SIFERRIT Materials. Siemens Matsushita Components 33

Similar documents
Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrite For Switching Power Supplies Material Characteristics

Ferrites and accessories

Ring Cores General Information

Ferrites and accessories

Ferrites and accessories

Ferroxcube. PROPORTIONS OF THE COMPOSITION The base materials are weighed into the correct proportions required for the final composition.

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Switched Mode Power Conversion

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Ferrites and accessories

Lecture 17 Push-Pull and Bridge DC-DC converters Push-Pull Converter (Buck Derived) Centre-tapped primary and secondary windings

Ferrites and accessories

Ferrites and accessories

MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Block Diagram. Key Features

MAU200 Series. 1W, High Isolation SIP, Single & Dual Output DC/DC Converters MINMAX. Block Diagram. Key Features

Radio Frequency Electronics

Ferrites and accessories

Film Capacitors. EMI suppression capacitors. Date: June 2018

Powdered Metal Cores. MPP (molypermalloy) & High Flux cores. Genalex & Genalex H (nickel-iron) iron) cores. Low Frequency Iron Powder cores

MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Key Features

Ferrites and accessories

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

6.3. Transformer isolation

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

4N25/ 4N26/ 4N27/ 4N28. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. Features.

5. Passive Components

Distributing Tomorrow s Technologies For Today s Designs Toll-Free:

Applications SC

Ferrites and accessories

15.1 Transformer Design: Basic Constraints. Chapter 15: Transformer design. Chapter 15 Transformer Design

Overview. Benefits. Applications. Turns and Impedance Characteristics. Core Material and Effective Frequency Range

Iron-Silicon (Fe-Si ) Powder Cores

CERN ACCELERATOR SCHOOL Power Converters. Passive components. Prof. Alfred Rufer

Metallized Polypropylene Film Capacitor Related Document: IEC

Metallized polyester film capacitors MKT 470

WLPN Series SMD Molded Power Choke Inductors

Some Important Electrical Units

4N35/ 4N36/ 4N37. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. Features.

Transcription:

SIFERRIT Materials Based on IEC 60401, the data specified here are typical data for the material in question, which have been determined principally on the basis of ring cores. The purpose of such characteristic material data is to provide the user with improved means for comparing different materials. There is no direct relationship between characteristic material data and the data measured using other core shapes and/or core sizes made of the same material. In the absence of further agreements with the manufacturer, only those specifications given for the core shape and/or core size in question are binding. Siemens Matsushita Components 33

SIFERRIT Materials 1 Material application survey Usage Frequency range Specific application Type Material High Q inductors up to 0,1 MHz N 48 Filters in telephony, Gapped P in resonant circuits 0,2 1,6 MHz M 33 MW IF filters and RM cores, and filters 1, 12 MHz K 1 adjusting cores, TT/PR 6 30 MHz K 12 VHF filters up to 100 MHz U 17 Line attenuation up to 2 MHz M 13 K10 Balun transformers Ring cores, doubleaperture cores Broadband transformers (e.g. antenna transformers for MW, SW, VHF, TV) ISDN transformers, digital data transformers (xdsl), current-compensated interference suppression chokes up to 3 MHz T 46 ISDN transformers T 42 Impedance and matching T38 transformers Ring cores RM, P, ER, EP, ring cores T 37 Current-compensated chokes Ring cores, DE cores T 3 RM, P, ring, DE T 6 P, ring cores, TT/PR, EP up to MHz N 30 Current-compensated chokes Ring cores, N 26 Radio-frequency transformers doubleaperture cores up to 10 MHz M 33 up to 20 MHz K 1 K12 up to 400 MHz U 17 Sensors, ID systems up to 1 MHz N 22 Inductive proximity switches P core halves up to 2 MHz M 33 up to 100 MHz FPC 34 Siemens Matsushita Components

SIFERRIT Materials Usage Power transformers, chokes Frequency range Material Specific application 1 to 100 khz N 27 Transformers for flyback converters E, EC, ETD, U, RM, PM N 41 Chokes Pot cores, RM up to 200 khz N 3 Diode splitting transformers E, U, UR N 62 E, U, UR, ETD, N 67 High-voltage transformers ER N 72 Electronic lamp ballast E, ETD devices up to 300 khz N 82 Diode splitting transformers U, UR up to 00 khz N 87 Transformers for forward and push-pull converters 0,3 1 MHz N 49 Transformers for DC/DC 0, 1 MHz N 9 converters, particularly resonance converters Type ETD, EFD, RM, TT/PR, ER, ELP EFD, ER, ELP, RM (low profile) Siemens Matsushita Components 3

SIFERRIT Materials 2 Material properties Preferred application Resonant circuit inductors Material U 17 1) K 12 1) K 1 M 33 2) N 48 Base material NiZn NiZn NiZn MnZn MnZn Color code (adjuster) gray yellow violet white Symbol Unit Initial permeability (T = 2 C) Meas. field strength Flux density (near saturation) (f = 10 khz) Coercive field strength (f = 10 khz) Optimum frequency range Relative at f min µ i 10 ± 30 % H B S (2 C) B S (100 C) H c (2 C) H c (100 C) A/m mt mt A/m A/m MHz 10000 180 170 1900 1800 10 220 loss factor at f max 10 6 < 1700 tan δ/µ i 10 6 < 100 26 ± 2 % 2000 230 210 40 410 3 40 < 10 < 600 80 ± 2 % 000 310 280 380 30 1, 12 < 40 < 120 70 ± 2 % 2000 400 310 80 6 0,2 1,0 < 12 < 20 2300 ± 2 % 1200 420 310 26 19 0,001 0,1 Hysteresis η B 10 6 /mt < 27 < 4 < 36 < 1,8 < 0,4 material constant Curie temperature T C C > 0 > 40 > 400 > 200 > 170 Relative temperature coefficient α F 10 6 /K at 2 C at 20 C Mean value of α F at 2 C 2 0 4 20 3 14 12 0 2 8 7 1 0, 2,6 2,7 4,2 0,4 0, 0,7 0, 10 6 /K 37 9 4 1,6 0,0 Density kg/m 3 4400 4600 460 400 4700 Disaccommodation DF 10 6 20 8 2 factor at 2 C Resistivity ρ Ωm 10 10 10 3 Core shapes P, Double aperture P, Ring RM, P, Ring, P core half RM, P, RM, P Ring, Double aperture, P core half Other material properties (graphs) see page 49 1 3 7 1) Perminvar ferrite: irreversible variations in quality and permeability may occur in case of strong fields in the core (> 100 A/m). In the case of shape-related dimensions, these dimensions may be exceeded by up to %. 2) For threaded cores µi = 600 ± 20% 36 Siemens Matsushita Components

SIFERRIT Materials Material properties (continued) Preferred application Inductors for line attenuation Special type Material K 10 M 13 N 22 Base material NiZn NiZn MnZn Color code (adjuster) red Symbol Unit Initial permeability (T = 2 C) Meas. field strength Flux density (near saturation) (f = 10 khz) Coercive field strength (f = 10 khz) Optimum frequency range Relative at f min µ i 800 ± 2 % H B S (2 C) B S (100 C) H c (2 C) H c (100 C) A/m mt mt A/m A/m MHz 000 320 240 40 2 0,1 1 loss factor at f max 10 6 < 60 tan δ/µ i 10 6 < 1 2300 ± 2 % 1200 280 13 12 8 0,001 0,1 < < 20 2300 ± 2 % 1200 370 260 18 14 0,001 0,2 < 2 < 20 Hysteresis η B 10 6 /mt < < 4 < 1,4 material constant Curie temperature T C C > 10 > 10 > 14 Relative temperature coefficient α F 10 6 /K at 2 C at 20 C Mean value of α F at 2 C 3,0,0,0 7, 10 6 /K 10,0 3,7 0,9 Density kg/m 3 000 200 4700 Disaccommodation DF 10 6 4 factor at 2 C Resistivity ρ Ωm 10 10 1 Core shapes Ring, Double aperture Ring, Double aperture Ring, P core half, Double aperture Other material properties (graphs) see page 9 60 61 Siemens Matsushita Components 37

SIFERRIT Materials Material properties (continued) Preferred application Broadband transformers Material N 26 N 30 T 6 T 3 T 37 Base material MnZn MnZn MnZn MnZn MnZn Symbol Unit Initial permeability (T = 2 C) Meas. field strength Flux density (near saturation) (f = 10 khz) Coercive field strength (f = 10 khz) Optimum frequency range Relative at f min µ i 2300 ± 2 % H B S (2 C) B S (100 C) H c (2 C) H c (100 C) A/m mt mt A/m A/m MHz 1200 380 260 23 17 0,001 0,1 loss factor at f max 10 6 < 3,8 tan δ/µ i 10 6 < 2,8 4300 ± 2 % 1200 380 240 12 8 200 ± 30 % 1200 460 320 12 11 6000 ± 2 % 1200 390 270 12 9 600 ± 2 % 1200 380 240 Hysteresis η B 10 6 /mt < 0,3 < 1,1 < 1,1 < 1,1 < 1,1 material constant Curie temperature T C C > 10 > 130 > 160 > 130 > 130 Relative temperature coefficient α F 10 6 /K at 2 C at 2 C Mean value of α F at 2 C 0 1, 0 1,8 9 8 10 6 /K 1,0 0,6 0, 0,8 0,3 Density kg/m 3 4700 4800 4930 4900 4900 Disaccommodation DF 10 6 factor at 2 C Resistivity ρ Ωm 2 0, 0,30 0,2 0,2 Core shapes RM, P, EP Ring, DE RM, P, EP, E, Ring, Double aperture RM, P, ER, Ring RM, P, EP, Ring Other material properties (graphs) see page 62 64 66 68 70 38 Siemens Matsushita Components

SIFERRIT Materials Material properties (continued) Preferred application Broadband transformers Material T 38 T 42 3) T 46 3) Base material MnZn MnZn MnZn Symbol Unit Initial permeability (T = 2 C) Meas. field strength Flux density (near saturation) (f = 10 khz) Coercive field strength (f = 10 khz) Optimum frequency range Relative at f min µ i 10000 ± 30 % H B S (2 C) B S (100 C) H c (2 C) H c (100 C) A/m mt mt A/m A/m 1200 380 240 9 6 MHz loss factor at f max 10 6 tan δ/µ i 10 6 12000 ± 30 % 1200 400 20 7 6 1000 ± 30 % 1200 400 240 Hysteresis η B 10 6 /mt < 1,4 < 1,4 < 2,0 material constant Curie temperature T C C > 130 > 130 > 130 Relative temperature coefficient α F 10 6 /K at 2 C at 20 C Mean value of α F at 2 C 7 6 10 6 /K 0,4 0,3 0,6 Density kg/m 3 4900 490 000 Disaccommodation DF 10 6 factor at 2 C Resistivity ρ Ωm 0,1 0,1 0,01 Core shapes RM, P, EP, ER, E, Ring RM, EP Other material properties (graphs) see page 72 74 76 Ring 3) Material values defined on the basis of small ring cores ( R10) Siemens Matsushita Components 39

SIFERRIT Materials Material properties (continued) Preferred application Power transformers Material N 9 N 49 N 3 N 82 4) N 62 Base material MnZn MnZn MnZn MnZn MnZn Symbol Unit Initial permeability (T = 2 C) Flux density (H = 1200 A/m, f = 10 khz) Coercive field strength (f = 10 khz) µ i 80 ± 2 % B S (2 C) B S (100 C) H c (2 C) H c (100 C) mt mt A/m A/m 460 370 60 0 Typical frequency range khz 00 100 Hysteresis material constant 100 khz, 200 mt, 100 C 300 khz, 100 mt, 100 C 00 khz, 0 mt, 100 C 1 MHz, 0 mt, 100 C 1300 ± 2 % 460 370 4 300 1000 1700 ± 2 % 490 420 26 16 16 200 1900 ± 2 % 490 41 17 11 16 300 η B 10 6 /mt 1900 ± 2 % 00 410 18 11 16 200 Curie temperature T C C > 240 > 240 > 240 > 240 > 240 Mean value of α F 10 6 /K at 20 C Density kg/m 3 470 470 4800 4800 4800 Relative core losses 2 khz, 200 mt, 100 C P V mw/g 20 14 16 mw/cm 3 100 69 80 mw/g mw/cm 3 mw/g mw/cm 3 mw/g mw/cm 3 mw/g mw/cm 3 39 180 110 10 120 600 24 120 11 60 12 62 13 670 84 421 88 440 Resistivity ρ Ωm 26 11 6 11 4 Core shapes EFD RM, Ring, EFD, ER ELP 10 2 E, U U, UR ETD, E, U Other material properties (graphs) see page 78 81 84 87 90 4) Preliminary data 40 Siemens Matsushita Components

SIFERRIT Materials Material properties (continued) Preferred application Power transformers Material N 27 N 67 ) N 87 N 72 N 41 Base material MnZn MnZn MnZn MnZn MnZn Symbol Unit Initial permeability (T = 2 C) Flux density (H = 1200 A/m, f = 10 khz) Coercive field strength (f = 10 khz) µ i 2000 ± 2 % B S (2 C) B S (100 C) H c (2 C) H c (100 C) mt mt 00 410 A/m 23 19 Typical frequency range khz 2 10 Hysteresis material constant 100 khz, 200 mt, 100 C 300 khz, 100 mt, 100 C 00 khz, 0 mt, 100 C 1 MHz, 0 mt, 100 C 2100 ± 2 % 480 380 20 14 2 300 2200 ± 2 % 480 380 16 9 2 00 200 ± 2 % 480 370 1 11 2 300 2800 ± 2 % 490 390 22 20 2 10 η B 10 6 /mt < 1, < 1,4 < 1,4 < 1,4 Curie temperature T C C > 220 > 220 > 210 > 210 > 220 Mean value of α F 10 6 /K 3 4 4 4 at 20 C Density kg/m 3 470 4800 4800 4800 4800 Relative core losses 2 khz, 200 mt, 100 C P V mw/g 32 17 16 3 mw/cm 3 1 80 80 180 mw/g mw/cm 3 mw/g mw/cm 3 mw/g mw/cm 3 mw/g mw/cm 3 190 920 10 2 11 60 80 38 8 410 110 40 280 1400 Resistivity ρ Ωm 3 6 8 12 2 Core shapes P, PM, ETD, EC, ER, E, U, Ring RM, P, EP, ETD, ER, EFD, E, U, Ring RM, TT, P, PM, ETD, EFD, E, ER, ELP E, EFD RM, P Other material properties (graphs) see page 93 96 99 102 10 ) Not for new design Siemens Matsushita Components 41

SIFERRIT Materials Material properties (continued) Preferred application Injectionmolded parts Film Material Ferrite Polymer Composite (FPC) Base material C302 C30 C31 Symbol Unit Initial permeability µ i 17 ± 20 % 9 ± 20 % 9 ± 20 % f = 1 MHz Flux density (near saturation) B S (2 C) mt 330 2 2 H = 2 ka/m f = 10 khz Remanent induction B r (2 C) mt 1 9 9 H = 2 ka/m f = 10 khz Coercive field strength H C (2 C) A/m 770 600 600 H = 2 ka/m f = 10 khz Relative loss factor tanδ/µ i f = 1 MHz < 0,0004 f = 100 MHz < 0,03 < 0,00 < 0,00 f = 1 GHz < 0,400 < 0,400 Hysteresis material constant η B 10 3 /mt < 0,2 < 2 < 2 Temperature coefficient α= µ/µ T 1/K < 0,0002 < 10 - < 10 - Density kg/m 3 300 2930 2930 Resistivity ρ Ωm f = 1 khz f = 10 khz f = 10 MHz 21 13 00 100 00 100 Relative permittivity f = 1 khz f = 10 khz f = 10 MHz ε r 280 100 21 21 Maximum operating temperature T max C 180 120 200 Dielectric strength kv/mm 1 0,8 Tensile strength 6) σ Z N/mm 2 1, 2, Tearing resistance 6) % 2 2 Compressibility 6) κ N/mm 2 70 70 Other material properties (graphs) see page 108 700 700 6) T = 23 C and 0 % relative humidity 42 Siemens Matsushita Components

SIFERRIT Materials 3 Measuring conditions The following measuring conditions, which correspond largely to IEC 60401, apply for the material properties given in the table: Properties (valid only for ring cores of sizes R 10 to R 36) Measuring conditions Frequency khz Field strength (materialdependent) ka/m Max. flux density mt Temperature C Initial permeability µ i 10 0,2 2 B mt 10 1,2 2; 100 Flux density near to saturation Coercive field strength H cb A/m ka/m 10 1,2 near saturation Relative loss factor tan δ/µ i 0,2 2 Hysteresis material constant η B T 1 10 (µ i 00) 100 (µ i < 00) B 1 B 2 1, 3,0 0,3 1,2 Curie temperature T c C 10 0,2 Relative temperature coefficient 2; 100 α F 10 6 /K 10 0,2 20 2 Density kg/m 3 2 Disaccommodation DF 10 6 10 0,2 2; 60 1) factor Resistivity ρ Ωm 2 The following properties are given only for materials for power applications: 2 Power loss P V mw/cm 3 mw/g 2 100 300 00 1000 200 200 100 0 0 100 1) Higher temperature than specified by IEC (40 C) Siemens Matsushita Components 43

SIFERRIT Materials 4 Specific material data DC magnetic bias I_ N H_ = ------------- I e H_ = DC field strength [A/m] I_ = Direct current [A] N = Number of turns l e = Effective magnetic path length [m] The curves of µ rev =f(h_) allow an approximate calculation of the variation in reversible permeability (µ rev ) and A L value caused by magnetic bias. These curves are of particular interest for cores for transformers and chokes, since magnetic bias should be avoided if possible with inductors requiring high stability (filter inductors etc.). In the case of geometrically similar cores (i.e. in particular the same A min /A e ratio) the effective permeability of the core in question in conjunction with the given curves suffices to determine the reversible permeability to a close approximation. 44 Siemens Matsushita Components

SIFERRIT Materials Inductors for Resonant Circuits and Line Attenuation Relative loss factor (measured with ring cores, measuring flux density B 0,2 mt) 10-1 FAL067-1 tan δ µ i -3 10 Line attenuation Resonant circuit -4 10 K12 U17 K1-10 M13 K10 N48 M33 N26/N22-6 10 10-7 10 0 1 10 2 3 4 10 10 10 10 khz f 6 10 Siemens Matsushita Components 4

SIFERRIT Materials Broadband Transformers Relative inductance component (measured with ring cores, measuring flux density B 0,2 mt) 10 FAL068-9 µ s T46 T42 T38 T37 T3 T6 N30 4 10 N26 3 10 2 10 10 1 0 10 10 1 10 2 10 3 khz 10 4 f 46 Siemens Matsushita Components

SIFERRIT Materials Power Transformers Performance factor (measured with ring cores R29, T = 100 C, P V = 300 kw/m 3 ) 0000 khz. mt FAL080-S 4000 f. Bmax N9 3000 N49 30000 N82 N87 2000 20000 1000 N3 10000 000 N27 N62 N67 N72 0 10 1 2 10 For definition of performance factor see page 120. 3 10 khz 4 f Siemens Matsushita Components 47

SIFERRIT Materials Broadband and Filter Applications Standardized hysteresis material constant versus temperature 7 FAL073-A η B, T η B, 2 C 6 4 M33 N26 N48 N30 T6 T3 T37 T38 3 2 1 0_ 40 _ 20 0 20 40 60 80 100 120 C 140 T 48 Siemens Matsushita Components

U 17 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R10 ring cores, B 0,2 mt) Permeability factor versus temperature (measured with P and RM cores, B 0,2 mt), µ i 10 T ( C) 20 20 20 2 α F (10 6 /K) 2 37 0 20 31 4 10 20 30 Mean value Siemens Matsushita Components 49

U 17 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) 0 Siemens Matsushita Components

K 12 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i and relative loss factor tan δ/µ i versus temperature (measured with R10 ring cores, B 0,2 mt) Permeability factor versus temperature (measured with P and RM cores, B 0,2 mt), µ i 26 T ( C) 20 20 20 2 α F (10 6 /K) 3 9 14 0 6 12 1 7 12 Mean value Siemens Matsushita Components 1

K 12 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) 2 Siemens Matsushita Components

K 1 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i and relative loss factor tan δ/µ i versus temperature (measured with R10 ring cores, B 0,2 mt) Permeability factor versus temperature (measured with P and RM cores, B 0,2 mt), µ i 80 T ( C) 20 20 20 2 α F (10 6 /K) 2 8 1 4 7 0 3 6 Mean value Siemens Matsushita Components 3

K 1 (f = 10 khz, T = 2 C) (f = 10 khz, T =100 C) 4 Siemens Matsushita Components

M 33 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i and relative loss factor tan δ/µ i versus temperature (measured with R10 ring cores, B 0,2 mt) Permeability factor versus temperature (measured with P and RM cores, B 0,2 mt), µ i 70 DC magnetic bias of P and RM cores ( B 0,2 mt, f = 10 khz, T = 2 C) T ( C) 20 20 20 2 α F (10 6 /K) 0. 1.6 2.3 0. 1.8 2. 0. 2.0 3.0 Mean value Siemens Matsushita Components

M 33 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) 6 Siemens Matsushita Components

N 48 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i and relative loss factor tan δ/µ i versus temperature (measured with R10 ring cores, B 0,2 mt) 10 4 µ, µ 10 3 FAL046-D 3000 µ i µ i FAL047-L 10 10-6 tanδ µ i 2000 6 10 2 1000 tan δ/ µ i f = 100 khz 4 10 1 µ µ 2 10 0 10 1 10 2 3 10 khz f 4 10 0-60 0 0 60 120 C 200 T Permeability factor versus temperature (measured with P and RM cores, B 0,2 mt), µ i 2300 FAL074-I 20 10-6 µ i - µ 1i µ i µ 1i Relative loss factor tan δ/µ i (measured with R29 ring cores) 10-4 tanδ µ i FAL048-U 0 0 T 1 10 - -0-10 T ( C) 20 20 20 2 20 40 α F (10 6 /K) 0.4 0.7 1.0 1) 0.4 0.7 1.0 1) 0.4 0.9 1. 0.6 1.2 2.0-20 -40-20 0 20 40 C 70 Mean value T 10-6 10 1 10 2 khz f 10 3 1) With P cores P22 13 and RM cores RM 8 the α F value may deviate by up to 1,2. 10-6 /K. Siemens Matsushita Components 7

N 48 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) 40 FAL049-3 40 FAL00-6 mt B 30 T = 2 C f = 10 khz mt B 30 T = 100 C f = 10 khz 20 20 10 0 B sat = 421 mt B r = 122 mt H c = 2,3 A/m 10 0 B sat = 422 mt B r = 12 mt H c = 2,3 A/m 0-200 0 400 800 A/m 1400 H 0-200 0 400 800 A/m 1400 H DC magnetic bias of P and RM cores ( B 0,2 mt, f = 10 khz, T = 2 C) 8 Siemens Matsushita Components

K 10 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i and relative loss factor tan δ/µ i versus temperature (measured with R10 ring cores, B 0,2 mt) 10 3 µ, µ FAL07-R 1400 1200 µ i B = 0.2 mt N = 10 FAL076-Z 140 10-6 tan δ µ i 10 2 800 µ i f = 100 khz 80 600 60 10 1 µ s µ s 400 200 tan δ/µ i f = 00 khz 40 20 10 0 10 2 10 3 10 4 khz 10 f 0-40 0 0 40 80 120 160 C 200 T (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) 30 mt 300 B FAL077-8 30 mt 300 B FAL078-G 20 20 200 200 10 10 100 100 0 0 0-00 0 00 1000 A/m 2000 H 0-00 0 00 1000 100 A/m 200 H Siemens Matsushita Components 9

M 13 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i and relative loss factor tan δ/µ i versus temperature (measured with R2 ring cores, B 0,2 mt) (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) 60 Siemens Matsushita Components

N 22 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i and relative loss factor tan δ/µ i versus temperature (measured with R10 ring cores, B 0,2 mt) (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) Siemens Matsushita Components 61

N 26 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i and relative los factor tan δ/µ i versus temperature (measured with R10 ring cores, B 0,2 mt) 10 4 µ, µ 10 3 FAL01-E 3000 µ i µ i FAL02-M 10 10-6 tanδ µ i 2000 6 10 2 10 1 µ µ 1000 tan δ/ µ i f = 100 khz 4 2 10 0 10 1 10 2 3 10 khz f 4 10 0-60 0 0 60 120 C 200 T Permeability factor versus temperature (measured with R10 ring cores, B 0,2 mt) Relative loss factor (measured with R14 ring cores, B 0,2 mt) 10 10-6 µ i - µ 1i µ i µ 1i FAL079-P 10-4 tanδ µ i FAL04-4 0 0 10 - -0-100 -10-40 -20 0 20 40 60 C 80 T 10-6 10 1 10 2 khz f 10 3 62 Siemens Matsushita Components

N 26 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) 40 FAL0-C 40 FAL06-K mt B 30 T = 2 C f = 10 khz mt B 30 T = 100 C f = 10 khz 20 20 10 0 B sat = 386 mt B r = 100 mt H c = 23,3 A/m 10 0 B sat = 38 mt B r = 102 mt H c = 23,4 A/m 0-200 0 400 800 A/m 1400 H 0-200 0 400 800 A/m 1400 H DC magnetic bias of P and RM cores ( B 0,2 mt, f = 10 khz, T = 2 C) Siemens Matsushita Components 63

N 30 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R10 ring cores, B 0,2 mt) Variation of initial permeability with temperature (measured with R10 ring cores, B 0,2 mt) Relative loss factor (measured with R20 ring cores, B 0,2 mt) 64 Siemens Matsushita Components

N 30 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of RM cores ( B 0,2 mt, f = 10 khz, T = 2 C) Siemens Matsushita Components 6

T 6 Complex permeability (measured with R29 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R29 ring cores, B 0,2 mt) Variation of initial permeability with temperature (measured with R29 ring cores, B 0,2 mt) Relative loss factor (measured with R29 ring cores, B 0,2 mt) 66 Siemens Matsushita Components

T 6 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of RM cores ( B 0,2 mt, f = 10 khz, T = 2 C) Siemens Matsushita Components 67

T 3 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R16 ring cores, B 0,2 mt) Variation of initial permeability with temperature (measured with R16 ring cores, B 0,2 mt) Relative loss factor (measured with R16 ring cores, B 0,2 mt) 68 Siemens Matsushita Components

T 3 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of RM cores ( B 0,2 mt, f = 10 khz, T = 2 C) Siemens Matsushita Components 69

T 37 Complex permeability (measured with R16 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R22 ring cores, B 0,2 mt) Variation of initial permeability with temperature (measured with R22 ring cores, B 0,2 mt) Relative loss factor (measured with R16 ring cores, B 0,2 mt) 70 Siemens Matsushita Components

T 37 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of RM cores ( B 0,2 mt, f = 10 khz, T = 2 C) Siemens Matsushita Components 71

T 38 Complex permeability (measured with R14 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R16 ring cores, B 0,2 mt) Variation of initial permeability with temperature (measured with R16 ring cores, B 0,2 mt) Relative loss factor (measured with R14 ring cores, B 0,2 mt) 72 Siemens Matsushita Components

T 38 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of RM cores ( B 0,2 mt, f = 10 khz, T = 2 C) Siemens Matsushita Components 73

T 42 Complex permeability (measured with R9, ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R9, ring cores, B 0,2 mt) Variation of initial permeability with temperature (measured with R9, ring cores, B 0,2 mt) Relative loss factor (measured with R9, ring cores, B 0,2 mt) 74 Siemens Matsushita Components

T 42 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of RM cores ( B 0,2 mt, f = 10 khz, T = 2 C) Siemens Matsushita Components 7

T 46 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R10 ring cores, B 0,2 mt) Variation of initial permeability with temperature (measured with R10 ring cores, B 0,2 mt) Relative loss factor (measured with R10 ring cores, B 0,2 mt) 76 Siemens Matsushita Components

T 46 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) Siemens Matsushita Components 77

N 9 Complex permeability (measured with R2 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R29 ring cores, B 0,2 mt) Amplitude permeability versus AC field flux density (measured with ungapped E cores) 78 Siemens Matsushita Components

N 9 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of P, RM, PM and E cores ( B 0,2 mt, f = 10 khz, T = 2 C) DC magnetic bias of P, RM, PM and E cores ( B 0,2 mt, f = 10 khz, T = 100 C) Siemens Matsushita Components 79

N 9 Relative core losses versus AC field flux density (measured with R29 ring cores) Relative core losses versus temperature (measured with R29 ring cores) Relative core losses (measured with R29 ring cores) 80 Siemens Matsushita Components

N 49 Complex permeability (measured with R17 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R17 ring cores, B 0,2 mt) Amplitude permeability versus AC field flux density (measured with ungapped E cores) Siemens Matsushita Components 81

N 49 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of P, RM, PM and E cores ( B 0,2 mt, f = 10 khz, T = 2 C) DC magnetic bias of P, RM, PM and E cores ( B 0,2 mt, f = 10 khz, T = 100 C) 82 Siemens Matsushita Components

N 49 Relative core losses versus AC field flux density (measured with R17 ring cores) Relative core losses versus temperature (measured with R17 ring cores) Relative core losses (measured with R17 ring cores) Siemens Matsushita Components 83

N 3 Complex permeability (measured with R29 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R29 ring cores, B 0,2 mt) Amplitude permeability versus AC field flux density (measured with ungapped E and U cores) 84 Siemens Matsushita Components

N 3 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of P, RM, PM, E and U cores ( B 0,2 mt, f = 10 khz, T = 2 C) DC magnetic bias of P, RM, PM, E and U cores ( B 0,2 mt, f = 10 khz, T = 100 C) Siemens Matsushita Components 8

N 3 Relative core losses versus AC field flux density (measured with R17 ring cores) Relative core losses versus temperature (measured with R17 ring cores) Relative core losses (measured with R17 ring cores) 86 Siemens Matsushita Components

N 82 Complex permeability (measured with R29 ring cores) Initial permeability µ i versus temperature (measured with R29 ring cores) 10 4 FAL07-T 4000 FAL08-2 µ, µ 10 3 µ i 3000 10 2 2000 10 1 1000 µ µ 10 0 10 1 10 2 3 10 khz f 4 10 0-60 0 60 120 180 C 260 T Amplitude permeability versus AC field flux density (measured with R29 ring cores) 000 FAL09-A µ a 4000 3000 2000 1000 f = 10 khz 2 C 100 C 0 0 100 200 300 400 mt 00 B Siemens Matsushita Components 87

N 82 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) 0 mt B 40 T = 2 C f = 10 khz FAL060-D 40 mt B 30 T = 100 C f = 10 khz FAL061-L 30 20 20 10 0 B sat = 02 mt B r = 196 mt H c = 22 A/m 10 0 B sat = 418 mt B r = 87 mt H c = 14,6 A/m 0-200 0 400 800 A/m 1400 H 0-200 0 400 800 A/m 1400 H DC magnetic bias of E, ETD and U cores ( B 0,2 mt, f = 10 khz, T = 2 C) FAL062-U 000 µ rev 10 3 1800 1000 00 200 B <_ 0,2 mt f = 10 khz T = 2 C DC magnetic bias of E, ETD and U cores ( B 0,2 mt, f = 10 khz, T = 100 C) FAL063-3 000 3000 B _< 0,2 mt µ rev 1300 f = 10 khz 10 3 T = 100 C 60 220 10 2 100 0 10 2 100 60 1 10 10 1 10 2 10 3 4 A/m 10 H 1 10 10 1 10 2 10 3 A/m 20000 H 88 Siemens Matsushita Components

N 82 Relative core losses versus AC field flux density (measured with R29 ring cores) Relative core losses versus temperature (measured with R29 ring cores) 10 3 kw/m 3 FAL064-B 3 10 3 kw/m 200 mt FAL06-J PV 10 2 P V 2 10 100 mt 10 1 10 0 f = 100 khz 2 C 100 C 1 10 0 10 0 mt 2 mt f = 100 khz 10-1 10 1 2 10 mt B -1 10 20 40 60 80 100 C 120 T Relative core losses (measured with R29 ring cores) 10 4 FAL066-S 3 kw/m 200 mt 100 mt P V 3 10 300 mt 2 10 1 10 0 mt 2 mt 12. mt 0 10 2 C 100 C -1 10 10 1 10 2 khz 10 3 f Siemens Matsushita Components 89

N 62 Complex permeability (measured with R29 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R29 ring cores, B 0,2 mt) Amplitude permeability versus AC field flux density (measured with ungapped U cores) 90 Siemens Matsushita Components

N 62 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of E, ETD and U cores ( B 0,2 mt, f = 10 khz, T = 2 C) DC magnetic bias of E, ETD and U cores ( B 0,2 mt, f = 10 khz, T = 100 C) Siemens Matsushita Components 91

N 62 Relative core losses versus AC field flux density (measured with R29 ring cores) Relative core losses versus temperature (measured with R29 ring cores) Relative core losses (measured with R29 ring cores) 92 Siemens Matsushita Components

N 27 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R10 ring cores, B 0,2 mt) Amplitude permeability versus AC field flux density (measured with ungapped E cores) Siemens Matsushita Components 93

N 27 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of P, PM and E cores ( B 0,2 mt, f = 10 khz, T = 2 C) 94 Siemens Matsushita Components

N 27 Relative core losses versus AC field flux density (measured with R16 ring cores) Relative core losses versus temperature (measured with R16 ring cores) Relative core losses (measured with R16 ring cores) Siemens Matsushita Components 9

N 67 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R10 ring cores, B 0,2 mt) Amplitude permeability versus AC field flux density (measured with ungapped E cores) 96 Siemens Matsushita Components

N 67 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of P, RM, PM and E cores ( B 0,2 mt, f = 10 khz, T = 2 C) Siemens Matsushita Components 97

N 67 Relative core losses versus AC field flux density (measured with R16 ring cores) Relative core losses versus temperature (measured with R16 ring cores) Relative core losses (measured with R16 ring cores) 98 Siemens Matsushita Components

N 87 Complex permeability (measured with R29 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R29 ring cores, B 0,2 mt) Amplitude permeability versus AC field flux density (measured with ungapped E cores) Siemens Matsushita Components 99

N 87 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of P, RM, PM and E cores ( B 0,2 mt, f = 10 khz, T = 2 C) DC magnetic bias of P, RM, PM and E cores ( B 0,2 mt, f = 10 khz, T = 100 C) 100 Siemens Matsushita Components

N 87 Relative core losses versus AC field flux density (measured with R29 ring cores) Relative core losses versus temperature (measured with R29 ring cores) Relative core losses (measured with R29 ring cores) Siemens Matsushita Components 101

N 72 Complex permeability (measured with R29 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R29 ring cores, B 0,2 mt) Amplitude permeability versus AC field flux density (measured with ungapped U cores) 102 Siemens Matsushita Components

N 72 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of E cores ( B 0,2 mt, f = 10 khz, T = 2 C) DC magnetic bias of E cores ( B 0,2 mt, f = 10 khz, T = 100 C) Siemens Matsushita Components 103

N 72 Relative core losses versus AC field flux density (measured with R29 ring cores) Relative core losses versus temperature (measured with R29 ring cores) Relative core losses (measured with R29 ring cores) 104 Siemens Matsushita Components

N 41 Complex permeability (measured with R10 ring cores, B 0,2 mt) Initial permeability µ i versus temperature (measured with R10 ring cores, B 0,2 mt) Amplitude permeability versus AC field flux density (measured with ungapped E cores) Siemens Matsushita Components 10

N 41 (f = 10 khz, T = 2 C) (f = 10 khz, T = 100 C) DC magnetic bias of P and RM cores ( B 0,2 mt, f = 10 khz, T = 2 C) 106 Siemens Matsushita Components

N 41 Relative core losses versus AC field flux density (measured with R16 ring cores) Relative core losses versus temperature (measured with R16 ring cores) Relative core losses (measured with R16 ring cores) Siemens Matsushita Components 107

C 302 Complex permeability (measured with R20/10 ring cores, B 0,2 mt) Relative loss factor versus frequeny (measured with R20/10 ring cores, B 0,2 mt) 10 2 FAL081-1 µ s ; µ s 10 2 tan δ µ i 10 1 FAL082-9 10 1 10 0 10-1 10 0 µ µ 10-3 10-2 -1 10 10-1 10 0 10 1 10 2 MHz 10 3 f -4 10 10 0 10 1 10 2 MHz 10 3 f 108 Siemens Matsushita Components

Plastic Materials Plastic materials, manufacturers and UL numbers RM coil formers of thermosetting plastic with molded-in pins: Bakelite UP 3420 [E 61040 (M)], blue; Bakelite Pinned coil formers P9, P11 7, P14 8, P18 11, EP7 special coil former: AMC 268 [E 48036 (M)], blue; Synres Almoco EP, EFD coil formers: Vyncolit/X611/green [E16721 (M)]; Vyncolit RM, EP and EFD coil formers with post-inserted pins: Vyncolit/X611/green [E16721 (M)]; Vyncolit RM coil formers with post-inserted pins: Sumikon PM 9630 [E41429 (M)]; Sumitomo Bakelite RM power, P, PM, E, EF, EC, ETD, ER coil formers and terminal carriers P7 4, P9, P11 7, P36 22: Valox 420-SE0 [E 4329 (M)], black; General Electric Plastics Vestodur GF30-FR1 [E6664 (M)], black; Creanova Crastin CE 7931 [E 6978 (M)], black; DuPont Pocan 423 [E 41613 (M)], black; Bayer Amite TV4264SN [E 47960 (M)], black; DSM Terminal carrier P4,6 4,1: Luvocom 110/GF/20/EM [---], natural; Lehmann u. Voss & Co. Terminal carriers P14 8, P18 11, P22 13, P26 16, P30 19: Pocan 423 [E 41613 (M)], gray; Bayer SMD coil formers (except of ER11 coil former): Zenite 7130 [E 12398 (M)], black; DuPont ER11 SMD coil former : Sumika Super E4008 [E 470 (M)], black; Sumitomo Chemical Zenite 7130 [E 12398 (M)], black; DuPont Rights to change material reserved. Further information is given on the packing label. The trade names are registered trademarks of the listed manufacturers. Siemens Matsushita Components 109

S+M COMPONENTS Siemens Matsushita Components EMI suppression capacitors Play it safe Whether video recorder, television, refrigerator or toaster our EMI suppression capacitors do a grand job in every possible kind of entertainment and consumer electronics appliance. They ve also proven their worth in switch-mode power supplies for PCs. No wonder, because the advantages of film technology are there to be seen: low cost, no risk of failure through damp, and optimum selfhealing capability. The result less destruction of equipment and ensuing fires. Plus the line is safeguarded against surges. In this way our capacitors satisfy the user s need for safety, and the new EMC standards too of course. SCS dependable, fast and competent