emerging diseases and their current and projected effects on the world population. Finally, the class may discuss the different classification schemes and which the students think is most valid. Chapter 2 The Chemistry of Biology This chapter contains a review of the concepts of chemistry and biological molecules. The student receives basic working knowledge of atoms, molecules, bonding, solutions, ph, and macromolecules. The assumptions here are that the student has some background knowledge of atoms and chemistry. The fundamental characteristics of cells are introduced, including the Fluid Mosaic Model of the plasma membrane. Learning Objectives 2.01 Explain the relationship between atoms and elements. 2.02 List and define 4 types of chemical bonds. 2.03 Differentiate between a solute and a solvent. 2.04 Give a brief definition of ph. 2.05 Name the four main families of biochemicals. 2.06 Provide examples of cell components made from each of the families of biochemicals. 2.07 Explain primary, secondary, tertiary and quaternary structure as seen in proteins. 2.08 List the three components of nucleic acids. 2.09 Name the nucleotides of DNA and of RNA. 2.10 List the three components of ATP. 2.11 Point out 3 characteristics all cells share. Chapter Outline 2.1. Atoms, Bonds, and Molecules: Fundamental Building Blocks A. Matter 1. Atomic structure 2. Subatomic particles: protons, neutrons, and electrons B. Different types of atoms: Elements and their properties 1. Elements 2. Periodic table C. The major elements of life and their primary characteristics 1. Isotopes

2. Electron orbitals and shells D. Bonds and molecules 1. Molecules and compounds 2. Chemical bonds and valence 3. Covalent bonds and polarity: Molecules with shared electrons a. Single covalent bond: H2 b. Double covalent bond: O2 c. Polar molecules: H2O 4. Ionic bonds: Electron transfer among atoms a. Formation of ionic bonds b. Ionization: formation of charged particles i. Ions, cations, anions, electrolytes c. Hydrogen bonding d. Van der Waals forces e. Chemical shorthand: formulas, models, and equations i. Reactants, products, ii. Synthesis, decomposition, exchange reactions iii. Catalysts 5. Solutions: Homogeneous mixtures of molecules a. Solutes, solvent b. Hydrophilic, hydrophobic, amphipathic c. Concentration 6. Acidity, alkalinity, and the ph scale a. Acidic and basic b. ph scale c. Neutralization reactions d. Salts e. Metabolism 7. The chemistry of carbon and organic compounds a. Inorganic chemicals b. Organic chemicals c. Role of carbon as the fundamental element of life 8. Functional groups of organic compounds a. Confer reactive properties on the whole molecule b. Allow carbon to bind organic molecules A. The compounds of life fall into the realm of biochemistry. 1. Biochemicals include four main families: carbohydrates, lipids, proteins, and nucleic acids. 2. Made from smaller molecular subunits; frequently called macromolecules. 3. Monomers, polymers B. Carbohydrates: Sugars and polysaccharides 1. Monosaccharides, disaccharides, polysaccharides a. Glucose, fructose, lactose, maltose 2. The nature of carbohydrate bonds a. Glycosidic bonds b. Dehydration synthesis 3. The functions of polysaccharides a. Cellulose b. Agar c. Chitin d. Peptidoglycan and glycocalyx e. Glycogen f. Hydrolysis: glucose digestion

C. Lipids: Fats, phospholipids, and waxes 1. Triglycerides: glycerol and fatty acids 2. Membrane lipids: phospholipids 3. Miscellaneous lipids a. Cholesterol and steroids b. Prostaglandins c. Waxes D. Proteins: Shapers of life 1. The functions of polysaccharides 2. Amino acids 3. Peptide bonds, peptides, and polypeptides 4. Protein structure and diversity a. Primary, secondary, tertiary, quaternary structures b. Enzymes c. Antibodies E. The nucleic acids: A cell computer and its programs 1. The nucleic acids a. Deoxyribonucleic acid (DNA) b. Ribonucleic acid (RNA) c. Nucleotides i. Nitrogen base, pentose, phosphate groups 2. The double helix of DNA 3. RNA: Organizers of protein synthesis 4. ATP: The energy molecule of cells 2.3. Cells: Where Chemicals Come to Life A. Fundamental characteristics of cells Key Terms and Phrases Starch Decomposition reaction Triglyceride Macromolecules Solute Cholesterol Carbohydrate Hydrophilic Polypeptide Hexose Basic Deoxyribonucleic acid Glycerol Inorganic compounds Adenosine triphosphate Amino acid Polymerization Chromosome Primary structure Monosaccharide Selective permeability Secondary structure Pentose Ions Tertiary structure Lipid Hydrogen ion Quaternary structure Phospholipid Cellulose Nitrogen base Peptide Hydrolysis Pentose sugar Antibodies Peptide bond Phosphate Replication Enzyme Deoxyribose Genome Nucleotides Cell Mitosis Nucleus Living Mitochondria Endoplasmic reticulum Atom Cytoplasmic membrane Cell wall Molecule Elements Matter Covalent bond Biochemical Electron Ionize Neutron Orbital Oxidation Isotope Valence Hydrogen bond Chemical bond Ionic bond Synthesis reaction Polar Electrolyte Solution Anion Oxidizing agent Hydrated Reducing agent Product

Acidic Reactant Reversible reaction Metabolism Exchange reaction Concentration Glycogen Solvent Neutralization reaction Proton Hydrophobic Functional groups Compound ph scale Polysaccharide Nonpolar Organic compounds Peptidoglycan Cation Polymer Fatty acid Reduction Disaccharide Protein Chemical formula Glycosidic bond Disulfide bond Ribonucleic acid Organelles Ribose Oxidation-reduction Chemical equations Dehydration synthesis Monomer Ribosomes Topics for Discussion A discussion of nutrition and students' eating habits can be used to illustrate the differences in the types of biomolecules. Recognizing the structures of the four major types of macromolecules, as well as functional groups, should be emphasized. The importance of lipids in the cell membrane and proteins in enzymology should also be highlighted. The concepts of ions, buffers, and the ph scale always need review and an explanation of the correlation between the ph scale and proton concentration is important.