Wind direction measures in degrees Occasion described with codes, when is calm or variable wind. Explanation

Size: px
Start display at page:

Download "Wind direction measures in degrees Occasion described with codes, when is calm or variable wind. Explanation"

Transcription

1 Introduction The searching results explanations of meteorological data Depending on the parameter, the instrumental measuring or visual observation method is used for the meteorological observations. Instrumentally measured results are recorded in a digital format with respective units, but the visual results of the observations are recorded in coded form. Separated meteorological parameters is measured instrumental and in data searching results information is described in coded form or casts further light on the results And they are: wind direction; precipitation amount. Information from data searching results is described with codes these visually observed meteorological parameters: state of ground surface; snow cover vicinity extent; amount of cloud and its type; weather. All meteorological observations/measurements results are offered by Latvian time (winter or summer), except sunshine duration and solar radiation data that are offered by a true solar time (depending on the geographical location of each station and the position of the sun in the sky. Wind direction Wind direction measures in degrees Occasion described with codes, when is calm or variable wind. Precipitation amount Code 0 Calm 999 Variable Precipitation amount is offered by 3 parameters: precipitation amount between terms; precipitation amount, ly sum; precipitation amount by pluviograph Explanation Parameter Precipitation amount between terms is measured manually at fixed observation term and characterized precipitation amount sum observation term interval. Parameter Precipitation amount, ly sum is measured automatically and characterized precipitation amount sum every. Parameter Precipitation amount by pluviograph is registered continuous mode in time period from May 1st to October 31st (when air minimal temperature is stable above 0 C) and characterized precipitation amount sum from rain beginning to the end of every 10 minutes interval Occasions are not registered, when rain precipitation amount is not over 2.5 mm. Below is given explanation for special records meaning in results field. Parameter explanation Record in Precipitation amount Precipitation amount, results field between terms ly sum 0 Precipitation trace 1 Both precipitation trace, and no precipitation Precipitation amount by pluviograph Empty field No precipitation lack data No precipitation or rain precipitation amount was not over 25 mm measurement is rejected 2 1 Precipitation trace precipitation amount less than 0.05 mm; 2 In the case of rejected data at the end of rain indicates the precipitation sum of one rain, which is measured manually between observations terms. LEGMC The searching results explanations of meteorological data 1

2 State of ground surface State of ground surface is described coded form. Snow cover vicinity extent Description of state of ground Code surface 0 Dry 1 Moist 2 Wet, pools 3 Flooded 4 Frozen 5 Snow 10% in vicinity 6 Very dry Snow cover vicinity extent is estimated visually according to 10 ball scale For coding are used numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 which shows, that ground surface is covered with snow respectively 10, 20, 30, 40, 50, 60, 70, 80, 90 un 100% of visible vicinity of station. Amount of cloud Amount of cloud is estimated in balls amount of total cloud and amount of low cloud. Cloud type Amount of cloud, ball Sky coverage Weather condition description 0 No clouds, sky clear, sunny 1 No significant clouds, separately clouds 2 3 Few clouds, the sun is shining 4 Variable amount of cloud; sunny day, however, occasionally the sky is covered with clouds; the sky is 5 partly cloudy Mostly cloud, sometimes sun is shining; broken clouds 9, 12 Cloudy, translucent clouds Overcast, the sky is covered with thick/dark/rainy clouds, the sky is covered with thick clouds Clouds cannot be seen because of fog, snowstorm and other phenomena Cloud type are described in coded form for low, middle and high clouds. Low clouds type Middle clouds type High clouds type Code Name Code Name Code Name 0 No clouds 0 No clouds 0 No clouds 1-2 Cumulus 1 Altostratus 1-4 Cirrus 3, 9 Cumulonimbus 2 Altostratus/Nimbostratus 5-8 Cirrostratus 4-5 Stratocumulus 3-6,8,9 Altocumulus 9 Cirrocumulus 6-7 Stratus 7 Altostratus/Altocumulus 8 Startocumulus/ Cumulus LEGMC The searching results explanations of meteorological data 2

3 Weather conditions Weather conditions characterizes atmospheric phenomena and cloudy changes, information is written in code form. Weather conditions are offered in the form of 3 parameters: Present weather; Past weather 1; Past weather 2. Parameter Present weather characterizes weather conditions 10 minutes before observation term and what weather conditions has been one before term or during the preceding. Parameters Past weather 1 and Past weather 2 characterizes weather conditions between observation terms. Code 00 Cloud development not observed or not observable 01 Clouds generally dissolving or becoming less developed 02 State of sky on the whole unchanged 03 Clouds generally forming or developing Characteristic change of the state of sky during the past 04 Visibility reduced by smoke (forest fires, industrial smoke) at the observation term or/and during the preceding (at the station or visible distance) 05 Haze at the observation term or/and during the preceding (at the station or visible distance) 06 Widespread dust in suspension in the air, not raised by wind at or near the station at the time of observation 07 Dust or sand raised by wind at or near the station at the time of observation, but no well-developed dust whirl(s) or sand whirl(s), and no duststorm or sandstorm seen; or, in the case of ships, blowing spray at the station 08 Well-developed dust whirl(s) or sand whirl(s) seen at or near the station during the preceding or at the time of observation, but no duststorm or sandstorm 09 Duststorm or sandstorm within sight at the time of observation, or at the station during the preceding 10 Mist (visibility 1 km) at the observation term (at the station or visible distance) 11 Shallow fog/ice fog - patches (not deeper than 2 m on land) at the observation term (at the station or visible distance) 12 Shallow fog - dense layer (not deeper than 2 m on land) at the observation term (at the station visible distance) 13 Lightning visible at the observation term (at the station or visible distance), no thunder heard 14 Precipitation within sight, not reaching the ground or the surface of the sea at the observation term visible distance, but not at the station 15 Precipitation within sight, reaching the ground or the surface of sea at the observation term visible distance, but not at the station (distant 5 km from station) 16 Precipitation within sight, reaching the ground or the surface of sea at the observation term near to, but not at the station 17 Thunderstorm (near or distant) at the observation term, but no precipitation at the time of observation 18 Squalls at the observation term or/and during the preceding 19 Water spout at the observation term or/and during the preceding 30 Slight, moderate dust-, sandstorm without precipitation at the observation term has decreased during the preceding 31 Slight, moderate dust-, sandstorm without precipitation at the observation term no appreciable change during the preceding 32 Slight, moderate dust-, sandstorm without precipitation at the observation term has begun or has increased during the preceding LEGMC The searching results explanations of meteorological data 3

4 Code 33 Heavy dust-, sandstorm without precipitation at the observation term has decreased during the preceding 34 Heavy dust-, sandstorm without precipitation at the observation term no appreciable change during the preceding 35 Heavy dust-, sandstorm without precipitation at the observation term has begun or has increased during the preceding 36 Slight or moderate drifting snow at the observation term (generally low/below eye level) 37 Heavy drifting snow at the observation term (generally low/below eye level) 38 Slight or moderate drifting blowing or blowing snow with or without precipitation at the observation term (generally high/above eye level) 39 Heavy drifting blowing or blowing snow with or without precipitation at the observation term (generally high/above eye level) 40 Fog or icy fog at the observation term visible distance from station 41 Fog or icy fog in patches at the observation term at a visible distance from station 42 Fog or icy fog at station at the observation term, sky visible and has become thinner during the preceding 43 Fog or icy fog at station at the observation term, sky invisible and has become thinner during the preceding 44 Fog or icy fog at station at the observation term, sky was visible and no appreciable change during the preceding 45 Fog or icy fog at station at the observation term, sky invisible and no appreciable change during the preceding 46 Fog or icy fog at station at the observation term, sky visible and has begun or has thicker during the preceding 47 Fog or icy fog at station at the observation term, sky invisible and has begun or has thicker during the preceding 48 Fog, depositing rime at station at the observation term and sky visible 49 Fog, depositing rime at station at the observation term and sky invisible 50 Slight, not freezing drizzle at the observation term, intermittent during preceding 51 Slight, not freezing drizzle at the observation term, continuous during preceding 52 Moderate, not freezing drizzle at the observation term, intermittent during preceding 53 Moderate, not freezing drizzle at the observation term, continuous during preceding 54 Heavy, not freezing drizzle at the observation term, intermittent during preceding 55 Heavy, not freezing drizzle at the observation term, continuous during preceding 56 Slight, freezing drizzle and glaze formed at the observation term 57 Moderate or heavy, freezing drizzle and glaze formed at the observation term 58 Slight drizzle with rain at the observation term 59 Moderate or heavy drizzle with rain at the observation term 60 Slight, not freezing rain at the observation term, intermittent during preceding 61 Slight, not freezing rain at the observation term, continuous during preceding 62 Moderate, not freezing rain at the observation term, intermittent during preceding 63 Moderate, not freezing rain at the observation term, continuous during preceding 64 Heavy, not freezing rain at the observation term, intermittent during preceding 65 Heavy, not freezing rain at the observation term, continuous during preceding 66 Slight, freezing rain and glaze formed at the observation term LEGMC The searching results explanations of meteorological data 4

5 Code 67 Moderate or heavy, freezing rain and glaze formed at the observation term 68 Slight rain or drizzle and snow at the observation term 69 Moderate or heavy rain or drizzle and snow at the observation term 70 Slight, not freezing snow at the observation term, intermittent during preceding 71 Slight, not freezing snow at the observation term, continuous during preceding 72 Moderate, not freezing snow at the observation term, intermittent during preceding 73 Moderate, not freezing snow at the observation term, continuous during preceding 74 Heavy, not freezing snow at the observation term, intermittent during preceding 75 Heavy, not freezing snow at the observation term, continuous during preceding 76 Icy needles (with or without fog) at the observation term 77 Snow grains (with or without fog) at the observation term 78 Isolated star-like snow crystals (with or without fog) at the observation term 79 Icy rain at the observation term 80 Slight rain shower at the observation term 81 Moderate or heavy rain shower at the observation term 82 Violent rain shower at the observation term 83 Slight shower of rain and snow mixed at the observation term 84 Moderate or heavy shower of rain and snow mixed at the observation term 85 Slight snow shower at the observation term 86 Moderate or heavy snow shower at the observation term 87 Slight icy or snow pellets with or without rain or rain and snow mixed at the observation term 88 Moderate or heavy icy or snow pellets with or without rain or rain and snow mixed at the observation term 89 Slight hail with or without rain or rain and snow mixed at the observation term, not associated with thunder 90 Moderate or heavy hail with or without rain or rain and snow mixed at the observation term, not associated with thunder 91 Thunderstorm during the preceding and slight rain shower at the observation term 92 Thunderstorm during the preceding and moderate or heavy rain shower at the observation term 93 Thunderstorm during the preceding and slight snow, or rain showers and mixed snow shower or hail, icy or snow pellets at the observation term 94 Thunderstorm during the preceding and moderate or heavy snow, or rain showers and mixed snow shower or hail, icy or snow pellets at the observation term 95 Slight or moderate thunderstorm at the observation term without hail or icy/snow pellets, but with rain shower or/and snow shower at the observation term 96 Slight or moderate thunderstorm at the observation term with hail, icy or snow pellets at the observation term 97 Heavy thunderstorm at the observation term, without hail, but rain shower or/and snow shower at the observation term 98 Thunderstorm combined with dust - or sandstorm at the observation term, with or without precipitation 99 Heavy thunderstorm with hail, icy or snow pellets at the observation term 20 Drizzle (not freezing) or snow grains during the preceding 21 Rain (not freezing) during the preceding 22 Snow during the preceding (not falling as shower(s)) LEGMC The searching results explanations of meteorological data 5

6 Code 23 Rain and snow (icy pellets) during the preceding (not falling as shower(s)) 24 Freezing drizzle or freezing rain, those were forming a glaze during the preceding (not falling as shower(s)) 25 Rain shower during the preceding 26 Snow shower or with rain shower during the preceding 27 Hail or snow/icy pellets (with or without rain) during the preceding 28 Fog or icy fog and visibility less than 1 km during the preceding 29 Thunderstorm (with or without precipitation) during the preceding Code Past weather 1 and 2 0 Cloud amount 5 balls, clear sky between observation terms 1 Cloud amount changes from 5 to >5 balls between observation terms 2 Cloud amount >5 balls, overcast between observation terms 3 All type blowing snow (drifting snow, drifting blowing snow with or without snow) between observation terms. Dust - or sandstorm between observation terms 4 Fog or ice fog, or haze (visibility <1 km) between observation terms 5 Drizzle between observation terms 6 Rain between observation terms 7 Snow, snow grains, icy needles or icy rain, or rain and snow mixed between observation terms 8 Showers (snow shower, rain shower, snow or icy pellets, hail) between observation terms 9 Thunderstorm with or without precipitation between observation terms LEGMC The searching results explanations of meteorological data 6

現在天候 (Present weather)(wmo 4501)

現在天候 (Present weather)(wmo 4501) 現在天候 (Present weather)(wmo 4501) Based on WMO 4501 for recording present weather ( 更新日 : 平成 19 年 5 月 9 日 ) L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 Clear(No cloud at any level) Partly cloudy(scattered or broken)

More information

Explanation and decode for code figures used in the Wokingham 0900 and 1500 GMT observations

Explanation and decode for code figures used in the Wokingham 0900 and 1500 GMT observations Appendix 2. Explanation and decode for code figures used in the Wokingham 0900 and 1500 GMT observations VV : Visibility. Code figures 00 to 50 are in km and tenths e.g. 01 = 0.1 km = 100 m, 33 = 3.3 km,

More information

GEMPAK Symbols, Lines, and Markers APPENDIX C. SYMBOLS, LINES, and MARKERS. Past Weather. Pressure tendency with change.

GEMPAK Symbols, Lines, and Markers APPENDIX C. SYMBOLS, LINES, and MARKERS. Past Weather. Pressure tendency with change. APPENDIX C SYMBOLS, LINES, and MARKERS SYMBOLS The World Meteorological Organization (WMO) has established a standard set of symbols depicting descriptive reports of certain types of weather observations.

More information

Global Surface Archives Documentation

Global Surface Archives Documentation Global Surface Archives Documentation 1 July 2013 PO BOX 450211 GARLAND TX 75045 www.weathergraphics.com Global Surface Archives is a dataset containing hourly and special observations from official observation

More information

5.04 Clouds and Fog. References: FTGU pages , 147. Meteorology

5.04 Clouds and Fog. References: FTGU pages , 147. Meteorology 5.04 Clouds and Fog References: FTGU pages 124-126, 147 Meteorology 5.04 Clouds and Fog MTPs: Cloud Classification Types and Recognition Associated Precipitation Fog Formation and Types Cloud Classification

More information

Appendix. Atmosphere Investigation Data Work Sheet. Ozone Data Work Sheet. Atmospheric Haze Data Work Sheet. Clouds 7 Measurement Data Work Sheet

Appendix. Atmosphere Investigation Data Work Sheet. Ozone Data Work Sheet. Atmospheric Haze Data Work Sheet. Clouds 7 Measurement Data Work Sheet Appendix Atmosphere Investigation Data Work Sheet Ozone Data Work Sheet Atmospheric Haze Data Work Sheet Clouds 7 Measurement Data Work Sheet GLOBE 2000 Appendix - 1 Atmosphere Atmosphere Investigation

More information

Meteorology Clouds and Fog. Cloud Classification MTPs: Height. Shape. and. Clouds are classified by:

Meteorology Clouds and Fog. Cloud Classification MTPs: Height. Shape. and. Clouds are classified by: Meteorology 5.04 Clouds and Fog References: FTGU pages 124-126, 147 5.04 Clouds and Fog MTPs: Cloud Classification Associated Precipitation Clouds are classified by: Cloud Classification Height Shape and

More information

Chapter 5 Forms of Condensation and Precipitation

Chapter 5 Forms of Condensation and Precipitation Chapter 5 Forms of Condensation and Precipitation Cloud Formation visible aggregate of water droplets, ice crystals, or both adiabatic cooling Classifying and Naming of clouds Processes responsible for

More information

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc.

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc. NATS 1750 Lecture Wednesday 28 th November 2012 Processes that lift air Orographic lifting Elevated terrains act as barriers Result can be a rainshadow desert Frontal wedging Cool air acts as a barrier

More information

TAF CCCC YYGGggZ YYHHHH dddff(f)gffkt VVVVSM [ww NNNhhh] [Wshhh/dddffKT] [TTTTT xxxx] repeated as needed

TAF CCCC YYGGggZ YYHHHH dddff(f)gffkt VVVVSM [ww NNNhhh] [Wshhh/dddffKT] [TTTTT xxxx] repeated as needed Encoding TAFs Terminal Aerodome Forecast (TAF) Terminal forecasts for the world follow an internationally accepted format. The TAFs are issued four times daily for 24 hour periods beginning at 00Z, 06Z,

More information

Chapter 5: Forms of Condensation and Precipitation. Copyright 2013 Pearson Education, Inc.

Chapter 5: Forms of Condensation and Precipitation. Copyright 2013 Pearson Education, Inc. Chapter 5: Forms of Condensation and Precipitation Water vapor's role in the Earth's weather is major. Its the product of evaporation. It is lifted up, condenses and forms clouds. It is also a greenhouse

More information

Global Precipitation and Thunderstorm Frequencies. Part I: Seasonal and Interannual Variations

Global Precipitation and Thunderstorm Frequencies. Part I: Seasonal and Interannual Variations 1092 JOURNAL OF CLIMATE VOLUME 14 Global Precipitation and Thunderstorm Frequencies. Part I: Seasonal and Interannual Variations AIGUO DAI National Center for Atmospheric Research,* Boulder, Colorado (Manuscript

More information

CLOUDS, PRECIPITATION, AND WEATHER RADAR

CLOUDS, PRECIPITATION, AND WEATHER RADAR CHAPTER 7 CLOUDS, PRECIPITATION, AND WEATHER RADAR MULTIPLE CHOICE QUESTIONS 1. The activation temperature of most ice-forming nuclei is 0 C. a. above b. about c. well below 2. Hygroscopic nuclei water

More information

What does a raindrop look like as it is falling? A B C

What does a raindrop look like as it is falling? A B C What does a raindrop look like as it is falling? A B C As the raindrop falls, it bumps into air molecules, flattening out the bottom of the drop! Force or air resistance Force of gravity Water can be in

More information

Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17

Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17 Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17 Stanley C. Hatfield Southwestern Illinois College Changes of state of water, H 2 O Water is the only substance in atmosphere that exists

More information

9/22/14. Chapter 5: Forms of Condensation and Precipitation. The Atmosphere: An Introduction to Meteorology, 12 th.

9/22/14. Chapter 5: Forms of Condensation and Precipitation. The Atmosphere: An Introduction to Meteorology, 12 th. Chapter 5: Forms of Condensation and Precipitation The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University! A cloud is a visible

More information

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM CHAPTER -11 WATER IN THE ATMOSPHERE This chapter deals with Humidity, types of humidity, relative humidity, absolute humidity, specific humidity, dew point, condensation, saturated air, types of precipitation

More information

Unit 4 Lesson 2 Clouds and Cloud Formation. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 4 Lesson 2 Clouds and Cloud Formation. Copyright Houghton Mifflin Harcourt Publishing Company Head in the Clouds What are clouds? A cloud is a collection of small water droplets or ice crystals that are suspended in the air. Clouds are visible because water droplets and ice crystals reflect light.

More information

Earth Science Chapter 16 and 17. Weather and Climate

Earth Science Chapter 16 and 17. Weather and Climate Earth Science Chapter 16 and 17 Weather and Climate Prediction Old way Groundhog Color of the sky Modern way satellites instruments computers Goal Weather Factors Studied by meteorologists Several factors

More information

SCI-4 Mil-Brock-Weather Exam not valid for Paper Pencil Test Sessions

SCI-4 Mil-Brock-Weather Exam not valid for Paper Pencil Test Sessions SCI-4 Mil-Brock-Weather Exam not valid for Paper Pencil Test Sessions [Exam ID:1TLR5H 1 Warm air rises and cools. Moisture in the air forms clouds that will bring rain. What pressure system is described?

More information

Condensation Nuclei. Condensation Nuclei 2/10/11. Hydrophobic Water-repelling Oils, gasoline, paraffin Resist condensation, even above 100% RH

Condensation Nuclei. Condensation Nuclei 2/10/11. Hydrophobic Water-repelling Oils, gasoline, paraffin Resist condensation, even above 100% RH Chapter 5 The Formation of Dew & Frost Dew forms on objects near the ground surface when they cool below the dew point temperature. More likely on clear nights due to increased radiative cooling White

More information

Identify and describe clouds in the low, middle, and upper levels of the atmosphere. Relate these to specific types of weather.

Identify and describe clouds in the low, middle, and upper levels of the atmosphere. Relate these to specific types of weather. 5. Cloud Types. Identify and describe clouds in the low, middle, and upper levels of the atmosphere. Relate these to specific types of weather. Clouds and Preciipitation CIRRUS 32.800 FEET CIRROCUMULUS

More information

Three things necessary for weather are Heat, Air, Moisture (HAM) Weather takes place in the Troposphere (The lower part of the atmosphere).

Three things necessary for weather are Heat, Air, Moisture (HAM) Weather takes place in the Troposphere (The lower part of the atmosphere). Grade 5 SCIENCE WEATHER WATCH Name: STUDY NOTES Weather - The condition of the atmosphere with respect to heat/cold, wetness/dryness, clearness/ cloudiness for a period of time. Weather changes over time

More information

The following ten types of clouds, named using the above terms, are to be used when reporting the cloud type for your area: High Clouds.

The following ten types of clouds, named using the above terms, are to be used when reporting the cloud type for your area: High Clouds. Observing Cloud Type There are five descriptive terms for the various types of clouds: CIRRO or high clouds ALTO or middle clouds CUMULUS or white puffy clouds STRATUS or layered clouds NIMBUS or clouds

More information

Clouds. What they tell us about the weather

Clouds. What they tell us about the weather Clouds What they tell us about the weather Spring funnel cloud over Willard, Utah 2003 Cloud coverage 581-586 How to show Cloud Coverage On a weather map meteorologists use circles shaded differently to

More information

Thursday, June 5, Chapter 5: Condensation & Precipitation

Thursday, June 5, Chapter 5: Condensation & Precipitation Thursday, June 5, 2014 Chapter 5: Condensation & Precipitation Chapter 5: Condensation and Precipitation Formation of Condensation Saturated Air Condensation Nuclei Results of Condensation Clouds Fog Dew

More information

Evaporation - Water evaporates (changes from a liquid to a gas) into water vapor due to heat from the Sun.

Evaporation - Water evaporates (changes from a liquid to a gas) into water vapor due to heat from the Sun. Erin Kathryn 2016 Weather is the conditions of Earth s atmosphere at a certain time and place. For example, sunshine, rain, hurricanes, and storms are all examples of weather. Weather is different at different

More information

I d e n t i f i c a t i o n

I d e n t i f i c a t i o n SKY WATCHERS GUIDE TO Cloud I d e n t i f i c a t i o n For more information on weather and additional teaching resources, please visit www.on.ec.gc.ca/skywatchers Clouds themselves will give you clues

More information

Meteorology METARs. References: FTGU pages AWWS:

Meteorology METARs. References: FTGU pages AWWS: Meteorology 5.09 METARs References: FTGU pages 160-163 AWWS: www.flightplanning.navcanada.ca 5.09 METARs MTPs: Weather Observing Stations METARs Weather Observing Stations Weather observation are taken

More information

Meteorology METARs Weather Observing Stations. MTPs: 5.09 METARs References: FTGU pages AWWS:

Meteorology METARs Weather Observing Stations. MTPs: 5.09 METARs References: FTGU pages AWWS: Meteorology 5.09 References: FTGU pages 160-163 AWWS: www.flightplanning.navcanada.ca MTPs: Weather Observing Stations 5.09 Weather Observing Stations Weather observation are taken every hour at selected

More information

Weather Notes. Chapter 16, 17, & 18

Weather Notes. Chapter 16, 17, & 18 Weather Notes Chapter 16, 17, & 18 Weather Weather is the condition of the Earth s atmosphere at a particular place and time Weather It is the movement of energy through the atmosphere Energy comes from

More information

Lecture Outlines PowerPoint. Chapter 17 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 17 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 17 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

J U P I T E R A N D I O

J U P I T E R A N D I O STORIES TO ACOMPANY THE EXHIBITION CLOUDS OF A CHAOTIC SKY CLAIRE PENDRIGH SALAMANCA ARTS CENTRE RAIN The small ceramic vessels in my rain cloud are made with locally dug clay and were fired primitive

More information

KEY TO DECODING THE U.S. METAR OBSERVATION REPORT

KEY TO DECODING THE U.S. METAR OBSERVATION REPORT KEY TO DECODING THE U.S. METAR OBSERVATION REPORT Example METAR Report METAR KABC 121755Z AUTO 21016G24KT 180V240 1SM R11/P6000FT -RA BR BKN015 0VC025 06/04 A2990 RMK A02 PK WND 20032/25 WSHFT 1715 VIS

More information

CLOUDS & THUNDERSTORMS

CLOUDS & THUNDERSTORMS Funding provided by NOAA Sectoral Applications Research Project CLOUDS & THUNDERSTORMS Basic Climatology Oklahoma Climatological Survey How are clouds made? Clouds form when air is cooled to its dewpoint

More information

24.2 Cloud Formation 2/3/2014. Orographic Lifting. Processes That Lift Air Frontal Wedging. Convergence and Localized Convective Lifting

24.2 Cloud Formation 2/3/2014. Orographic Lifting. Processes That Lift Air Frontal Wedging. Convergence and Localized Convective Lifting 2/3/2014 Orographic Lifting Processes That Lift Air Frontal Wedging A front is the boundary between two adjoining air masses having contrasting characteristics. Convergence and Localized Convective Lifting

More information

ESCI 241 Meteorology Lesson 9 Clouds and Fog

ESCI 241 Meteorology Lesson 9 Clouds and Fog References and Reading: MT Chapter 7 FORMATION OF CLOUDS ESCI 241 Meteorology Lesson 9 Clouds and Fog When air becomes saturated with water vapor, any excess water vapor condenses to form clouds The air

More information

Copyright 2015 Edmentum All rights reserved.

Copyright 2015 Edmentum All rights reserved. Copyright 2015 Edmentum All rights reserved. weather 1 1. Sharon woke up on a sunny morning and ate breakfast. Then she looked outside and saw tall, quickly forming clouds. The clouds looked ready to rain.

More information

Temp 54 Dew Point 41 Relative Humidity 63%

Temp 54 Dew Point 41 Relative Humidity 63% Temp 54 Dew Point 41 Relative Humidity 63% Water in the Atmosphere Evaporation Water molecules change from the liquid to gas phase Molecules in liquids move slowly Heat energy makes them move faster When

More information

Unit: Weather Study Guide

Unit: Weather Study Guide Name: Period: Unit: Weather Study Guide Define each vocabulary word on a separate piece of paper or index card. Weather Climate Temperature Wind chill Heat index Sky conditions UV index Visibility Wind

More information

Cloud Formation and Classification

Cloud Formation and Classification Cloud Formation and Classification Cloud Formation clouds form when air above the surface cools below the dew point condensation nuclei small particles in the atmosphere around which water droplets can

More information

WOKINGHAM METEOROLOGICAL DATA

WOKINGHAM METEOROLOGICAL DATA WOKINGHAM METEOROLOGICAL DATA Wokingham Climatological Station, Emmbrook, Berkshire. Lat/Long 51 25 N 00 51 W NGR (SU)798701 Altitude 46m ASL. Monthly Means and Totals FEBRUARY 2019 Temperature ( C ) Anomaly

More information

Condensation: Dew, Fog, & Clouds. Chapter 5

Condensation: Dew, Fog, & Clouds. Chapter 5 Condensation: Dew, Fog, & Clouds Chapter 5 The Formation of Dew & Frost Dew forms on objects near the ground surface when they cool below the dew point temperature. More likely on clear nights due to increased

More information

12/22/2018. Water and the Atmosphere. 8 th Grade. Lesson 1 (Water in the Atmosphere) Chapter 4: Weather. Lesson 2 (Clouds) Clouds

12/22/2018. Water and the Atmosphere. 8 th Grade. Lesson 1 (Water in the Atmosphere) Chapter 4: Weather. Lesson 2 (Clouds) Clouds Lesson 1 (Water in the Atmosphere) Water cycle the continual movement of water among Earth s atmosphere, oceans, and land surface through evaporation, condensation, and precipitation Water and the Atmosphere

More information

according to and water. High atmospheric pressure - Cold dry air is other air so it remains close to the earth, giving weather.

according to and water. High atmospheric pressure - Cold dry air is other air so it remains close to the earth, giving weather. EARTH'S ATMOSPHERE Composition of the atmosphere - Earth's atmosphere consists of nitrogen ( %), oxygen ( %), small amounts of carbon dioxide, methane, argon, krypton, ozone, neon and other gases such

More information

Observing Climate - Upper Air

Observing Climate - Upper Air Observing Climate - Upper Air 3-1 Water (Con t) Clouds Types - Classification Base height Coverage Science Concepts Definition The Earth System (Kump, Kastin & Crane) Chap. 3 (pp. 48-49) 3-2 What do we

More information

Clouds on Mars Cloud Classification

Clouds on Mars Cloud Classification Lecture Ch. 8 Cloud Classification Descriptive approach to clouds Drop Growth and Precipitation Processes Microphysical characterization of clouds Complex (i.e. Real) Clouds Examples Curry and Webster,

More information

Bell Ringer. 1. What is humidity? 2. What kind of clouds are there outside right now? 3. What happens to air when it gets colder?

Bell Ringer. 1. What is humidity? 2. What kind of clouds are there outside right now? 3. What happens to air when it gets colder? Bell Ringer 1. What is humidity? 2. What kind of clouds are there outside right now? 3. What happens to air when it gets colder? Cloud Notes What are clouds? A cloud is made up of tiny water droplets and/or

More information

WEATHER. rain. thunder. The explosive sound of air as it is heated by lightning.

WEATHER. rain. thunder. The explosive sound of air as it is heated by lightning. WEATHER rain thunder The explosive sound of air as it is heated by lightning. rainbow lightning hurricane They are intense storms with swirling winds up to 150 miles per hour. tornado cold front warm front

More information

WATER IN THE ATMOSPHERE

WATER IN THE ATMOSPHERE CHAPTER Y ou have already learnt that the air contains water vapour. It varies from zero to four per cent by volume of the atmosphere and plays an important role in the weather phenomena. Water is present

More information

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops:

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops: Precipitation is any form of water that falls from a cloud and reaches the ground. How do cloud drops grow? Chapter 7 When air is saturated with respect to a flat surface it is unsaturated with respect

More information

Clouds. How Clouds Form. Humidity. Determining Relative Humidity

Clouds. How Clouds Form. Humidity. Determining Relative Humidity a measure of the amount of water vapor in the air. Warm air can hold more water vapor than cold air. and Clouds Relative humidity the percentage of water vapor that is actually in the air compared to the

More information

6.2 Meteorology. A meteorologist is a person who uses scientific principles to explain, understand, observe, or forecast Earth s weather.

6.2 Meteorology. A meteorologist is a person who uses scientific principles to explain, understand, observe, or forecast Earth s weather. Water and Weather 6.2 Meteorology A meteorologist is a person who uses scientific principles to explain, understand, observe, or forecast Earth s weather. 6.2 Water in the Atmosphere Dew point is the temperature

More information

EnergyPlus Weather File (EPW) Data Dictionary

EnergyPlus Weather File (EPW) Data Dictionary EnergyPlus Weather File (EPW) Data Dictionary The data dictionary for EnergyPlus Weather Data is shown below. Note that semi-colons do NOT terminate lines in the EnergyPlus Weather Data. It helps if you

More information

CODES. Part 2 Weather Forecasting Handbook

CODES. Part 2 Weather Forecasting Handbook CODES Part 2 Weather Forecasting Handbook 1 1994, 1999 Tim Vasquez All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted by any means without the

More information

References: Cloud Formation. ESCI Cloud Physics and Precipitation Processes Lesson 1 - Cloud Types and Properties Dr.

References: Cloud Formation. ESCI Cloud Physics and Precipitation Processes Lesson 1 - Cloud Types and Properties Dr. ESCI 34 - Cloud Physics and Precipitation Processes Lesson 1 - Cloud Types and Properties Dr. DeCaria References: Glossary of Meteorology, 2nd ed., American Meteorological Society A Short Course in Cloud

More information

Mr. P s Science Test!

Mr. P s Science Test! WEATHER- 2017 Mr. P s Science Test! # Name Date 1. Draw and label a weather station model. (10 pts) 2. The is the layer of the atmosphere with our weather. 3. Meteorologists classify clouds in about different

More information

Condensation: Dew, Fog, & Clouds. Chapter 5

Condensation: Dew, Fog, & Clouds. Chapter 5 Condensation: Dew, Fog, & Clouds Chapter 5 Condensation Condensation Water vapor in the air changes to a liquid and forms dew, fog, or clouds Water vapor requires a surface to condense on Possible condensation

More information

CIRROCUMULUS CIRROSTRATUS

CIRROCUMULUS CIRROSTRATUS Ten Basic Clouds Based on his observations, Luke Howard suggested there were modifications (or combinations) of the core four clouds between categories. He noticed that clouds often have features of two

More information

Atmospheric Moisture. Relative humidity Clouds Rain/Snow. Relates to atmosphere, hydrosphere, biosphere, exosphere, geosphere

Atmospheric Moisture. Relative humidity Clouds Rain/Snow. Relates to atmosphere, hydrosphere, biosphere, exosphere, geosphere Atmospheric Moisture Relative humidity Clouds Rain/Snow Relates to atmosphere, hydrosphere, biosphere, exosphere, geosphere Atmospheric moisture Water in the atmosphere Requires - vapor pressure- the amount

More information

Aerodrome Forecast (TAF)

Aerodrome Forecast (TAF) AVIATION WEATHER PRODUCTS () Bureau of Meteorology Aviation Weather Services A is a coded statement of meteorological conditions expected at an and within a radius of five nautical miles of the reference

More information

777 GROUNDSCHOOL Temperature, Stability, Fronts, & Thunderstorms

777 GROUNDSCHOOL Temperature, Stability, Fronts, & Thunderstorms 777 GROUNDSCHOOL 2018 Temperature, Stability, Fronts, & Thunderstorms The Atmosphere Heating Transfer of heat occurs thru Radiation Advection Convection Matter changes states due to the amount of heat

More information

9 Condensation. Learning Goals. After studying this chapter, students should be able to:

9 Condensation. Learning Goals. After studying this chapter, students should be able to: 9 Condensation Learning Goals After studying this chapter, students should be able to: 1. explain the microphysical processes that operate in clouds to influence the formation and growth of cloud droplets

More information

Science (K) 2 nd Lesson. Aim: To learn about the four seasons of the year and the types of weather in each.

Science (K) 2 nd Lesson. Aim: To learn about the four seasons of the year and the types of weather in each. Science (K) 2 nd Lesson Aim: To learn about the four seasons of the year and the types of weather in each. Objectives: Terms: seasons, spring, summer, fall, autumn and winter, deciduous, evergreen, weather,

More information

Earth/Space Systems and Cycles (SOL 4.6)

Earth/Space Systems and Cycles (SOL 4.6) Earth/Space Systems and Cycles (SOL 4.6) Temperature is the measure of the amount of heat energy in the atmosphere. Air pressure is due to the weight of the air and is determined by several factors including

More information

Atmosphere L AY E RS O F T H E AT MOSPHERE

Atmosphere L AY E RS O F T H E AT MOSPHERE Atmosphere L AY E RS O F T H E AT MOSPHERE Why is the atmosphere divided into 5 different layers? The atmosphere is divided into five different layers because the atmosphere is not uniform, its properties

More information

Condensation: Dew, Fog and Clouds AT350

Condensation: Dew, Fog and Clouds AT350 Condensation: Dew, Fog and Clouds AT350 T=30 C Water vapor pressure=12mb What is Td? What is the sat. water vapor T=30 C Water vapor pressure=12mb What is Td? What is the sat. water vapor ~12/42~29% POLAR

More information

Objectives: S.W.B.A.T.

Objectives: S.W.B.A.T. Objectives: S.W.B.A.T. Describe basic cloud formation Define condensation nucleus, fog, Identify 3 basic cloud forms Understand that clouds are based on shape and altitude location in troposphere. Activities:

More information

Meteorology. Types of Turbulence

Meteorology. Types of Turbulence Meteorology 5.06 Turbulence, Visibility, and Fronts References: Air Command Weather Manual Chapters 7, 8, 10 and 11 FTGU pages 133, 138, 140-145, 147, 155 and 156 Aviation Weather Student Guide http://www.tpub.com/content/aviation2/p-303/index.htm

More information

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting Precipitation AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Precipitation formation Rain Ice Lecture 14 Oct 11 2018 1 Cloud Development: Orographic Lifting

More information

Basic cloud Interpretation using Satellite Imagery

Basic cloud Interpretation using Satellite Imagery Basic cloud Interpretation using Satellite Imagery Introduction Recall that images from weather satellites are actually measurements of energy from specified bands within the Electromagnetic (EM) spectrum.

More information

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN Chapter 8 - Precipitation Rain Drops, Cloud Droplets, and CCN Recall the relative sizes of rain drops, cloud drops, and CCN: raindrops - 2000 μ m = 2 mm fall at a speed of 4-5 ms -1 cloud drops - 20 μ

More information

Clouds (modified for ADEED)

Clouds (modified for ADEED) (modified for ADEED) Overview: Various features define the three main types of clouds: cumulus, cirrus, and stratus. One of those features is height. In this activity, students will learn to identify clouds

More information

Meteorology. Review Extreme Weather a. cold front. b. warm front. What type of weather is associated with a:

Meteorology. Review Extreme Weather a. cold front. b. warm front. What type of weather is associated with a: Meteorology 5.08 Extreme Weather References: FTGU pages 132, 144, 145, 148-155 Air Command Weather Manual Chapters 9 and 15 Review What type of weather is associated with a: a. cold front b. warm front

More information

OBSERVING WEATHER. Assemble appropriate equipment. It doesn t need to be fancy (though it can be), but there are a few basics you should invest in.

OBSERVING WEATHER. Assemble appropriate equipment. It doesn t need to be fancy (though it can be), but there are a few basics you should invest in. OBSERVING WEATHER Some Tips for your own Weather Station Observing the weather is a great way to get in closer touch with the environment, and to learn some of the basic processes of science. Here are

More information

2016 EXPLANATION OF OBSERVATIONS BY REFERENCE NUMBER

2016 EXPLANATION OF OBSERVATIONS BY REFERENCE NUMBER S 2016 EXPLANATION OF OBSERVATIONS BY REFERENCE NUMBER tation was moved to 10905 Virginia Forest Court Glen Allen, Virginia in Henrico County on June 10, 2008. Latitude 37 39' 18.87" (37.65537) Longitude

More information

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) AMOFSG/9-SN No. 31 22/8/11 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) NINTH MEETING Montréal, 26 to 30 September 2011 Agenda Item 5: Observing and forecasting at the aerodrome

More information

ì<(sk$m)=bdhigc< +^-Ä-U-Ä-U

ì<(sk$m)=bdhigc< +^-Ä-U-Ä-U Genre Comprehension Skill Text Features Science Content Nonfiction Draw Conclusions Captions Diagrams Glossary Weather Scott Foresman Science 2.6 ì

More information

Name Class Date. Water molecules condense around the salt crystal. More water molecules condense around the original small droplet.

Name Class Date. Water molecules condense around the salt crystal. More water molecules condense around the original small droplet. CHAPTER 20 2 Clouds and Fog SECTION Water in the Atmosphere KEY IDEAS As you read this section, keep these questions in mind: What conditions are necessary for clouds to form? What are the four processes

More information

5) Water vapor is water in the state. a. solid b. liquid c. *gas

5) Water vapor is water in the state. a. solid b. liquid c. *gas 1 NAME DATE January 15, 2004_ GRADE 5 SCIENCE SOL REVIEW WEATHER LABEL the 3 stages of the water cycle ( evaporation, condensation, precipitation.). 1) The sketch above shows: a. a life cycle. b. *the

More information

III. Section 3.3 Vertical air motion can cause severe storms

III. Section 3.3 Vertical air motion can cause severe storms III. Section 3.3 Vertical air motion can cause severe storms http://www.youtube.com/watch?v=nxwbr60tflg&feature=relmfu A. Thunderstorms form from rising moist air Electrical charges build up near the tops

More information

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff Skills Worksheet Directed Reading B Section: Water in the Air 1. What do we call the condition of the atmosphere at a certain time and place? a. the water cycle b. weather c. climate d. precipitation THE

More information

Water in the Atmosphere

Water in the Atmosphere Water in the Atmosphere Characteristics of Water solid state at 0 o C or below (appearing as ice, snow, hail and ice crystals) liquid state between 0 o C and 100 o C (appearing as rain and cloud droplets)

More information

ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION. A Collection of Learning Experiences WEATHER Weather Student Activity Book

ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION. A Collection of Learning Experiences WEATHER Weather Student Activity Book ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION A Collection of Learning Experiences WEATHER Weather Student Activity Book Name This learning experience activity book is yours to keep.

More information

Weather. Describing Weather

Weather. Describing Weather Weather Describing Weather What is weather? Weather is the atmospheric conditions, along with short-term changes, of a certain place at a certain time. Have you ever been caught in a rainstorm on what

More information

Issue of SIGMET/AIRMET warning

Issue of SIGMET/AIRMET warning Issue of SIGMET/AIRMET warning 1 Presentation Objectives After this presentation session you will be able to: Warn for Hazardous weather phenomena using the correct ICAO coding with regards to SIGMET/AIRMET

More information

a. Air is more dense b. Associated with cold air (more dense than warm air) c. Associated with sinking air

a. Air is more dense b. Associated with cold air (more dense than warm air) c. Associated with sinking air Meteorology 1. Air pressure the weight of air pressing down on Earth 2. Temperature and altitude determine air pressure 3. The more air particles are present, the more air density or pressure exists 4.

More information

Forecasting Local Weather

Forecasting Local Weather Forecasting Local Weather Sea/Land Breeze Temperature Dew Fog Frost Snow Thunderstorms Tropical Cyclones Temperatures: Radiation Balance Typical Diurnal Variation of Temperature Min soon after dawn Temp

More information

LOCAL CLIMATOLOGICAL DATA Monthly Summary July 2013

LOCAL CLIMATOLOGICAL DATA Monthly Summary July 2013 Deg. Days Precip Ty Precip Wind Solar Hu- Adj. to Sea Level mid- ity Avg Res Res Peak Minute 1 fog 2 hvy fog 3 thunder 4 ice plt 5 hail 6 glaze 7 duststm 8 smk, hz 9 blw snw 1 2 3 4A 4B 5 6 7 8 9 12 14

More information

NATS 101 Section 13: Lecture 11. Clouds

NATS 101 Section 13: Lecture 11. Clouds NATS 101 Section 13: Lecture 11 Clouds Cloud Classification Luke Howard (English naturalist) developed a system in 1803 that employed Latin words to describe clouds as they appear to a ground observer.

More information

Class Notes: Weather

Class Notes: Weather Name: Date: Period: Weather The Physical Setting: Earth Science I. Cyclonic Weather Hurricane - Hurricane Statistics Largest of all the storms Approximately per year Nearly deaths per year Saffir-Simpson

More information

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km Clouds and Climate Clouds (along with rain, snow, fog, haze, etc.) are wet atmospheric aerosols. They are made up of tiny spheres of water from 2-100 m which fall with terminal velocities of a few cm/sec.

More information

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) MOFSG/8-SN No. 31 22/12/09 EROROME METEOROLOGIL OSERVTION N FOREST STUY GROUP (MOFSG) EIGHTH MEETING Melbourne, ustralia, 15 to 18 February 2010 genda Item 5: Observing and forecasting at the aerodrome

More information

Weather is the of the Earth s atmosphere at a place and time. It is the movement of through the atmosphere o Energy comes from the

Weather is the of the Earth s atmosphere at a place and time. It is the movement of through the atmosphere o Energy comes from the Weather Notes Weather Weather is the of the Earth s atmosphere at a place and time It is the movement of through the atmosphere o Energy comes from the The sun is the force that weather The sun s energy

More information

Mechanical Turbulence Wind forms eddies as it blows around hanger, stands of trees or other obstructions

Mechanical Turbulence Wind forms eddies as it blows around hanger, stands of trees or other obstructions Turbulence Low-level Turbulence below 15,000 feet consists of Mechanical Turbulence Convective Turbulence Frontal Turbulence Wake Turbulence Mechanical Turbulence Wind forms eddies as it blows around hanger,

More information

Meteorology Division B Team Name: Team Number: Student Names: and

Meteorology Division B Team Name: Team Number: Student Names: and Meteorology Division B Team Name: Team Number: Student Names: and You have 50 minutes to complete and revise this test. 1. Do not turn this page until you are told to do so. 2. Write your team name and

More information

Energy in the Earth's Systems - How do external and internal sources of energy affect the Earth's systems? KINDERGARTEN

Energy in the Earth's Systems - How do external and internal sources of energy affect the Earth's systems? KINDERGARTEN Teacher Trail Guides We have created a set of Trail Guides for use by you and your students. The first section consists of the trail guides with teacher notes; the second section s Trail Guides omit the

More information

Created by Mrs. Susan Dennison

Created by Mrs. Susan Dennison Created by Mrs. Susan Dennison 2015-2015 The atmosphere is a layer of invisible gas (air) that surrounds the Earth. It wraps around the planet like a blanket. All weather happens in the lower atmosphere.

More information

The most abundant gas in the atmosphere by volume is. This gas comprises 78% of the Earth atmosphere by volume.

The most abundant gas in the atmosphere by volume is. This gas comprises 78% of the Earth atmosphere by volume. The most abundant gas in the atmosphere by volume is. This gas comprises 78% of the Earth atmosphere by volume. A. Oxygen B. Water Vapor C. Carbon Dioxide D. Nitrogen An isobar is a line of constant. A.

More information