PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Revised by Prof. Jang, CAU

Similar documents
Chapter 5. Curve fitting

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

Given a table of data poins of an unknown or complicated function f : we want to find a (simpler) function p s.t. px (

Basic Concepts in Numerical Analysis November 6, 2017

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Data Processing Techniques

A class of efficient Ratio type estimators for the Estimation of Population Mean Using the auxilliary information in survey sampling

CS5620 Intro to Computer Graphics

Numerical Analysis Formulae Booklet

SYSTEMS OF NON-LINEAR EQUATIONS. Introduction Graphical Methods Close Methods Open Methods Polynomial Roots System of Multivariable Equations

Introduction to Numerical Differentiation and Interpolation March 10, !=1 1!=1 2!=2 3!=6 4!=24 5!= 120

L5 Polynomial / Spline Curves

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific

ENGI 4430 Numerical Integration Page 5-01

Chapter 12-b Integral Calculus - Extra

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

Lecture 5: Interpolation. Polynomial interpolation Rational approximation

ESS Line Fitting

Chapter Simpson s 1/3 Rule of Integration. ( x)

Numerical Analysis Topic 4: Least Squares Curve Fitting

Analysis of Lagrange Interpolation Formula

4 Round-Off and Truncation Errors

Analyzing Control Structures

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

General Method for Calculating Chemical Equilibrium Composition

Chapter Newton-Raphson Method of Solving Simultaneous Nonlinear Equations

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Numerical Differentiation

Supervised learning: Linear regression Logistic regression

Numerical Differentiation and Integration

Computer Graphics. Geometric Modeling. Geometric Modeling. Page. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion

Numerical Differentiation

Homework Assignment Number Eight Solutions

Computational Methods CMSC/AMSC/MAPL 460. Quadrature: Integration

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Simple Linear Regression

Reaction Time VS. Drug Percentage Subject Amount of Drug Times % Reaction Time in Seconds 1 Mary John Carl Sara William 5 4

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I

Lecture 26 Finite Differences and Boundary Value Problems

Chapter 3. Differentiation 3.3 Differentiation Rules

7.0 Equality Contraints: Lagrange Multipliers

CS321. Introduction to Numerical Methods

1 0, x? x x. 1 Root finding. 1.1 Introduction. Solve[x^2-1 0,x] {{x -1},{x 1}} Plot[x^2-1,{x,-2,2}] 3

On the convergence of derivatives of Bernstein approximation

r 1,2 = a 1 (a 2 2 4a 2 a 0 )

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Line Fitting and Regression

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0.

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients

Linear Approximating to Integer Addition

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

Simple Linear Regression Analysis

Outline. Numerical Heat Transfer. Review All Black Surfaces. Review View Factor, F i j or F ij. Review Gray Diffuse Opaque II

Numerical Differentiation

Numerical Interpolation with Polynomials Approximation and Curve Fitting, Focus the MATLAB

QR Factorization and Singular Value Decomposition COS 323

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

Chapter 5: Take Home Test

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q &

Problem Set 4 Solutions

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Initial-Value Problems for ODEs. numerical errors (round-off and truncation errors) Consider a perturbed system: dz dt

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

8 The independence problem

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Current Programmed Control (i.e. Peak Current-Mode Control) Lecture slides part 2 More Accurate Models

Chapter 5 Properties of a Random Sample

Objectives of Multiple Regression

CH E 374 Computational Methods in Engineering Fall 2007

r y Simple Linear Regression How To Study Relation Between Two Quantitative Variables? Scatter Plot Pearson s Sample Correlation Correlation

15-381: Artificial Intelligence. Regression and neural networks (NN)

Topic 9 - Taylor and MacLaurin Series

Binary classification: Support Vector Machines

Optimal MinMax Problems Regarding Capitalization of Compound Interest

ENGI 4421 Propagation of Error Page 8-01

CHAPTER 5 Vectors and Vector Space

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

Mu Sequences/Series Solutions National Convention 2014

Lecture 07: Poles and Zeros

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Model Fitting, RANSAC. Jana Kosecka

y y ˆ i i Difference between

Chapter Gauss-Seidel Method

Section 3. Measurement Errors

1 Lyapunov Stability Theory

NUMERICAL DIFFERENTIAL 1

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Comparison of Four Methods for Estimating. the Weibull Distribution Parameters

Phys 2310 Fri. Oct. 23, 2017 Today s Topics. Begin Chapter 6: More on Geometric Optics Reading for Next Time

Maximum Likelihood Estimation

Applied Fitting Theory VII. Building Virtual Particles

Signal Recovery - Prof. S. Cova - Exam 2016/02/16 - P1 pag.1

MONOPOLISTIC COMPETITION MODEL

Interval Valued Fuzzy Neutrosophic Soft Structure Spaces

Transcription:

Part 4 Capter 6 Sple ad Peewe Iterpolato PowerPot orgazed y Dr. Mael R. Gutao II Duke Uverty Reved y Pro. Jag CAU All mage opyrgt Te MGraw-Hll Compae I. Permo requred or reproduto or dplay.

Capter Ojetve Udertadg d tat t ple mmze ollato y ttg lower-order polyomal to data a peewe ao. Kowg ow to develop ode to perorm tale lookup. Reogzg wy u polyomal are preerale to quadrat ad ger-order ple. Udertadg d te odto tat t uderle a u t. Udertadg te deree etwee atural lamped ad ot-a-kot ed odto. Kowg ow to t a ple to data wt MATLAB ult- uto. Udertadg d ow multdmeoal l terpolato t mplemeted wt MATLAB.

Itroduto to Sple - t order polyomal l a lead to erroeou reult eaue o roud-o error ad ollato. A alteratve approa to apply lower- order polyomal a peewe ao to uet o data pot. Tee oetg polyomal are alled ple uto. Trd order urve are alled u ple. Sple mmze ollato ad redue roud-o error due to ter lower-order ature.

Hger Order v. Sple Sple elmate ollato y ug mall uet o pot or ea terval rater ta every pot. T epeally ueul we tere are jump te data: a rd order polyomal 5 t order polyomal l 7 t order polyomal d Lear ple eve t order polyomal geerated y ug par o pot at a tme A mu more aeptale auray

Lear Sple Lear Sple For data pot tere are - terval ad ea terval a t ow l t F l l t l t ple uto. For lear ple ea uto merely te tragt le oetg te two pot et ea ed o te terval. Lear ple uto a e ormulated a a a Iterept ad te lope are Kot Lear ple uto amout to Newto rt-order polyomal Lear ple uto amout to Newto rt-order polyomal.

Eample 6. Q. Ft te data elow wt rt-order ple ad Evaluate te uto at =5.. 4.5.5. 4 7. 9..5.5 Soluto or te eod terval rom 4.5 to 7. te uto.5.. 4.5. 7. 4.5 5

Sple Developmet a Frt-order ple d tragt-le equato etwee ea par o pot tat Go troug te pot Prmary dadvatage: tey are ot moot. - > at te pot kot were te two ple meet te lope age aruptly. rt dervatve are ot otuou at te kot Seod-order ple d quadrat equato etwee ea par o pot tat Go troug te pot Cotuou rt dervatve at te teror pot Trd-order d ple d u equato etwee ea par o pot tat Go troug te pot Cotuou rt ad eod dervatve at te teror pot Note tat te reult o u ple terpolato are deret rom te reult o a terpolatg u.

Quadrat Sple To eure tat te t dervatve are otuou at te kot a ple o at leat + order mut e ued. Te quadrat ple ould ave otuou rt dervatve at te kot. For data pot tere are - terval ad oequetly - ukow oeet tat eed to e oud. a

Quadrat Sple Quadrat Sple. Cotuty odto: Te uto mut pa troug all te t T t d d t pot. Te umer o oeet redued to -. a or l dj l l l a a. Te uto value o adjaet polyomal mut e equal at te kot. or equato o tere are - remag odto. o tere are remag odto.

Quadrat Sple. Te rt dervatve at te teror ode mut e otuou. -> - equato -> > = -> oly oe more equato eed e determed. or 4. Aume tat t te eod dervatve zero at te rt pot. -> te rt two pot are oeted wt a tragt le. -> Lear equato A = rgt ad de vetor were ot o ad.

Eample 6. / Q. Ft te quadrat ple to te ame data ued E. 6.. Ue te reult to etmate te value at =5.. 4.5 7. 4.5..5 4 9 9. 5.5

Eample 6. / Soluto we ave our pot ad = terval. Ater applyg te otuty equato ad te zero eod-dervatve odto -=5 oeet e eed to e olved. 4.5 4.5..5. 7. 4.5.5.5 9. 7.. 4.5

Eample 6. /.5.5.5 6.5.5 4.64.. 6 5.5. 4.5.64 4.5 5. 5 4.5.645 4.5.5. 7..6 7..66 Tere are two ortomg rom quadrat ple:. Stragt le oetg te rt two pot.. Te ple or te lat terval eem to wg too g. -> Cu ple do ot et tee prolem.

Cu Sple Wle data o a partular ze preet may opto or te order o ple uto u ple are preerred eaue tey provde te mplet repreetato tat et te dered appearae o moote. Lear ple ave dotuou rt dervatve Quadrat ple ave dotuou eod dervatve ad requre ettg te eod dervatve at ome pot to a pre-determed value *ut* Quadrat or ger-order ple ted to et te talte eret ger order polyomal ll-odtog or ollato

Cu Sple ot I geeral te t ple uto or a u ple a e wrtte a: a d For data pot tere are - terval ad tu 4- ukow to evaluate to olve all te ple uto oeet. Cotuty odto eed to e ated ad rt dervatve ad eod dervatve eed to e otuou at teror pot. -> greatly eae te moote.

Solvg Sple Coeet g p Oe odto requre tat te ple uto goe troug te rt ad lat pot o te terval yeldg - equato o te orm: equato o te orm: or or a Aoter requre tat te rt dervatve otuou at d a Aoter requre tat te rt dervatve otuou at ea teror pot yeldg - equato o te orm: or d A trd requre tat te eod dervatve otuou at ea teror pot yeldg - equato o te orm: or d ea teror pot yeldg equato o te orm: 6 or d Tee gve 4-6 total equato ad two addtoal equato are eeded!

Solvg Sple Coeet Solvg Sple Coeet Ug te two equato Ug te two equato d Te mpled equato are gve y -> - multaeou trdagoal equato or g q wt - ukow oeet. I we ave two addtoal odto we a ave two addtoal odto we a olve or te.

Two Addtoal Equato Tere are everal opto or te al two equato: Natural ed odto - aume te eod ddervatve at tte ed kot are zero. Clamped ed odto - aume te rt dervatve at te rt ad lat kot are kow. Not-a-kot ed odto - ore otuty o te trd dervatve at te eod ad te et-to-lat to kot. reult te rt two terval avg te ame ple uto ad te lat two terval avg te ame ple uto

Commoly Ued Ed Codto Codto Frt ad Lat Equato Natural ] [ ] [ Clamped were ' ad ' are te peed rt dervatve at te rt ad lat ode repetvely ] [ p y Not-a-kot

Natural Cu Sple Natural Cu Sple Te eod dervatve at te rt ode equal to zero a 6 d 6 d d q Te eod dervatve at te lat ode equal to zero a 6 d d Te al equato a ow e wrtte matr orm a ] [ ] [ ] [ ] [

Eample 6. / p / Q. Ft u ple to te ame data ued E.5.. Ue te reult to etmate te value at = 5. Sol. ] [ ] [ ] [ ] [ 4 4 5 5 4 7.5. 4.5.5 8 4 5 8 5.5. 7. 9..5.5 4.5 7.. 4 4.8 4.8 9.5.5 8.5 4.7665994.895476 4

.497786 d.645674 6 4 d Eample 6. /.5 d.895476.444487.7756654.5.497786.895476..645674 4.5.895476 4.5.444487 4.5.7756654 7..5.5 7..7665994 7. 5..6456745 4.5.8954765 4.5.4444875 4.5.8897488974

Peewe Iterpolato MATLAB opto MATLAB a everal ult- uto to mplemet peewe terpolato. Te rt ple: yy=ple y T perorm u ple terpolato geerally ug ot-a-kot odto. I y ota two more value ta a etre te te rt ad lat value y are ued a te dervatve at te ed pot.e. lamped

Not-a-kot Sple Eample opto Geerate data: = lpae- 9; y =./+5*.^; Calulate model pot ad determe ot-a-kot terpolato = lpae- ; yy = ple y ; Calulate atual uto value at model pot ad data pot te 9-pot ot-a-kot terpolato old ad te atual uto daed d yr =./+5*.^ plot y o yy - yr --

Clamped Sple Eample opto Geerate data w/ rt dervatve ormato: = lpae- 9; y =./+5*. ^; y = [ y -4] Calulate model pot ad determe ot-a-kot terpolato = lpae- ; yy = ple y ; Calulate atual uto value at model pot ad data pot te 9-pot lamped terpolato old ad te atual uto daed yr =./+5*.^ plot y o yy - yr --

MATLAB terp Futo opto Wle ple a oly perorm u ple MATLAB terp uto a perorm everal deret kd o terpolato: y = terp y metod & y ota te orgal data ota te pot at w to terpolate metod a trg otag te dered metod: earet - earet egor terpolato lear - oet te pot wt tragt le ple - ot-a-kot u ple terpolato pp or u - peewe u Hermte terpolato

Peewe Polyomal Comparo opto