AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)

Size: px
Start display at page:

Download "AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)"

Transcription

1 MOFSG/8-SN No /12/09 EROROME METEOROLOGIL OSERVTION N FOREST STUY GROUP (MOFSG) EIGHTH MEETING Melbourne, ustralia, 15 to 18 February 2010 genda Item 5: Observing and forecasting at the aerodrome and in the terminal area 5.1: erodrome observations REVIEW OF SRPS FOR THE REPORTING OF PRESENT WETHER WHEN REPORTE UTOMTILLY (Presented by olin Hord) SUMMRY This study note reviews the SRPs associated with the reporting of present weather from sensors. 1. INTROUTION 1.1 This paper relates to Task: MOFSG-02 'Revision of the requirements for weather parameters in MET reports'. 1.2 It is noted that considerable progress is being made in the automation of meteorological observing, which is now reflected in nnex 3 Meteorological Service for International ir Navigation since it enables UTO METR to be used by States in a position to do so during operational hours of the aerodrome as determined by the meteorological authority. 1.3 Many of the required parameters can be effectively provided automatically, e.g. wind, temperature dew-point temperature and atmospheric pressure. Sensors that provide visibility and cloud height measurements are required for aerodromes operating at TIII (nnex 3 hapter ) and these provide representative information on most occasions. (7 pages) MOFSG.8.SN en.doc

2 MOFSG/8-SN No It is for the reporting of present weather information where automated sensors exhibit the most limitations and it is for this reason that where automated sensors are used the identifier UP (Unidentified Precipitation) can be used in addition to the precipitation types listed in nnex 3 ppendix a) when the type of precipitation cannot be identified by the automatic observing system. 2. ISUSSION 2.1 It is reasonable to assume that in time the ability of automated weather sensors will mean that the full requirements for present weather can be replicated in automated weather reports for METR, SPEI and local reports. In this respect, this is a reasonable aim for States to aspire to, however at present, automated observations cannot fully replicate all these present weather parameters, whether that is a result of technology or prohibitive costs of implementation. 2.2 In this respect, there is merit in evaluating each present weather (and their combinations with qualifiers) to assess whether these can currently either be satisfied (either relatively straightforwardly or with some difficulty) with present weather sensors. 2.3 dditionally the present weather parameters are reviewed in terms of their requirement i.e. as a Standard or RP. This review is carried out against nnex 3, h 4, para The present weather occurring at the aerodrome and/or its vicinity shall be observed and reported as necessary. The following present weather phenomena shall be identified, as a minimum: precipitation and freezing precipitation. Precipitation (including intensity) Freezing precipitation (including intensity) Fog Freezing fog Thunderstorms (including in the vicinity) 2.4 In addition, it is noted that mendment 75 to nnex 3 will upgrade the current RP at ppendix 3 Para to a Standard for the reporting of Thunderstorm and Freezing qualifiers, i.e.: In local routine and special reports and in METR and SPEI, the following characteristics of present weather phenomena, as necessary, shall be reported, using their respective abbreviations and relevant criteria, as appropriate: Thunderstorm TS Used to report a thunderstorm with precipitation in accordance with the templates shown in Tables 3-1 and 3-2. When thunder is heard or lightning is detected at the aerodrome during the 10-minute period preceding the time of observation but no precipitation is observed at the aerodrome, the abbreviation TS should be used without qualification. Freezing FZ

3 - 3 - MOFSG/8-SN No. 31 Supercooled water droplets or precipitation, used with types of present weather phenomena in accordance with the templates shown in Tables 3-1 and In making an assessment against the weather parameters, the results have been classified into one of the following groups: Group. Present weather groups that can reasonably be met with automated sensors and are noted as a requirement in hapter 4 para Group. Present weather groups that can reasonably be met with automated sensors, but are not noted as a requirement in hapter 4 para Group. Present weather groups that are noted as a requirement in hapter 4 para , but where automated sensors can resolve these with some limitations (ie inferred results or where sensors are considered difficult, expensive, unproven or unreliable to utilise). Group. Present weather groups that are not noted as a requirement in hapter 4 para and where sensors are considered difficult, expensive, unproven or unreliable to utilise. GROUP Elements required in para Resolved by instrumentation: FG FZFG Z R SN RZ RSN FZR FZZ GROUP Elements required in para Resolved by instrumentation with some limitations: SHR SHSN SHGR SHGS SHRSN SHRGR SHRGS TS TSR TSSN TSGR TSGS TSRSN TSRGR TSRGS VTS PL SG GROUP Elements not required in para Resolved by instrumentation: R HZ FU LSN SQ GROUP Elements not required in para Unresolved by instrumentation: F PO FG MIFG PRFG RSN V VLSN VF VFG VSH S U SS S

4 MOFSG/8-SN No It is assumed that automated systems can adequately differentiate between slight (-), moderate and heavy (+) precipitation) 2.6 Group could be regarded as essential for aviation purposes and their resolution and detection is satisfactory. Therefore the reporting of these elements when using automated sensors could be introduced as a Standard. 2.7 Group are also regarded as essential for aviation purposes and consequently these are weather elements that are required to be reported. Present weather sensors may generate some limitations to the results offered. For example, present weather sensors can easily infer showers, by noting the intermittent nature of precipitation. Whilst the rationale for this may not be meteorologically sound it appears currently to meet the needs of aviation. lternatively, with more expensive remote sensing techniques, more meteorologically correct results may be able to be provided. The question to consider therefore is whether inferred showery precipitation meets the existing needs of Industry, or whether convective cloud must be demonstrated to be present in order to report SHxx. In this regard it would be valuable to the meteorological community if industry could review these requirements and ascertain the continued requirement to differentiate between showery and non-showery precipitation. 2.8 In the case of TS, it is more difficult to resolve this without remote sensing capabilities, although a lightning detector will assist and enable TS to be inferred if lightning is present. 2.9 It is noted that to automate the provision of in the vicinity i.e. for the reporting of VTS, VFG, VF and VLSN are difficult and expensive to provide automatically, the group may seek industry clarification as to whether the reporting of these phenomena are required when automated reports are being provided Group are weather parameters that are able to be resolved although are not presently required in a Standard. These could be RPs Group details weather parameters that are not able to be resolved nor required in any nnex 3 Standard. It would once again be useful to ascertain if these elements are still required to be reported for aviation purposes Whilst these may be considered a rather subjective UK view, it is hoped that this will provoke some discussion on the relative merits of separating the SRPs in this way. y doing so, one could argue that the needs of Industry should be recognised, whilst taking account of existing and developing capabilities. Further, the SRPs could be reviewed for each IO mendment ycle as technology and user needs change Many MET observations are now made from the Visual ontrol Rooms (VR) which in many locations are elevated sometimes by a few hundred feet, in these cases it is often difficult especially at night to ascertain the presence of present weather. In the UK it has proved of benefit and enabled greater consistency in the reporting of present weather to require all T III aerodromes have in addition to the sensors listed at hap , a present weather sensor. This sensor is integrated in to the MET system and enables acquisition, processing, dissemination and display of real time MET information. For this reason it is proposed to include the requirement for a present weather sensor in this paragraph as detailed below.

5 - 5 - MOFSG/8-SN No t aerodromes with runways intended for ategory II and III instrument approach and landing operations, automated equipment for measuring or assessing, as appropriate, and for monitoring and remote indicating of surface wind, visibility, present weather, runway visual range, height of cloud base, air and dew-point temperatures and atmospheric pressure shall be installed to support approach and landing and take-off operations. These devices shall be integrated automatic systems for acquisition, processing, dissemination and display in real time of the meteorological parameters affecting landing and take-off operations. The design of integrated automatic systems shall observe Human Factors principles and include back-up procedures. For consistency the RP at para should be similarly updated ased on the subjective assessment above, the following new SRPs, could be added: 1. In automated local routine and special reports and in METR and SPEI, the following types of present weather phenomena shall be reported as a minimum, using their respective abbreviations and relevant criteria, as appropriate: Fog (including freezing fog) Rain rizzle Snow Freezing precipitation 2. Recommendation. In automated local routine and special reports and in METR and SPEI, the following types of present weather phenomena should be reported as a minimum, using their respective abbreviations and relevant criteria, as appropriate: Thunderstorms (with precipitation as appropriate) Showers Ice Pellets Snow grains lowing Snow Mist Haze Smoke Squall 3. TION Y MOFSG 3.1 The MOFSG is invited to: a) note the contents of this paper; b) consider updating nnex 3 with the revised requirements for the automated reporting of present weather, as detailed in this SN; and c) seek clarification from industry on the requirement to report in the vicinity when automated reports are being generated.

6 MOFSG/8-SN No. 31 ppendix PPENIX OMPLETE LIST OF PRESENT WETHER PRMETERS List of commonly used weather codes with their decodes F Funnel cloud PO ust devil ssessed Group omments F, PO & SQ are secondary priorities for Industry, and are also difficult to automate. SQ Squall Secondary requirement, but can be resolved by sensors. FG FZFG Fog Freezing fog primary requirement of Industry (IO Standard), with sensors having the ability to provide good estimations of FG and FZFG (with temperature sensors) FG MIFG PRFG Fog patches Shallow fog Fog bank secondary requirement of Industry, and multiple sensors required to present the spatial variation of FG adequately, making this expensive. R HZ FU S U SS S V Mist Haze Smoke Sand ust Sandstorm uststorm Volcanic ash secondary requirement for Industry, but one which sensors can reasonably easily and accurately detect. Little evidence of sensor reconciling these phenomena, and secondary requirement. LSN lowing snow secondary requirement for Industry, but one that could be readily resolved by sensors through a combination of snow detection and visiometer. RSN Low drifting snow secondary requirement for Industry, and one that cannot easily be resolved by sensor owing to the wind blown deposit extending to less than the height of the visiometer. Z R SN RZ RSN FZR FZZ rizzle Rain Snow Rain & drizzle Rain & snow Freezing rain Freezing drizzle Primary requirement (precipitation) (IO Standard), and readily resolved by present weather sensors Primary requirement (precipitation) (IO Standard), with the ability to be readily resolved by ground temperature sensors.

7 MOFSG/8-SN No. 31 ppendix -2 PL SG Ice pellets Snow grains Little sensor reliability at present SHGR Shower of hail SHGS Shower of small hail SHR Shower of rain SHRSN Shower of rain & snow SHRGR Shower of rain & hail SHRGS Shower of rain & small hail SHSN Shower of snow TS Thunderstorm (w/o ppn) TSGR Thunderstorm with hail TSGS Thunderstorm with small hail TSR Thunderstorm with rain TSRSN Thunderstorm with rain & snow TSRGR Thunderstorm with rain & hail TSRGS Thunderstorm with rain & small hail TSSN Thunderstorm with snow VLSN lowing snow in the vicinity VF Funnel cloud in the vicinity VFG Fog in the vicinity VSH Showers in the vicinity VTS Thunderstorm in the vicinity Primary requirement (precipitation) (IO Standard), but not readily resolved by present weather sensors, owing to a difficulty in reconciling convective cloud types. Primary requirement (thunderstorm) (IO Standard), but requires remote sensing to provide this in automated reports, requiring substantial work from many States to comply. secondary requirement for Industry, with these weather groups not easy to resolve unless there are multiple automated sensors. Primary requirement (thunderstorm) (IO Standard), but requires remote sensing to provide this in automated reports, requiring substantial work from many States to comply. EN

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) AMOFSG/9-SN No. 31 22/8/11 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) NINTH MEETING Montréal, 26 to 30 September 2011 Agenda Item 5: Observing and forecasting at the aerodrome

More information

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) 9/6/11 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) NINTH MEETING Montréal, 26 to 30 September 2011 Agenda Item 5: Observing and forecasting at the aerodrome and in the terminal

More information

TAF CCCC YYGGggZ YYHHHH dddff(f)gffkt VVVVSM [ww NNNhhh] [Wshhh/dddffKT] [TTTTT xxxx] repeated as needed

TAF CCCC YYGGggZ YYHHHH dddff(f)gffkt VVVVSM [ww NNNhhh] [Wshhh/dddffKT] [TTTTT xxxx] repeated as needed Encoding TAFs Terminal Aerodome Forecast (TAF) Terminal forecasts for the world follow an internationally accepted format. The TAFs are issued four times daily for 24 hour periods beginning at 00Z, 06Z,

More information

現在天候 (Present weather)(wmo 4501)

現在天候 (Present weather)(wmo 4501) 現在天候 (Present weather)(wmo 4501) Based on WMO 4501 for recording present weather ( 更新日 : 平成 19 年 5 月 9 日 ) L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 Clear(No cloud at any level) Partly cloudy(scattered or broken)

More information

Wind direction measures in degrees Occasion described with codes, when is calm or variable wind. Explanation

Wind direction measures in degrees Occasion described with codes, when is calm or variable wind. Explanation Introduction The searching results explanations of meteorological data Depending on the parameter, the instrumental measuring or visual observation method is used for the meteorological observations. Instrumentally

More information

KEY TO DECODING THE U.S. METAR OBSERVATION REPORT

KEY TO DECODING THE U.S. METAR OBSERVATION REPORT KEY TO DECODING THE U.S. METAR OBSERVATION REPORT Example METAR Report METAR KABC 121755Z AUTO 21016G24KT 180V240 1SM R11/P6000FT -RA BR BKN015 0VC025 06/04 A2990 RMK A02 PK WND 20032/25 WSHFT 1715 VIS

More information

Explanation and decode for code figures used in the Wokingham 0900 and 1500 GMT observations

Explanation and decode for code figures used in the Wokingham 0900 and 1500 GMT observations Appendix 2. Explanation and decode for code figures used in the Wokingham 0900 and 1500 GMT observations VV : Visibility. Code figures 00 to 50 are in km and tenths e.g. 01 = 0.1 km = 100 m, 33 = 3.3 km,

More information

Aerodrome Forecast (TAF)

Aerodrome Forecast (TAF) AVIATION WEATHER PRODUCTS () Bureau of Meteorology Aviation Weather Services A is a coded statement of meteorological conditions expected at an and within a radius of five nautical miles of the reference

More information

FOLLOW-UP OF AMOFSG/8 ACTION AGREED (AC) Status on 12 April = completed

FOLLOW-UP OF AMOFSG/8 ACTION AGREED (AC) Status on 12 April = completed FOLLOW-UP OF AMOFSG/8 ACTION AGREED (AC) Status on 12 April 2011 = completed No. 8/1 Rationale for the use of the term "decision height" the Secretary investigates the rationale behind the need for information

More information

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) AMOFSG/9-SN No. 32 22/8/11 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) NINTH MEETING Montréal, 26 to 30 September 2011 Agenda Item 5: Observing and forecasting at the aerodrome

More information

Issue of SIGMET/AIRMET warning

Issue of SIGMET/AIRMET warning Issue of SIGMET/AIRMET warning 1 Presentation Objectives After this presentation session you will be able to: Warn for Hazardous weather phenomena using the correct ICAO coding with regards to SIGMET/AIRMET

More information

CHAPTER 9 - SPECIAL OBSERVATIONS

CHAPTER 9 - SPECIAL OBSERVATIONS CHAPTER 9 - AL OBSERVATIONS 9.1 Introduction This chapter explains the criteria for taking special observations (). 9.2 Special Observations s are taken whenever mandatory criteria are met, and at the

More information

Appendix X for CAP 437 Offshore Helicopter Landing Areas Guidance on Standards.

Appendix X for CAP 437 Offshore Helicopter Landing Areas Guidance on Standards. Appendix X for CAP 437 Offshore Helicopter Landing Areas Guidance on Standards. Additional Guidance relating to the provision of Meteorological Information from Offshore Installations 1. Introduction This

More information

Meteorology METARs. References: FTGU pages AWWS:

Meteorology METARs. References: FTGU pages AWWS: Meteorology 5.09 METARs References: FTGU pages 160-163 AWWS: www.flightplanning.navcanada.ca 5.09 METARs MTPs: Weather Observing Stations METARs Weather Observing Stations Weather observation are taken

More information

WMO/ICAO AMF Competencies

WMO/ICAO AMF Competencies WMO/ICAO AMF Competencies Workshop on Aeronautical Competencies and SIGMETs August 26 st, 2015 Karine Dumas Meteorological Service of Canada Montreal Competency Hierarchy Top-level Competencies WMO 49

More information

Meteorology METARs Weather Observing Stations. MTPs: 5.09 METARs References: FTGU pages AWWS:

Meteorology METARs Weather Observing Stations. MTPs: 5.09 METARs References: FTGU pages AWWS: Meteorology 5.09 References: FTGU pages 160-163 AWWS: www.flightplanning.navcanada.ca MTPs: Weather Observing Stations 5.09 Weather Observing Stations Weather observation are taken every hour at selected

More information

Aerodrome Reports and Forecasts

Aerodrome Reports and Forecasts Aerodrome Reports and Forecasts A Users Handbook to the Codes WMO-No. 782 Aerodrome Reports and Forecasts A Users Handbook to the Codes WMO-No. 782 Fifth edition November 2008 WMO-No. 782 World Meteorological

More information

Guidance on Aeronautical Meteorological Observer Competency Standards

Guidance on Aeronautical Meteorological Observer Competency Standards Guidance on Aeronautical Meteorological Observer Competency Standards The following guidance is supplementary to the AMP competency Standards endorsed by Cg-16 in Geneva in May 2011. Format of the Descriptions

More information

Global Surface Archives Documentation

Global Surface Archives Documentation Global Surface Archives Documentation 1 July 2013 PO BOX 450211 GARLAND TX 75045 www.weathergraphics.com Global Surface Archives is a dataset containing hourly and special observations from official observation

More information

MACIS documentation. a. Temporal resolution: For each month and the hole year

MACIS documentation. a. Temporal resolution: For each month and the hole year MACIS documentation Wind: 1. Relative frequency of mean wind speed b. Treshold values: mean wind speed greater, greater equal, less, less equal 3, 5, 10, 12, 15 20, 22, 25 kt 2. Relative frequency of gusts

More information

GEMPAK Symbols, Lines, and Markers APPENDIX C. SYMBOLS, LINES, and MARKERS. Past Weather. Pressure tendency with change.

GEMPAK Symbols, Lines, and Markers APPENDIX C. SYMBOLS, LINES, and MARKERS. Past Weather. Pressure tendency with change. APPENDIX C SYMBOLS, LINES, and MARKERS SYMBOLS The World Meteorological Organization (WMO) has established a standard set of symbols depicting descriptive reports of certain types of weather observations.

More information

Effective: SPECI ALERTING

Effective: SPECI ALERTING AUSTRALIA AERONAUTICAL INFORMATION SERVICE AIRSERVICES AUSTRALIA GPO BOX 367, CANBERRA ACT 2601 Phone: 02 6268 4874 Email: aim.editorial@airservicesaustralia.com Effective: AERONAUTICAL INFORMATION CIRCULAR

More information

TAF Decoder Courtesy of the Aviation Weather Center

TAF Decoder Courtesy of the Aviation Weather Center TAF Decoder Courtesy of the Aviation Weather Center A Terminal Aerodrome Forecast (TAF) is a concise statement of the expected meteorological conditions at an airport during a specified period (usually

More information

How the Bureau of Meteorology contributes to the integrated risk picture. Presented by Michael Berechree

How the Bureau of Meteorology contributes to the integrated risk picture. Presented by Michael Berechree How the Bureau of Meteorology contributes to the integrated risk picture Presented by Michael Berechree Mission Meteorological Service The mission of the Bureau's Aviation Meteorological Service is to

More information

Implementation Guidance of Aeronautical Meteorological Observer Competency Standards

Implementation Guidance of Aeronautical Meteorological Observer Competency Standards Implementation Guidance of Aeronautical Meteorological Observer Competency Standards The following guidance is supplementary to the AMP competency Standards endorsed by Cg-16 in Geneva in May 2011. Please

More information

Guidance to Instructors on Subject Delivery PILOT NAVIGATION. This is a suggested programme for the delivery of this subject.

Guidance to Instructors on Subject Delivery PILOT NAVIGATION. This is a suggested programme for the delivery of this subject. Programme of learning: Guidance to Instructors on Subject Delivery This is a suggested programme for the delivery of this subject. The main headings are the Learning Outcomes (LO1, LO2, etc), with sub

More information

Manual on Codes. Regional Codes and National Coding Practices Volume II edition Updated in 2017 WEATHER CLIMATE WATER. WMO-No.

Manual on Codes. Regional Codes and National Coding Practices Volume II edition Updated in 2017 WEATHER CLIMATE WATER. WMO-No. Manual on Codes Regional Codes and National Coding Practices Volume II 2011 edition Updated in 2017 WEATHER CLIMATE WATER WMO-No. 306 Manual on Codes Regional Codes and National Coding Practices Volume

More information

Aviation Weather Reports

Aviation Weather Reports Aviation Weather Reports Aviation Weather Reports METAR: hourly weather report (issued on the hour every hour) SPECI: special weather observations issued at times other than on the hour, as a result of

More information

GEN 3.5 METEOROLOGICAL SERVICES

GEN 3.5 METEOROLOGICAL SERVICES GEN-3.5-1 3.5.1 RESPONSIBLE SERVICE GEN 3.5 METEOROLOGICAL SERVICES The authority entrusted with the provision of aeronautical meteorological service is the Lithuanian Hydrometeorological Service. Lithuanian

More information

ADL110B ADL120 ADL130 ADL140 How to use radar and strike images. Version

ADL110B ADL120 ADL130 ADL140 How to use radar and strike images. Version ADL110B ADL120 ADL130 ADL140 How to use radar and strike images Version 1.00 22.08.2016 How to use radar and strike images 1 / 12 Revision 1.00-22.08.2016 WARNING: Like any information of the ADL in flight

More information

Montréal, 7 to 18 July 2014

Montréal, 7 to 18 July 2014 INTERNATIONAL CIVIL AVIATION ORGANIZATION WORLD METEOROLOGICAL ORGANIZATION 6/5/14 Meteorology (MET) Divisional Meeting (2014) Commission for Aeronautical Meteorology Fifteenth Session Montréal, 7 to 18

More information

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) AMOFSG/9-SN No. 15 21/6/11 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) NINTH MEETING Montréal, 26 to 30 September 2011 Agenda Item 5: Observing and forecasting at the aerodrome

More information

NINTH MEETING DISPLAY IN ATS UNITS. (Presented SUMMARY

NINTH MEETING DISPLAY IN ATS UNITS. (Presented SUMMARY AMOFSG/9-SN No. 26 12/8/11 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) NINTH MEETING Montréal, 26 to 30 September 2011 Agenda Item 6: MET informationn to support ATM UPDATING

More information

GEN 3.5 METEOROLOGICAL SERVICES

GEN 3.5 METEOROLOGICAL SERVICES AIP GEN 3.5-1 GEN 3.5 METEOROLOGICAL SERVICES 1. RESPONSIBLE SERVICE The meteorological services for civil aviation at Jordan are provided by the Jordanian Meteorological Department. Postal Address: Director

More information

6 6 INFORMATION 165 docstructure.indb /08/11 14:43:39

6 6 INFORMATION 165 docstructure.indb /08/11 14:43:39 6 6 INFORMATION165 USEFUL INFORMATION SiriusXM RADIO DATA SERVICE* *: SiriusXM U.S. satellite and data services are available only in the 48 contiguous USA and DC. SiriusXM satellite service is also available

More information

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting Precipitation AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Precipitation formation Rain Ice Lecture 14 Oct 11 2018 1 Cloud Development: Orographic Lifting

More information

REPORTS ON THE PROGRESS IN ADDRESSING THE WORK PLAN OF THE EXPERT TEAM. Standardization in instrumentation and observations

REPORTS ON THE PROGRESS IN ADDRESSING THE WORK PLAN OF THE EXPERT TEAM. Standardization in instrumentation and observations WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR INSTRUMENTS AND METHODS OF OBSERVATION OPAG SURFACE EXPERT TEAM ON SURFACE TECHNOLOGY AND MEASUREMENT TECHNIQUES Second Session CIMO/OPAG SURFACE/ ET ST&MT

More information

METEOROLOGY PANEL (METP) WORKING GROUP- METEOROLOGICAL OPERATION GROUP (MOG) FIRST MEETING

METEOROLOGY PANEL (METP) WORKING GROUP- METEOROLOGICAL OPERATION GROUP (MOG) FIRST MEETING 8 28/7/15 METEOROLOGY PANEL (METP) WORKING GROUP- METEOROLOGICAL OPERATION GROUP (MOG) FIRST MEETING Gatwick, United Kingdom, 08 to 11 September 2015 Agenda Item 3: Matters relating to SADIS 3.3: Operations

More information

Work Package 1: Final Project Report Appendix E: The METAR data

Work Package 1: Final Project Report Appendix E: The METAR data Work Package 1: Final Project Report Appendix E: The METAR data First Assessment of the operational Limitations, Benefits & Applicability for a List of package I AS applications FALBALA Project Drafted

More information

EnergyPlus Weather File (EPW) Data Dictionary

EnergyPlus Weather File (EPW) Data Dictionary EnergyPlus Weather File (EPW) Data Dictionary The data dictionary for EnergyPlus Weather Data is shown below. Note that semi-colons do NOT terminate lines in the EnergyPlus Weather Data. It helps if you

More information

Use of lightning data to improve observations for aeronautical activities

Use of lightning data to improve observations for aeronautical activities Use of lightning data to improve observations for aeronautical activities Françoise Honoré Jean-Marc Yvagnes Patrick Thomas Météo_France Toulouse France I Introduction Aeronautical activities are very

More information

MEETING OF THE METEOROLOGY PANEL (METP) WORKING GROUP MOG (WAFS)

MEETING OF THE METEOROLOGY PANEL (METP) WORKING GROUP MOG (WAFS) International Civil Aviation Organization STUDY NOTE METPWGMOG/7/SN/23 21/03/18 MEETING OF THE METEOROLOGY PANEL (METP) WORKING GROUP MOG (WAFS) SEVENTH MEETING Offenbach, Germany, 11 to 13 April 2018

More information

Weather App v3. Tuesday 5th April 2011

Weather App v3. Tuesday 5th April 2011 Weather App v3 Tuesday 5th April 2011 A video demo animation of the app working can be found here: http://urbanspaceman.net/tivo/weatherref.htm Video demo:http://urbanspaceman.net/tivo/weatherref.htm Fig.1

More information

Plan for operational nowcasting system implementation in Pulkovo airport (St. Petersburg, Russia)

Plan for operational nowcasting system implementation in Pulkovo airport (St. Petersburg, Russia) Plan for operational nowcasting system implementation in Pulkovo airport (St. Petersburg, Russia) Pulkovo airport (St. Petersburg, Russia) is one of the biggest airports in the Russian Federation (150

More information

WORLD AREA FORECAST SYSTEM OPERATIONS GROUP (WAFSOPSG)

WORLD AREA FORECAST SYSTEM OPERATIONS GROUP (WAFSOPSG) International Civil Aviation Organization WAFSOPSG/7-WP/10 5/7/12 WORKING PAPER WORLD AREA FORECAST SYSTEM OPERATIONS GROUP (WAFSOPSG) SEVENTH MEETING Lima, Peru, 17 to 21 September 2012 Agenda Item 6:

More information

GUIDANCE MATERIAL ON WINTER CONDITIONS FOR THE EUROPEAN REGION

GUIDANCE MATERIAL ON WINTER CONDITIONS FOR THE EUROPEAN REGION Appendix P to EANPG/53 Report (paragraph 4.6.25 (a) refers) ICAO EUR DOC XXX INTERNATIONAL CIVIL AVIATION ORGANIZATION GUIDANCE MATERIAL ON WINTER CONDITIONS FOR THE EUROPEAN REGION - First Draft Edition

More information

The combination of visibility and temperature, strong surrogate for icing occurrence?

The combination of visibility and temperature, strong surrogate for icing occurrence? The combination of visibility and temperature, strong surrogate for icing occurrence? Jarkko Hirvonen Finnish Meteorological Institute Winterwind2012 Feb 6 7 2012 Skellefteå Background Visibility (VIS)

More information

Meteorology. Review Extreme Weather a. cold front. b. warm front. What type of weather is associated with a:

Meteorology. Review Extreme Weather a. cold front. b. warm front. What type of weather is associated with a: Meteorology 5.08 Extreme Weather References: FTGU pages 132, 144, 145, 148-155 Air Command Weather Manual Chapters 9 and 15 Review What type of weather is associated with a: a. cold front b. warm front

More information

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN Chapter 8 - Precipitation Rain Drops, Cloud Droplets, and CCN Recall the relative sizes of rain drops, cloud drops, and CCN: raindrops - 2000 μ m = 2 mm fall at a speed of 4-5 ms -1 cloud drops - 20 μ

More information

data manipulation (2)

data manipulation (2) Information Science in Action Week 06 data manipulation (2) College of Information Science and Engineering Ritsumeikan University last week: data manipulation (1) the evolution of protocols push vs. pull

More information

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) AMOFSG/10-SN No. 5 19/4/13 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) TENTH MEETING Montréal, 17 to 19 June 2013 Agenda Item 5: Aerodrome observations REPORTING OF RUNWAY VISUAL

More information

5.04 Clouds and Fog. References: FTGU pages , 147. Meteorology

5.04 Clouds and Fog. References: FTGU pages , 147. Meteorology 5.04 Clouds and Fog References: FTGU pages 124-126, 147 Meteorology 5.04 Clouds and Fog MTPs: Cloud Classification Types and Recognition Associated Precipitation Fog Formation and Types Cloud Classification

More information

SCOPE: Outlines standard techniques for setting up and conducting voice communication and broadcasting ATIS at Hong Kong VACC

SCOPE: Outlines standard techniques for setting up and conducting voice communication and broadcasting ATIS at Hong Kong VACC STANDARD OPERATING PROCEDURE (SOP) DOCUMENT NUMBER: HKVACC-SOP011-R5 DATE ISSUED: 1 APR 2015 REVISION: 5 SUBJECT: Voice Communication Setup and ATIS Guide EFFECTIVE DATE: 5 AUG 2018 SCOPE: Outlines standard

More information

Flight Dispatcher Aviation Meteorology Required Knowledge

Flight Dispatcher Aviation Meteorology Required Knowledge Flight Dispatcher Aviation Meteorology Required Knowledge 3.1 THE EARTH'S ATMOSPHERE 1 Properties 2 Vertical Structure 3 ICAO Standard Atmosphere 3.2 ATMOSPHERIC PRESSURE 1 Pressure Measurements 2 Station

More information

CHAPTER CONTENTS REFERENCES AND FURTHER READING Page

CHAPTER CONTENTS REFERENCES AND FURTHER READING Page CHAPTER CONTENTS CHAPTER 2. MEASUREMENTS AND OBSERVATIONS AT AERONAUTICAL METEOROLOGICAL STATIONS... 553 2.1 General... 553 2.1.1 Definitions... 553 2.1.2 Units... 553 2.1.3 Requirements... 553 2.1.4 Methods...

More information

CAP 437 Offshore Meteorological Observer Training

CAP 437 Offshore Meteorological Observer Training CAP 437 Offshore Meteorological Observer Training Training for Meteorological Observers in support of Offshore Helicopter Operations CAP 437 Offshore Meteorological Observer Training Page 1 Meteorological

More information

Implementation Guidance of Aeronautical Meteorological Forecaster Competency Standards

Implementation Guidance of Aeronautical Meteorological Forecaster Competency Standards Implementation Guidance of Aeronautical Meteorological Forecaster Competency Standards The following guidance is supplementary to the AMP competency Standards endorsed by Cg-16 in Geneva in May 2011. Implicit

More information

SCOPE: Outlines standard techniques for setting up and conducting voice communication and broadcasting ATIS at Hong Kong VACC

SCOPE: Outlines standard techniques for setting up and conducting voice communication and broadcasting ATIS at Hong Kong VACC STANDARD OPERATING PROCEDURE (SOP) DOCUMENT NUMBER: HKVACC-SOP011-R5 DATE ISSUED: 1 APR 2015 REVISION: 5 SUBJECT: Voice Communication Setup and ATIS Guide EFFECTIVE DATE: 5 AUG 2018 SCOPE: Outlines standard

More information

STUDY UNIT SEVENTEEN GRAPHICAL AIRMAN S METEOROLOGICAL ADVISORY (G-AIRMET)

STUDY UNIT SEVENTEEN GRAPHICAL AIRMAN S METEOROLOGICAL ADVISORY (G-AIRMET) STUDY UNIT SEVENTEEN GRAPHICAL AIRMAN S METEOROLOGICAL ADVISORY (G-AIRMET) 341 (10 pages of outline) 17.1 Product Description....................................................... 341 17.2 Issuance...............................................................

More information

Aerodrome Weather Observer

Aerodrome Weather Observer Aerodrome Weather Observer METARAWS/SPECIAWS Reporting and Recording Bureau of Meteorology Training Centre Commonwealth of Australia 2016 This work is copyright. Apart from any use as permitted under the

More information

Issue of SIGMET/AIRMET warning part II

Issue of SIGMET/AIRMET warning part II Issue of SIGMET/AIRMET warning part II 1 SIGMET SIGMET is warning information and hence it is of highest priority amongst other types of meteorological information provided to the aviation users. This

More information

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc.

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc. NATS 1750 Lecture Wednesday 28 th November 2012 Processes that lift air Orographic lifting Elevated terrains act as barriers Result can be a rainshadow desert Frontal wedging Cool air acts as a barrier

More information

Aviation Hazards: Thunderstorms and Deep Convection

Aviation Hazards: Thunderstorms and Deep Convection Aviation Hazards: Thunderstorms and Deep Convection TREND Diagnosis of thunderstorm hazards using imagery Contents Satellite imagery Visible, infrared, water vapour Basic cloud identification Identifying

More information

MEASUREMENTS AND OBSERVATIONS AT AERONAUTICAL METEOROLOGICAL STATIONS

MEASUREMENTS AND OBSERVATIONS AT AERONAUTICAL METEOROLOGICAL STATIONS II.2 1 CHAPTER 2 MEASUREMENTS AND OBSERVATIONS AT AERONAUTICAL METEOROLOGICAL STATIONS 2.1 General 2.1.1 Definitions This chapter deals with the requirements for observations at aeronautical meteorological

More information

Atmospheric Moisture. Atmospheric Moisture:Clouds. Atmospheric Moisture:Clouds. Atmospheric Moisture:Clouds

Atmospheric Moisture. Atmospheric Moisture:Clouds. Atmospheric Moisture:Clouds. Atmospheric Moisture:Clouds Sec A Atmospheric Moisture I. Measuring Relative Humidity A. A Psychrometer is an instrument for measuring relative humidity B. A common psychrometer uses two thermometers with a wet gauze wrapped over

More information

PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN

PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN Clelia Caracciolo1, Franco Prodi1,2, Leo Pio D Adderio2 and Eckhard Lanzinger4 1 University of Ferrara,

More information

Weather Maps. Name:& & &&&&&Advisory:& & 1.! A&weather&map&is:& & & & 2.! Weather&fronts&are:& & & & & &

Weather Maps. Name:& & &&&&&Advisory:& & 1.! A&weather&map&is:& & & & 2.! Weather&fronts&are:& & & & & & Name: Advisory: Weather Maps 1. Aweathermapis: 2. Weatherfrontsare: a. Labelthefrontsbelow: 1. 2. 3. 4. 3. Clovercoversymbols 4. Precipitationsymbols 5. 6. 7. 8. 5. RadarEchoIntensityshows 6. Isobarsare

More information

Forecasting Local Weather

Forecasting Local Weather Forecasting Local Weather Sea/Land Breeze Temperature Dew Fog Frost Snow Thunderstorms Tropical Cyclones Temperatures: Radiation Balance Typical Diurnal Variation of Temperature Min soon after dawn Temp

More information

AWOS Level Descriptions

AWOS Level Descriptions AWOS Level Descriptions AWOS System Configurations. The AWOS is a modular system utilizing a central processor which may receive input from several sensors. Eight standard groups of sensors are defined

More information

OFFICIAL FAA HOLDOVER TIME TABLES WINTER

OFFICIAL FAA HOLDOVER TIME TABLES WINTER OFFICIAL FAA HOLDOVER TIME TABLES WINTER 2011-2012 The information contained in this document is the FAA official guidance, Holdover Tables, and Allowance Times for use the Winter 2011-2012. The content

More information

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) AMOFSG/10-IP/4 21/5/13 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) TENTH MEETING Montréal, 17 to 19 June 2013 Agenda Item 5: Aerodrome observations AUTOMATED CLOUD INFORMATION

More information

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) 24/4/13 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) TENTH MEETING Montréal, 17 to 19 June 2013 Agenda Item 6: Forecasting at the aerodrome and in the terminal area and ATIS requirements

More information

MEETING OF THE METEOROLOGY PANEL (METP) WORKING GROUP MOG (WAFS)

MEETING OF THE METEOROLOGY PANEL (METP) WORKING GROUP MOG (WAFS) International Civil Aviation Organization STUDY NOTE METPWGMOG/7/SN/21 22/03/18 MEETING OF THE METEOROLOGY PANEL (METP) WORKING GROUP MOG (WAFS) SEVENTH MEETING Offenbach, Germany, 11 to 13 April 2018

More information

Global Precipitation and Thunderstorm Frequencies. Part I: Seasonal and Interannual Variations

Global Precipitation and Thunderstorm Frequencies. Part I: Seasonal and Interannual Variations 1092 JOURNAL OF CLIMATE VOLUME 14 Global Precipitation and Thunderstorm Frequencies. Part I: Seasonal and Interannual Variations AIGUO DAI National Center for Atmospheric Research,* Boulder, Colorado (Manuscript

More information

Meteorology Clouds and Fog. Cloud Classification MTPs: Height. Shape. and. Clouds are classified by:

Meteorology Clouds and Fog. Cloud Classification MTPs: Height. Shape. and. Clouds are classified by: Meteorology 5.04 Clouds and Fog References: FTGU pages 124-126, 147 5.04 Clouds and Fog MTPs: Cloud Classification Associated Precipitation Clouds are classified by: Cloud Classification Height Shape and

More information

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing Remote Sensing in Meteorology: Satellites and Radar AT 351 Lab 10 April 2, 2008 Remote Sensing Remote sensing is gathering information about something without being in physical contact with it typically

More information

Road weather forecasts and MDSS in Slovakia

Road weather forecasts and MDSS in Slovakia ID: 0030 Road weather forecasts and MDSS in Slovakia M. Benko Slovak Hydrometeorological Institute (SHMI), Jeséniova 17, 83315 Bratislava, Slovakia Corresponding author s E-mail: martin.benko@shmu.sk ABSTRACT

More information

TAF and TREND Verification

TAF and TREND Verification TAF and TREND Verification Guenter Mahringer and Horst Frey, Austro Control, Aviation MET Service Linz, A-4063 Hoersching, Austria. guenter.mahringer@austrocontrol.at The TAF Verification Concept A TAF

More information

Probabilistic Winter Weather Nowcasting supporting Total Airport Management

Probabilistic Winter Weather Nowcasting supporting Total Airport Management Probabilistic Winter Weather Nowcasting supporting Total Airport Management Jaakko Nuottokari* Finnish Meteorological Institute *With Heikki Juntti, Elena Saltikoff, Harri Hohti, Seppo Pulkkinen, Alberto

More information

CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA

CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA Piotr Struzik Institute of Meteorology and Water Management, Satellite Remote Sensing Centre

More information

WMO Aeronautical Meteorology Scientific Conference 2017

WMO Aeronautical Meteorology Scientific Conference 2017 Session 2 Integration, use cases, fitness for purpose and service delivery 2.2 Terminal Area and Impact-based forecast Data-driven influence model of weather condition in airport operational performance

More information

Precipitation type from the Thies disdrometer

Precipitation type from the Thies disdrometer Precipitation type from the Thies disdrometer Hannelore I. Bloemink 1, Eckhard Lanzinger 2 1 Royal Netherlands Meteorological Institute (KNMI) Instrumentation Division P.O. Box 201, 3730 AE De Bilt, The

More information

Severe Weather Watches, Advisories & Warnings

Severe Weather Watches, Advisories & Warnings Severe Weather Watches, Advisories & Warnings Tornado Watch Issued by the Storm Prediction Center when conditions are favorable for the development of severe thunderstorms and tornadoes over a larger-scale

More information

Deutscher Wetterdienst

Deutscher Wetterdienst WakeNet3-Greenwake Workshop Wake Vortex & Wind Monitoring Sensors in all weather conditions DWD s new Remote Wind Sensing Equipment for an Integrated Terminal Weather System (ITWS) Frank Lehrnickel Project

More information

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM CHAPTER -11 WATER IN THE ATMOSPHERE This chapter deals with Humidity, types of humidity, relative humidity, absolute humidity, specific humidity, dew point, condensation, saturated air, types of precipitation

More information

Marine Corps Installations East Regional METOC Center MCAS Cherry Point, NC Standardized Weather Warnings Definitions

Marine Corps Installations East Regional METOC Center MCAS Cherry Point, NC Standardized Weather Warnings Definitions Marine Corps Installations East Regional METOC Center MCAS Cherry Point, NC Standardized Weather Warnings Definitions Updated: 25 June 2012 MCIE Standardized Weather Warnings Warning Local Wind Warning

More information

Field study of the latest transmissometers at Hong Kong International Airport

Field study of the latest transmissometers at Hong Kong International Airport Field study of the latest transmissometers at Hong Kong International Airport P. W. Chan Hong Kong Observatory 134A Nathan Road, Kowloon, Hong Kong, China Tel:+852 2926 8435, Fax: +852 2311 9448, Email:

More information

GRAPHICAL AREA FORECASTS (GAF) feet. Flight Information Region boundary QLD-S NSW-E VIC TAS

GRAPHICAL AREA FORECASTS (GAF) feet. Flight Information Region boundary QLD-S NSW-E VIC TAS GRAPHICAL AREA FORECASTS (GAF) Unlike at TAF, a Graphical Area Forecasts (GAFs) does not describe conditions expected at a particular location, it refers to a defined area and is intended for use in planning

More information

Checklist Templates for Direct Observation and Oral Assessments (AMOB)

Checklist Templates for Direct Observation and Oral Assessments (AMOB) Checklist Templates for Direct Observation and Oral Assessments (AMOB) Competency Assessment System Hong Kong Observatory Hong Kong, China Prepared By: Signed Approved By: Signed Date: 20/08/2012 Date:

More information

A critical review of the design, execution and evaluation of cloud seeding experiments

A critical review of the design, execution and evaluation of cloud seeding experiments A critical review of the design, execution and evaluation of cloud seeding experiments Roelof T. Bruintjes WMA Meeting September 2013, Santiago Research Applications Program, National Center for Atmospheric

More information

WEATHER. rain. thunder. The explosive sound of air as it is heated by lightning.

WEATHER. rain. thunder. The explosive sound of air as it is heated by lightning. WEATHER rain thunder The explosive sound of air as it is heated by lightning. rainbow lightning hurricane They are intense storms with swirling winds up to 150 miles per hour. tornado cold front warm front

More information

Meteorology. Types of Turbulence

Meteorology. Types of Turbulence Meteorology 5.06 Turbulence, Visibility, and Fronts References: Air Command Weather Manual Chapters 7, 8, 10 and 11 FTGU pages 133, 138, 140-145, 147, 155 and 156 Aviation Weather Student Guide http://www.tpub.com/content/aviation2/p-303/index.htm

More information

Lecture Outlines PowerPoint. Chapter 17 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 17 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 17 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

How to issue SIGMET. SIGMET Seminar for Asia/Pacific Region Bangkok, Thailand, July 2007

How to issue SIGMET. SIGMET Seminar for Asia/Pacific Region Bangkok, Thailand, July 2007 How to issue SIGMET SIGMET Seminar for Asia/Pacific Region Bangkok, Thailand, 11-13 July 2007 Shikembaru, Toru 志堅原透 Japan Meteorological Agency (JMA) 日本気象庁 Japan Meteorological Agency 1 Contents of lecture

More information

MetConsole AWOS. (Automated Weather Observation System) Make the most of your energy SM

MetConsole AWOS. (Automated Weather Observation System) Make the most of your energy SM MetConsole AWOS (Automated Weather Observation System) Meets your aviation weather needs with inherent flexibility, proven reliability Make the most of your energy SM Automated Weather Observation System

More information

A SMART SYSTEM FRAMEWORK ENABLING AN INNOVATIVE WEATHER AWARENESS SYSTEM FOR AIRPORTS AND BEYOND

A SMART SYSTEM FRAMEWORK ENABLING AN INNOVATIVE WEATHER AWARENESS SYSTEM FOR AIRPORTS AND BEYOND A SMART SYSTEM FRAMEWORK ENABLING AN INNOVATIVE WEATHER AWARENESS SYSTEM FOR AIRPORTS AND BEYOND Christian Schiefer, Sebastian Kauczok, Andre Weipert WSN16 WMO WWRP 4th International Symposium on Nowcasting

More information

National Maritime Center

National Maritime Center National Maritime Center Providing Credentials to Mariners (Sample Examination) Page 1 of 5 Choose the best answer to the following Multiple Choice Questions. 1. In a weather report, the term "visibility"

More information

Clever Catch Weather Ball Question and Answer Sheets

Clever Catch Weather Ball Question and Answer Sheets Clever Catch Weather Ball Question and Answer Sheets 1. Too much exposure to can cause skin cancer. B. Ultraviolet radiation 2. The layer of the atmosphere closest to the Earth s surface is the 3. Some

More information

Syllabus details and associated Learning Objectives (A) and EIR METEOROLOGY

Syllabus details and associated Learning Objectives (A) and EIR METEOROLOGY Syllabus details associated Learning Objectives 050 00 00 00 METEOROLOGY 050 01 00 00 THE ATMOSPHERE 050 01 02 00 Air temperature 050 01 02 04 Lapse rates LO Describe qualitatively quantitatively the temperature

More information

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops:

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops: Precipitation is any form of water that falls from a cloud and reaches the ground. How do cloud drops grow? Chapter 7 When air is saturated with respect to a flat surface it is unsaturated with respect

More information