Kinetic Model Parameter Estimation for Product Stability: Non-uniform Finite Elements and Convexity Analysis

Similar documents
A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter

Haar Basis Wavelets and Morlet Wavelets

7.3 The Jacobi and Gauss-Seidel Iterative Methods

ME5286 Robotics Spring 2017 Quiz 2

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

(1) Introduction: a new basis set

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Lecture 3 Optimization methods for econometrics models

SECTION 5: POWER FLOW. ESE 470 Energy Distribution Systems

Jasmin Smajic1, Christian Hafner2, Jürg Leuthold2, March 23, 2015

Work, Energy, and Power. Chapter 6 of Essential University Physics, Richard Wolfson, 3 rd Edition

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

A Posteriori Error Estimates For Discontinuous Galerkin Methods Using Non-polynomial Basis Functions

Time Domain Analysis of Linear Systems Ch2. University of Central Oklahoma Dr. Mohamed Bingabr

(1) Correspondence of the density matrix to traditional method

Lecture 3. STAT161/261 Introduction to Pattern Recognition and Machine Learning Spring 2018 Prof. Allie Fletcher

Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa

General Strong Polarization

Support Vector Machines. CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Math 171 Spring 2017 Final Exam. Problem Worth

Multiple Regression Analysis: Inference ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD

CSC 578 Neural Networks and Deep Learning

On one Application of Newton s Method to Stability Problem

CHAPTER 2 Special Theory of Relativity

Lecture No. 1 Introduction to Method of Weighted Residuals. Solve the differential equation L (u) = p(x) in V where L is a differential operator

General Strong Polarization

A new procedure for sensitivity testing with two stress factors

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Charge carrier density in metals and semiconductors

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds

Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics

(2) Orbital angular momentum

Approximate Second Order Algorithms. Seo Taek Kong, Nithin Tangellamudi, Zhikai Guo

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous

Statistical Learning with the Lasso, spring The Lasso

Sparse Sum-of-Squares Optimization for Model Updating through. Minimization of Modal Dynamic Residuals

CHAPTER 4 Structure of the Atom

On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time Delays

Elastic light scattering

An Efficient Algorithm For Weak Hierarchical Lasso. Yashu Liu, Jie Wang, Jieping Ye Arizona State University

Mixed-Integer Nonlinear Decomposition Toolbox for Pyomo (MindtPy)

Impact of Chamber Pressure on Sputtered Particle Energy

Estimation of cumulative distribution function with spline functions

Crash course Verification of Finite Automata Binary Decision Diagrams

Definition: A sequence is a function from a subset of the integers (usually either the set

CHEMISTRY Spring, 2018 QUIZ 1 February 16, NAME: HANS ZIMMER Score /20

Chem 263 Winter 2018 Problem Set #2 Due: February 16

Variable Selection in Predictive Regressions

Independent Component Analysis and FastICA. Copyright Changwei Xiong June last update: July 7, 2016

" = Y(#,$) % R(r) = 1 4& % " = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V,

Specialist Mathematics 2019 v1.2

Chapter 5: Spectral Domain From: The Handbook of Spatial Statistics. Dr. Montserrat Fuentes and Dr. Brian Reich Prepared by: Amanda Bell

The Bose Einstein quantum statistics

Prof. Dr.-Ing. Armin Dekorsy Department of Communications Engineering. Stochastic Processes and Linear Algebra Recap Slides

Gradient expansion formalism for generic spin torques

Data Preprocessing. Jilles Vreeken IRDM 15/ Oct 2015

PHY103A: Lecture # 4

Hopfield Network for Associative Memory

Comparison of Stochastic Soybean Yield Response Functions to Phosphorus Fertilizer

Entropy Enhanced Covariance Matrix Adaptation Evolution Strategy (EE_CMAES)

Angular Momentum, Electromagnetic Waves

Interaction with matter

Mathematics Ext 2. HSC 2014 Solutions. Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 keystoneeducation.com.

Property Testing and Affine Invariance Part I Madhu Sudan Harvard University

Parameter estimation and model discrimination of batch solid-liquid reactors

Lecture Notes to Big Data Management and Analytics Winter Term 2017/2018 Text Processing and High-Dimensional Data

CDS 101/110: Lecture 3.1 Linear Systems

Solar Photovoltaics & Energy Systems

James Thorson, Steve Munch, Jason Cope, Jin Gao

Passing-Bablok Regression for Method Comparison

Lise Meitner, Otto Hahn. Nuclear Fission Hans-Jürgen Wollersheim

Module 7 (Lecture 27) RETAINING WALLS

Sloppiness of nuclear structure models

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition

Numerical Analysis of the Non-Isothermal Flow of Polymeric Liquid between Two Coaxial Cylinders *

Chapter 22 : Electric potential

A linear operator of a new class of multivalent harmonic functions

Algebraic Codes and Invariance

Parameter Estimation for Reactor Models

General Strong Polarization

Simulating the Greenland Ice sheet over two glacial cycles:

Comparing Different Estimators of Reliability Function for Proposed Probability Distribution

Promotion Time Cure Rate Model with Random Effects: an Application to a Multicentre Clinical Trial of Carcinoma

Modeling of a non-physical fish barrier

Dan Roth 461C, 3401 Walnut

Heteroskedasticity ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

CS249: ADVANCED DATA MINING

SECTION 5: CAPACITANCE & INDUCTANCE. ENGR 201 Electrical Fundamentals I

Satellite and gauge rainfall merging using geographically weighted regression

Modeling and Optimization of Semi- Interpenetrating Polymer Network (SIPN) Particle Process

M.5 Modeling the Effect of Functional Responses

Transcription:

Kinetic Model Parameter Estimation for Product Stability: Non-uniform Finite Elements and Convexity Analysis Mark Daichendt, Lorenz Biegler Carnegie Mellon University Pittsburgh, PA 15217 Ben Weinstein, Robert Johnson, Steve Hodson Procter & Gamble West Chester, OH 45069 Fall EWO Meeting 21-22 September 2016

Motivation & Objective Consumer products may be subject to prolonged storage and transportation times Ensuring Product Quality and Stability is a critical and time-consuming activity Shelf-lives typically measured in years Need to understand impact of formula design on product performance and stability Undesirable chemical reactions may lead to product degradation Long time needed to collect data, which may have a low signal-to-noise ratio Develop a suite of modeling tools to support the development of new consumer products: Simulate product chemistry Design efficient experimental campaigns Discriminate among alternative models and estimate model parameters Understand the uncertainty associated with model predictions 2

Framework CheK is an easy-to-use model library in gproms, developed and maintained by P&G to: Encourage chemists to develop quantitative models of reaction networks Allow for any combination of 8 kinetic models to form a complex reaction network The reactor model is an isothermal batch reactor For Product Stability applications, optimization for Parameter Estimation and Design of Experiments has been challenging in gproms The goal is to extend the current CheK capability by interfacing it with enhanced optimization tools and methods: Integration using orthogonal collocation on finite elements Simultaneous NLP solution using s-ipopt Open source modeling package PyOMO within Python platform The deliverable will be a flexible and robust application that can be maintained by P&G 3

Full Product Life-Cycle Analysis 4

Detail 1a: Systematic Approach to Model Discrimination (if applicable) 5

Detail 1b: Systematic Approach to Parameter Estimation 6

Implemented Non-uniform Finite Element Length =1 throughout Size implication of test problem Experimental campaign length > 400 days Fixed-interval duration = 1 day Number of Experiments > 150 Potential number of sampling times > 60,000 Actual number of sampling times ~ 1000 Length of Variable Finite Element Length: Time between adjacent sampling times Some are as close as 1 day Others have spacing > 250 days Maximum Allowable Global Error Absolute Relative 0 1 2 3 4 t f = 1 = 3 = 1 = 4 is driven by sampling times and max max 0 1 4 max is based on meeting error tolerances and is calculated for each experiment t f 7

Residual-based and Global Error Estimate 1 Introduce a non-collocation point ττ nnnn tt nnnn = tt ii 1 + h ii ττ nnnn ττ nnnn 0,1 Determine the residual-based error estimate TT ii tt at ττ nnnn for the collocation polynomial of degree K TT ii ττ nnnn = ddzzkk ττ nnnn h ddττ ii ff zz KK ττ nnnn, yy KK ττ nnnn, pp The global error is related to the residual-based error ee ii tt CC TT ii ττ nnnn CC is given by: CC = 1 AA 0 ττ nnnn KK jj=1 KK AA = jj=1 ss ττ jj dddd ττ nnnn ττ jj 1 Biegler, L.T., Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes, MOS-SIAM, Philadelphia (2010) p. 297 8

---- 7445 PARAMETER h_init h days (25 FE max) ---- 7458 PARAMETER time_init t days ife EX1_10C EX1_30C EX1_50C ife EX1_10C EX1_30C EX1_50C 1 1.000 1.000 1.000 2 1.000 1.000 1.000 2 25.000 18.000 18.000 3 26.000 19.000 19.000 3 8.000 7.000 7.000 4 34.000 26.000 26.000 4 6.000 8.000 8.000 5 40.000 34.000 34.000 5 7.000 6.000 6.000 6 47.000 40.000 40.000 6 11.000 7.000 7.000 7 58.000 47.000 47.000 7 32.000 11.000 11.000 8 90.000 58.000 58.000 8 64.000 32.000 32.000 9 154.000 90.000 90.000 9 27.000 63.000 10.000 10 181.000 153.000 100.000 10 216.646 28.000 53.000 11 397.646 181.000 153.000 11 12.354 159.975 28.000 12 410.000 340.975 181.000 12 69.025 86.879 13 410.000 267.879 13 102.827 14 370.706 14 39.294 15 410.000 ife EX9_10C EX9_40C EX9_54C ife EX9_10C EX9_40C EX9_54C 1 1.000 1.000 1.000 2 1.000 1.000 1.000 2 9.000 9.000 18.313 3 10.000 10.000 19.313 3 7.000 7.000 8.687 4 17.000 17.000 28.000 4 11.000 11.000 34.626 5 28.000 28.000 62.626 5 32.000 32.000 46.222 6 60.000 60.000 108.848 6 64.000 10.000 59.529 7 124.000 70.000 168.376 7 14.000 54.000 74.238 8 138.000 124.000 242.614 8 12.000 14.000 86.977 9 150.000 138.000 329.591 9 207.028 13.000 80.409 10 357.028 151.000 410.000 10 52.972 107.717 11 410.000 258.717 11 138.491 12 397.208 12 12.792 13 410.000 9

uu 11 22 33 44 55 66 77 nn Bayesian Estimation from Multiresponse Data With Missing Observations 2 Example problem has two blocks of experiments with missing observations YY uuuu YY uuuu YY uuuu + + + + + + Two component concentrations are measured Two blocks of experiments Different sensors for same component measurement are treated as different responses Within a block there are sampling times with: Both component concentrations measured Only one or the other component concentration measured Within one of the blocks there are experiments where only one component concentration is measured Depending which experiments are selected, we could have one, two, three, or four responses Automatically determined YY uuuu + + + + + 2 Stewart, W.E. and Sørensen, J.P., Bayesian Estimation of Common Parameters from Multiresponse Data with Missing Observations, Technometrics, 23 (1981) p. 131-141 10

Simultaneous Estimation of Model and Variance-Covariance Parameters (2x2 case) Generalized sum-squared error objective function SS ψψ = SS θθ, σσ = mm + 1 ln σσ + nn uu=1 mm σσ iiii uu YY uuuu ff uuuu θθ ii=1 mm jj=1 nn uu=1 YY uuuu ff uuuu θθ ln σσ uu + Relationship among σσ, σσ uu, and σσ uu iiii for 2x2 case. This is generically calculated using Cholesky factorization for any m. σσ = σσ 11 σσ 12 σσ 21 σσ 22 σσ 11, σσ 22 > 0 σσ 12 = σσ 21 σσ uu +0 = σσ 11 0 0 1 1 = 1 σσ 11 0 0 1 σσ uu +0 σσ 1 uu ++ σσ uu ++ = σσ 11 σσ 12 σσ 21 σσ σσ uu +0 = 1 0 22 0 σσ 22 = 1 σσ σσ 22 σσ 12 σσ 21 σσ 11 σσ uu 0+ 1 = 1 0 0 1 σσ 22 11

Estimability: Convexity of Reduced Hessian Confirm that reduced Hessian is positive definite to Assure convergence to a local solution Determine confidence limits (parameter is estimable) Generalized sum-squared error introduces additional nonconvexities (compared to σσ known and fixed a priori) Proposedsequential optimization σσ for fixed θθ θθ for fixed σσ Simultaneously optimize σσ and θθ when nearly converged Combine the two ideas: Optimize over the full set of θθ and σσ Analyze the reduced Hessian to determine if positive definite (PD) If not, determine the largest subset of parameters for which reduced Hessian is PD λλ ssssssssssss mmmmmm If more than one combination, chose smallest ssssssssssss λλ mmmmmm Continue optimization over subset θθ and σσ, repeating if necessary 12

ψψ l kk = θθ l kk σσ l kk k = 0 l = 00 Algorithm Initial Model Parameters θθ 00 00 Initialize Variance Covariance Parameters σσ 00 00 00 for fixed θθ 00 min SS θθ, σσ = SS ψψ σσ k = 1 Optimize Model Parameters θθ kk kk 11 l for fixed σσ l min SS θθ, σσ θθ k = 1 Note, for results presentation on next slide, the Sequential-Simultaneous approach is shown for the 1 st iteration for purposes of illustration. Optimize Variance Covariance Parameters σσ kk kk l for fixed θθ l min SS θθ, σσ σσ If multiple subsets exist ψψ 00 l = ψψ 00 l min l λλ mmmmmm l λλ mmmmmm l For this example problem, directly applying the simultaneous approach gave an initial reduced Hessian with fewer negative eigenvalues, so the simultaneous approach was applied to generate the reduced Hessians. ψψ l kk ψψ l kk 11 YES ψψ kk l εε ψψ NO k = k+1 Find largest subset(s) of θθ 00 l θθ kk+11 l 11 and σσ 00 kk+11 l σσ l 11 For PD reduced Hessian NO l = l + 11 At this stage, however, we can t generalize whether Seq-Sim or direct Sim will be better all problems. Simultaneously optimize θθ kk+11 kk+11 l and σσ l min SS ψψ ψψ Is Reduced Hessian Positive Definite? YES Stop Determine Confidence Intervals 13

Implemented Non-uniform finite elements Summary Balances error tolerances and matching sampling times Parameter estimation for multiresponse data with missing observations and unknown variance/covariance Sequential-simultaneous solution approach to deal with potential nonconvexities Observed sequential approach s convergence to optimal solution For example problem, direct simultaneous approach is adequate. Convexity analysis of reduced Hessian Next step Optimize on subset (if necessary) of estimable parameters Integrate prior work developed for Design of Experiments for Parameter Estimation Port capability to PyOMO, leveraging s-ipopt 14

1 st Iteration l = 0 Seq-Sim followed by all Sim-Only Iterations l = 0, 1, 2 InitVC - Seq - Sim k=0a, l=0 k=0b, l=0 k=1a, l=0 k=1b, l=0 k=2a, l=0 k=2b, l=0 k=3, l=0 Sim, l=0 Sim, l=1 Sim, l=2 Variable Initial OptVC0 OptMP1 OptVC1 OptMP2 OptVC2 OptALL OptALL 3MP 2VC 2MP 3VC ln_keq -3.000-5.351-6.090-8.105-8.105-8.105-8.105 Eact 50000 60235 56909 59304 59304 59304 59304 ln_k_f -12.000-12.375-12.610-12.422-12.422-12.422-12.422 ln_k -12.000-38.369-38.369-38.368-36.530-36.536-36.530 vc_11 1.000000 0.009774 0.003456 0.001453 0.000341 0.000341 0.000341 0.000341 vc_22 1.000000 0.463976 0.369184 0.384729 0.439630 0.439630 0.439630 0.439630 vc_21 0.000000 0.056194 0.027466 0.016101-0.001719-0.001719-0.001719-0.001719 sse 290.31 218.35 217.37 216.81 216.81 216.81 216.81 (m+1)*ln(det(vc)) 0.00-19.76-22.68-24.34-26.48-26.48-26.48-26.48 Sum(u, ln(det(vc(u)))) 0.00-3066.12-3629.77-3979.72-4494.27-4494.27-4494.27-4494.27 Sum( uij, sig(uij)*e(ui)*e(uj)) 290.31 1006.00 690.02 1006.00 850.47 1006.00 1006.00 1006.00 1006.00 1006.00 S(theta,sigma) 290.31-2079.88-2395.86-2646.45-2801.97-2998.06-3514.75-3514.75-3514.75-3514.75 15

Convexity Analysis for Reduced Hessians Reduced Hessian for Four Model Parameters and Three Variance-Covariance Parameters rh7 ln_k_eq Eact_rr ln_k_rr ln_k_sr s_vc_11 s_vc_22 s_vc_21 - EvalrH7 EvalrHmp EvalrHvc ln_k_eq 1.45E+06-1.11E+02-4.92E+05-8.93E+04-6.60E+06-4.59E+06-6.63E+06-1.32E+08-7.96E-02 Eact_rr -1.11E+02 3.41E-02-7.55E+01-1.37E+01-1.01E+03-7.04E+02-1.01E+03 1.11E-02 2.03E+04 ln_k_rr -4.92E+05-7.55E+01 6.67E+05-6.07E+04-4.48E+06-3.11E+06-4.48E+06 3.62E+04 4.52E+05 ln_k_sr -8.93E+04-1.37E+01-6.07E+04 4.33E+04-8.18E+05-5.65E+05-8.12E+05 6.09E+05 1.69E+06 s_vc_11-6.60e+06-1.01e+03-4.48e+06-8.18e+05 1.02E+10-4.27E+08 1.62E+09 1.76E+06-3.24E+08 s_vc_22-4.59e+06-7.04e+02-3.11e+06-5.65e+05-4.27e+08 5.93E+08-4.19E+07 5.75E+08 4.50E+05 s_vc_21-6.63e+06-1.01e+03-4.48e+06-8.12e+05 1.62E+09-4.19E+07 1.25E+08 1.05E+10 1.43E+10 B1 Eact_rr ln_k_rr ln_k_sr EvalB1 Reduced Hessian for Three Model Parameters and Two Variance-Covariance Parameters Eact_rr 3.41E-02-7.55E+01-1.37E+01 1.44E-02 rh5 ln_k_eq ln_k_rr ln_k_sr s_vc_11 s_vc_22 EvalrH5 EvalrH3mp evalrh2vc ln_k_rr -7.55E+01 6.67E+05-6.07E+04 3.75E+04 ln_k_eq 7.91E+02 2.35E+02 8.56E+04-5.40E+03 1.25E+03-1.26E+05-1.26E+05 ln_k_sr -1.37E+01-6.07E+04 4.33E+04 6.73E+05 ln_k_rr 2.35E+02 8.64E+02 5.82E+04-5.19E+03 1.06E+03 6.23E+02 6.23E+02 EvalRatio 4.68E+07 ln_k_sr 8.56E+04 5.82E+04-4.15E+04 7.78E+05 5.42E+05 8.52E+04 8.55E+04 s_vc_11-5.40e+03-5.19e+03 7.78E+05 1.01E+10-3.85E+08 5.20E+08 5.20E+08 B2 ln_k_eq ln_k_rr ln_k_sr EvalB2 s_vc_22 1.25E+03 1.06E+03 5.42E+05-3.85E+08 5.35E+08 1.01E+10 1.01E+10 ln_k_eq 1.45E+06-4.92E+05-8.93E+04 2.03E+04 ln_k_rr -4.92E+05 6.67E+05-6.07E+04 4.52E+05 ln_k_sr -8.93E+04-6.07E+04 4.33E+04 1.69E+06 Subset ln_k_eq ln_k_rr EvalrH2mp EvalRatio 8.34E+01 ln_k_eq 7.91E+02 2.35E+02 5.90E+02 ln_k_rr 2.35E+02 8.64E+02 1.06E+03 B3 ln_k_eq Eact_rr ln_k_sr EvalB3 ln_k_eq 1.45E+06-1.11E+02-8.93E+04 1.44E-02 Reduced Hessian for Two Model Parameters and Two Variance-Covariance Parameters / Inverse Eact_rr -1.11E+02 3.41E-02-1.37E+01 3.77E+04 rh4 ln_k_eq ln_k_rr s_vc_11 s_vc_22 EvalrH4 ln_k_sr -8.93E+04-1.37E+01 4.33E+04 1.46E+06 ln_k_eq 5.93E+02 2.01E+02-4.95E+03 3.75E+03 3.67E+02 EvalRatio 1.01E+08 ln_k_rr 2.01E+02 5.46E+02-5.19E+03 1.70E+03 7.72E+02 s_vc_11-4.95e+03-5.19e+03 1.01E+10-3.85E+08 5.20E+08 B4 ln_k_eq Eact_rr ln_k_rr EvalB4 s_vc_22 3.75E+03 1.70E+03-3.85E+08 5.35E+08 1.01E+10 ln_k_eq 1.45E+06-1.11E+02-4.92E+05-3.73E-05 Eact_rr -1.11E+02 3.41E-02-7.55E+01 4.30E+05 ln_k_rr -4.92E+05-7.55E+01 6.67E+05 1.69E+06 InvrH4 ln_k_eq ln_k_rr s_vc_11 s_vc_22 ln_k_eq 1.93E-03-7.10E-04 1.55E-10-1.11E-08 ln_k_rr -7.10E-04 2.09E-03 6.83E-10-1.17E-09 rhvcii s_vc_11 s_vc_22 EvalrHv0 s_vc_11 1.55E-10 6.83E-10 1.02E-10 7.32E-11 s_vc_11 1.02E+10-4.27E+08 5.74E+08 s_vc_22-1.11e-08-1.17e-09 7.32E-11 1.92E-09 s_vc_22-4.27e+08 5.93E+08 1.02E+10 16

Results of Test Problem AA + BB CC AA + DD EE Optimization is performed in transformed variable space (e.g. ln_k_eq, ln_k_rr, ln_k_sr, ln_conc, but Eact_rr). The 95% confidence intervals shown here are transformed into physical variable space and are not symmetric. Note that the confidence intervals for concentration are relative to the measured concentration. Optimum Lower Upper Keq 3.02E-04 2.77E-04 3.29E-04 Eact 59304 NA NA k_rr 4.03E-06 3.68E-06 4.41E-06 k_sr 1.37E-16 NA NA Sqrt(sig11)/c1 0.01846 0.01829 0.01863 Sqrt(sig22)/c2 0.7127 0.4847 0.9407 17

Results of Test Problem EX5 18

Results of Test Problem EX11 19