Leon Creek Watershed October 17-18, 1998 Rainfall Analysis Examination of USGS Gauge Helotes Creek at Helotes, Texas

Size: px
Start display at page:

Download "Leon Creek Watershed October 17-18, 1998 Rainfall Analysis Examination of USGS Gauge Helotes Creek at Helotes, Texas"

Transcription

1 Leon Creek Watershed October 17-18, 1998 Rainfall Analysis Examination of USGS Gauge Helotes Creek at Helotes, Texas Terrance Jackson MSCE Candidate University of Texas San Antonio Abstract The civil engineer often examines a storm event leading to flooding over a watershed. Gage stations are located on streams, lakes, or reservoirs where observations and hydrologic data are needed. The engineer performs quality control analysis of the radar rainfall data of the event and compares it to estimates from the rain gauge network. This can be accomplished by analyzing the precipitation grid and calculating the average rainfall in the study area and comparing it to the rainfall tables. The Leon Creek watershed was selected as the area of study. One hour raster are created to show the flooding areas in the watershed as the storm progress through the watershed. The mean rainfall (4.43 inches and 8.32 inches) for October 17-18, 1998 storm are equivalent to the 25 year storm. The maximum rainfall that occurred on day 2 was 12 inches and is equivalent to the 100 year flood. Introduction Leon Creek Watershed is located in northwest San Antonio (Figure 1). Civil engineers and hydrologists use rainfall data for watersheds to evaluate the rainfall distribution. The rainfall distribution changes with time as the storm progresses. NEXRAD total storm precipitation data is a series of maps that estimate the precipitation accumulation every hour. Polygon shapefiles can be downloaded and overlaid as a GIS layer. This research will show the progression of the storm to show flooded areas. These maps will be compared to the rainfall table (Figure 2) to show the impact of flooding in the Leon Creek Watershed. Data Used Rain gauge data was downloaded from USGS Real Time Water Data for the Nation. The website allows the user to choose the days of the storm event to retrieve the needed information for the gauge. Precipitation data was downloaded from National Oceanic and Atmospheric Data Administration (NOAA) website. This precipitation data is in real time or archive storm events can be downloaded. 1

2 Methodology: Rain gauge data for USGS rain gauge is downloaded from the USGS website (Figure 3). Texas was selected as the Geographic area of interest. Daily Stage was selected as the predefined display. Group table by county was selected. Bexar County Station Helotes Ck at Helotes Texas was selected. Available parameter gauge height (Max., Min., Mean) begin date October 17, 1998 and end date October 18, 1998 table format was selected (Figure 4). Precipitation data for the storm event was downloaded from the NOAA website (Figure 5). The Austin/San Antonio NEXRAD data covers a 230 km area which encompasses Bexar County (Figure 6). The National Climatic Data Center Inventory page requires user to choose date, product and select create graph to retrieve data. Order data is selected, the files are chosen, and an address is entered. NCDC assigns the order a HAS number. The HAS number is used to retrieve the data. The analysis of the total storm precipitation image shows the precipitation data is measured in inches (Figure 7). NEXRAD data exporter is selected and vector (polygon) shapefile is chosen as the file format. Choosing the output directory is the final step to retrieve precipitation data. Eighty four shapefiles were exported for October 17 and the precipitation retrieval procedure was repeated to download the shapefiles for October 18. Test 1 folder was created for the rainfall data. Test 2 folder was created for the Leon Creek Watershed shapefile. Test 3 folder contains the Leon Tools box that shows functions used to create rainfall maps (Figure 8). A personal geodatabase (input rainfall.mdb) was created to store the precipitation (Figure 9). Precipitation data was imported to input rainfall.mdb using feature class to geodatabase (multiple) script (Figure 10). The rainfall polygons were in the GCS_WGS_1984 coordinate system. Therefore, the project tool was used to convert the watershed to the same geographic coordinate system (Figure 11). The clip feature script was used to clip the rainfall to watershed (Figure 12). Feature to raster (batch) tool converted the clipped rainfall polygons to raster file. The environment settings were changed to set the current workspace and scratch workspace (Figure 13). The mosaic to new raster tool was used to create one hour raster to study the rainfall distribution (Figure 14). 2

3 Results Figures show the rainfall distribution in the Leon Creek Watershed for the storm event. Analysis of the precipitation data indicates that there is no precipitation recorded on October 18 from 5:00 am to 1:00 pm. However, the radar continued to accumulate precipitation on day 2. Figure 15 shows that a 10:00 am the1 inch of precipitation occurred in the northwest portion of the watershed. Figure 16 indicates that by 3 pm every pixel in the watershed received rainfall (1 to 6 inches). Figure 17 raster depicts that the area of concern are the 5 and 6 inch precipitation depths located in the center of the watershed. Figure 18 indicates that by 11:00 pm on day 2 the maximum precipitation increased to 8 inches. On October 18 at 3:00 am the 6 inch precipitation migrated to the southern part of the watershed. The rainfall raster at 11:00 pm indicates the precipitation total at the end of the event. 6 to 10 inches of precipitation encompasses most of the watershed. Conclusions and Discussion The rainfall distribution maps show that the entire watershed received rainfall during this two day storm event. The one hour rasters created show the rainfall distribution and can be compared to the rainfall table. The summary statistics of the first day of rain show that the maximum precipitation was 8 inches. The mean rainfall was 4.43 inches. The mean rainfall and maximum precipitation are equivalent to the 25 year event. The summary statistics of the second day of rainfall show a maximum precipitation of 12 inches. The maximum precipitation is equivalent to the 100 year event. The mean rainfall for the second day is 8.32 inches. The mean rainfall is equivalent to a 25 year event. References 1. USGS Real Time Water Data for the Nation 2. NOAA National Climatic Data Center Inventory 3

4 Figures 4

5 Figure 1 USGS Rain Gauge Locations Leon Creek Watershed USGS Rainfall Values (inches) Frequency of Storm 2- year 10- year 25- year 50- year 100- year 500- year Storm Duration 5 min min hour hour hour hour hour hour Figure 2 USGS Rainfall (inches) 5

6 Figure 3 USGS Gauge Data Figure 4 USGS gage (Maximum, Minimum, Mean) October 17,

7 Figure 5 NEXRAD Data Search Page Figure 6 NEXRAD Data coverage 7

8 Figure 7 Total Storm Precipitation image Figure 8 Test 1, Test 2, and Test 3 folders 8

9 Figure 9 Create Personal Geodatabase for rainfall Figure 10 Feature Class to Geodatabase (multiple) script 9

10 Figure 11 Project watershed to GCS_WCS 1984 coordinate system Figure 12 Clip Features Script 10

11 Figure 13 Feature to raster (batch) and Environment settings Figure 14 One Hour Raster personal geodatabase 11

12 Figure 15 One hour raster October 17 10:00 am Figure 16 One hour raster October 17, 3:00 pm 12

13 Figure 17 One hour raster October 17 at 2100 hrs Figure 18 One hour raster October 17 at 2300 hrs 13

14 Figure 19 One Hour Rainfall Raster October 17 3:00 am Figure 20 One Hour Rainfall Raster October 18 11:00 pm 14

15 Figure 21 October 17 at 2351 hrs Statistics Figure 22 October 18 at 2355 hrs Statistics 15

Final Report. COMET Partner's Project. University of Texas at San Antonio

Final Report. COMET Partner's Project. University of Texas at San Antonio Final Report COMET Partner's Project University: Name of University Researcher Preparing Report: University of Texas at San Antonio Dr. Hongjie Xie National Weather Service Office: Name of National Weather

More information

Near Real-Time Runoff Estimation Using Spatially Distributed Radar Rainfall Data. Jennifer Hadley 22 April 2003

Near Real-Time Runoff Estimation Using Spatially Distributed Radar Rainfall Data. Jennifer Hadley 22 April 2003 Near Real-Time Runoff Estimation Using Spatially Distributed Radar Rainfall Data Jennifer Hadley 22 April 2003 Introduction Water availability has become a major issue in Texas in the last several years,

More information

San Antonio River Authority. San Antonio River Authority Floodworks implementation in the San Antonio River Basin. Nefi Garza, PE, CFM

San Antonio River Authority. San Antonio River Authority Floodworks implementation in the San Antonio River Basin. Nefi Garza, PE, CFM San Antonio River Authority Floodworks implementation in the San Antonio River Basin Nefi Garza, PE, CFM San Antonio River Authority Michael Crenshaw, PE, CFM Anthony J. Henry Wallingford Software, Inc

More information

Basins-Level Heavy Rainfall and Flood Analyses

Basins-Level Heavy Rainfall and Flood Analyses Basins-Level Heavy Rainfall and Flood Analyses Peng Gao, Greg Carbone, and Junyu Lu Department of Geography, University of South Carolina (gaop@mailbox.sc.edu, carbone@mailbox.sc.edu, jlu@email.sc.edu)

More information

A GIS-based Approach to Watershed Analysis in Texas Author: Allison Guettner

A GIS-based Approach to Watershed Analysis in Texas Author: Allison Guettner Texas A&M University Zachry Department of Civil Engineering CVEN 658 Civil Engineering Applications of GIS Instructor: Dr. Francisco Olivera A GIS-based Approach to Watershed Analysis in Texas Author:

More information

Watershed Delineation

Watershed Delineation Watershed Delineation Jessica L. Watkins, University of Georgia 2 April 2009 Updated by KC Love February 25, 2011 PURPOSE For this project, I delineated watersheds for the Coweeta synoptic sampling area

More information

Detailed Storm Rainfall Analysis for Hurricane Ivan Flooding in Georgia Using the Storm Precipitation Analysis System (SPAS) and NEXRAD Weather Radar

Detailed Storm Rainfall Analysis for Hurricane Ivan Flooding in Georgia Using the Storm Precipitation Analysis System (SPAS) and NEXRAD Weather Radar Detailed Storm Rainfall Analysis for Hurricane Ivan Flooding in Georgia Using the Storm Precipitation Analysis System (SPAS) and NEXRAD Weather Radar Ed Tomlinson, PhD and Bill Kappel Applied Weather Associates

More information

USING GIS TO MODEL AND ANALYZE HISTORICAL FLOODING OF THE GUADALUPE RIVER NEAR NEW BRAUNFELS, TEXAS

USING GIS TO MODEL AND ANALYZE HISTORICAL FLOODING OF THE GUADALUPE RIVER NEAR NEW BRAUNFELS, TEXAS USING GIS TO MODEL AND ANALYZE HISTORICAL FLOODING OF THE GUADALUPE RIVER NEAR NEW BRAUNFELS, TEXAS ASHLEY EVANS While the state of Texas is well-known for flooding, the Guadalupe River Basin is one of

More information

Designing a Dam for Blockhouse Ranch. Haley Born

Designing a Dam for Blockhouse Ranch. Haley Born Designing a Dam for Blockhouse Ranch Haley Born CE 394K GIS in Water Resources Term Paper Fall 2011 Table of Contents Introduction... 1 Data Sources... 2 Precipitation Data... 2 Elevation Data... 3 Geographic

More information

CONVERTING A NEXRAD MAP TO A FLOODPLAIN MAP. Oscar Robayo, Tim Whiteaker, and David Maidment*

CONVERTING A NEXRAD MAP TO A FLOODPLAIN MAP. Oscar Robayo, Tim Whiteaker, and David Maidment* CONVERTING A NEXRAD MAP TO A FLOODPLAIN MAP Oscar Robayo, Tim Whiteaker, and David Maidment* ABSTRACT: Using ArcGIS 9.0 ArcObjects and the new ModelBuilder environment, a methodology for converting a NEXRAD

More information

Creating a Seamless Map of Gage-Adjusted Radar Rainfall Estimates for the State of Florida

Creating a Seamless Map of Gage-Adjusted Radar Rainfall Estimates for the State of Florida Creating a Seamless Map of Gage-Adjusted Radar Rainfall Estimates for the State of Florida Brian C. Hoblit (1), Cris Castello (2), Leiji Liu (3), David Curtis (4) (1) NEXRAIN Corporation, 9267 Greenback

More information

Using the Stock Hydrology Tools in ArcGIS

Using the Stock Hydrology Tools in ArcGIS Using the Stock Hydrology Tools in ArcGIS This lab exercise contains a homework assignment, detailed at the bottom, which is due Wednesday, October 6th. Several hydrology tools are part of the basic ArcGIS

More information

A Cloud-Based Flood Warning System For Forecasting Impacts to Transportation Infrastructure Systems

A Cloud-Based Flood Warning System For Forecasting Impacts to Transportation Infrastructure Systems A Cloud-Based Flood Warning System For Forecasting Impacts to Transportation Infrastructure Systems Jon Goodall Associate Professor, Civil and Environmental Engineering Associate Director, Link Lab April

More information

Delineation of Watersheds

Delineation of Watersheds Delineation of Watersheds Adirondack Park, New York by Introduction Problem Watershed boundaries are increasingly being used in land and water management, separating the direction of water flow such that

More information

WMS 10.1 Tutorial GSSHA Applications Precipitation Methods in GSSHA Learn how to use different precipitation sources in GSSHA models

WMS 10.1 Tutorial GSSHA Applications Precipitation Methods in GSSHA Learn how to use different precipitation sources in GSSHA models v. 10.1 WMS 10.1 Tutorial GSSHA Applications Precipitation Methods in GSSHA Learn how to use different precipitation sources in GSSHA models Objectives Learn how to use several precipitation sources and

More information

George Mason University Department of Civil, Environmental and Infrastructure Engineering. Dr. Celso Ferreira Prepared by Lora Baumgartner

George Mason University Department of Civil, Environmental and Infrastructure Engineering. Dr. Celso Ferreira Prepared by Lora Baumgartner George Mason University Department of Civil, Environmental and Infrastructure Engineering Dr. Celso Ferreira Prepared by Lora Baumgartner Exercise Topic: Downloading Spatial Data Objectives: a) Become

More information

Ed Tomlinson, PhD Bill Kappel Applied Weather Associates LLC. Tye Parzybok Metstat Inc. Bryan Rappolt Genesis Weather Solutions LLC

Ed Tomlinson, PhD Bill Kappel Applied Weather Associates LLC. Tye Parzybok Metstat Inc. Bryan Rappolt Genesis Weather Solutions LLC Use of NEXRAD Weather Radar Data with the Storm Precipitation Analysis System (SPAS) to Provide High Spatial Resolution Hourly Rainfall Analyses for Runoff Model Calibration and Validation Ed Tomlinson,

More information

SIE 509 Principles of GIS Exercise 5 An Introduction to Spatial Analysis

SIE 509 Principles of GIS Exercise 5 An Introduction to Spatial Analysis SIE 509 Principles of GIS Exercise 5 An Introduction to Spatial Analysis Due: Oct. 31, 2017 Total Points: 50 Introduction: The Governor of Maine is asking communities to look at regionalization for major

More information

ISU GIS CENTER S ARCSDE USER'S GUIDE AND DATA CATALOG

ISU GIS CENTER S ARCSDE USER'S GUIDE AND DATA CATALOG ISU GIS CENTER S ARCSDE USER'S GUIDE AND DATA CATALOG 2 TABLE OF CONTENTS 1) INTRODUCTION TO ARCSDE............. 3 2) CONNECTING TO ARCSDE.............. 5 3) ARCSDE LAYERS...................... 9 4) LAYER

More information

Model Calibration and Forecast Error for NFIE-Hydro

Model Calibration and Forecast Error for NFIE-Hydro Corey Van Dyk C E 397 Flood Forecasting 5/8/15 Model Calibration and Forecast Error for NFIE-Hydro Introduction The forecasting component of the National Flood Interoperability Experiment (NFIE), like

More information

Creating Watersheds from a DEM

Creating Watersheds from a DEM Creating Watersheds from a DEM These instructions enable you to create watersheds of specified area using a good quality Digital Elevation Model (DEM) in ArcGIS 8.1. The modeling is performed in ArcMap

More information

Hydrologic Engineering Applications of Geographic Information Systems

Hydrologic Engineering Applications of Geographic Information Systems Hydrologic Engineering Applications of Geographic Information Systems Davis, California Objectives: The participant will acquire practical knowledge and skills in the application of GIS technologies for

More information

Assessing Arid Area Extreme Precipitation Using Doppler Radar and Rain Gages

Assessing Arid Area Extreme Precipitation Using Doppler Radar and Rain Gages Southwest Extreme Precipitation Symposium, San Diego March 29, 2018 Assessing Arid Area Extreme Precipitation Using Doppler Radar and Rain Gages Investigators Theodore V. Hromadka, II, Ph.D., Ph.D., Ph.D.,

More information

HEC & GIS Modeling of the Brushy Creek HEC & GIS Watershed Modeling of the

HEC & GIS Modeling of the Brushy Creek HEC & GIS Watershed Modeling of the HEC & GIS Modeling of the Brushy Creek HEC & GIS Watershed Modeling of the By Cassandra Fagan 5, December 2014 http://ubcwatershedstudy.ursokr.com/images/ Contents Introduction... 3 Figure 1: 24-hour rainfall

More information

A Comparative Study of the National Water Model Forecast to Observed Streamflow Data

A Comparative Study of the National Water Model Forecast to Observed Streamflow Data A Comparative Study of the National Water Model Forecast to Observed Streamflow Data CE394K GIS in Water Resources Term Project Report Fall 2018 Leah Huling Introduction As global temperatures increase,

More information

Evaluation of MPE Radar Estimation Using a High Density Rain Gauge Network within a Hydro-Estimator Pixel and Small SubWatershed

Evaluation of MPE Radar Estimation Using a High Density Rain Gauge Network within a Hydro-Estimator Pixel and Small SubWatershed Evaluation of MPE Radar Estimation Using a High Density Rain Gauge Network within a Hydro-Estimator Pixel and Small SubWatershed ALEJANDRA M. ROJAS GONZÁLEZ 1, ERIC W. HARMSEN 2 AND SANDRA CRUZ POL 3 1

More information

Multi-Sensor Precipitation Reanalysis

Multi-Sensor Precipitation Reanalysis Multi-Sensor Precipitation Reanalysis Brian R. Nelson, Dongsoo Kim, and John J. Bates NOAA National Climatic Data Center, Asheville, North Carolina D.J. Seo NOAA NWS Office of Hydrologic Development, Silver

More information

Handling Raster Data for Hydrologic Applications

Handling Raster Data for Hydrologic Applications Handling Raster Data for Hydrologic Applications Prepared by Venkatesh Merwade Lyles School of Civil Engineering, Purdue University vmerwade@purdue.edu January 2018 Objective The objective of this exercise

More information

HEC-HMS Lab 2 Using Thiessen Polygon and Inverse Distance Weighting

HEC-HMS Lab 2 Using Thiessen Polygon and Inverse Distance Weighting HEC-HMS Lab 2 Using Thiessen Polygon and Inverse Distance Weighting Created by Venkatesh Merwade (vmerwade@purdue.edu) Learning outcomes The objective of this lab is to learn how to input data from multiple

More information

CW3E Atmosphere River Update - Summary

CW3E Atmosphere River Update - Summary CW3E Atmosphere River Update - Summary Two Atmospheric Rivers (ARs) made landfall over the Pacific Northwest over the previous four days These events combined to produce >400 mm of precipitation in southern

More information

A Temporal Hydrologic Database for Rapidly Changing Landscapes

A Temporal Hydrologic Database for Rapidly Changing Landscapes A Temporal Hydrologic Database for Rapidly Changing Landscapes Using Mt. St. Helens in Washington as a Pilot Site Adam Mosbrucker Geog 575 BACKGROUND: Client / User U.S. Geological Survey Cascades Volcano

More information

The GeoCLIM software for gridding & analyzing precipitation & temperature. Tamuka Magadzire, FEWS NET Regional Scientist for Southern Africa

The GeoCLIM software for gridding & analyzing precipitation & temperature. Tamuka Magadzire, FEWS NET Regional Scientist for Southern Africa The GeoCLIM software for gridding & analyzing precipitation & temperature Tamuka Magadzire, FEWS NET Regional Scientist for Southern Africa Outline What is GeoCLIM GeoCLIM Development Team GeoCLIM: objectives

More information

5A.10 A GEOSPATIAL DATABASE AND CLIMATOLOGY OF SEVERE WEATHER DATA

5A.10 A GEOSPATIAL DATABASE AND CLIMATOLOGY OF SEVERE WEATHER DATA 5A.10 A GEOSPATIAL DATABASE AND CLIMATOLOGY OF SEVERE WEATHER DATA Steve Ansari * and Stephen Del Greco NOAA National Climatic Data Center, Asheville, North Carolina Mark Phillips University of North Carolina

More information

SAMPLE. SITE SPECIFIC WEATHER ANALYSIS Rainfall Report. Bevens Engineering, Inc. Susan M. Benedict REFERENCE:

SAMPLE. SITE SPECIFIC WEATHER ANALYSIS Rainfall Report. Bevens Engineering, Inc. Susan M. Benedict REFERENCE: SAMPLE SITE SPECIFIC WEATHER ANALYSIS Rainfall Report PREPARED FOR: Bevens Engineering, Inc. Susan M. Benedict REFERENCE: DUBOWSKI RESIDENCE / FILE# 11511033 CompuWeather Sample Report Please note that

More information

AGRICULTURAL WATER RESOURCES DECISION SUPPORT SYSTEM AND EVAPOTRANSPIRATION TOOLBOX. L. Albert Brower, Curtis L. Hartzell, and Steffen P.

AGRICULTURAL WATER RESOURCES DECISION SUPPORT SYSTEM AND EVAPOTRANSPIRATION TOOLBOX. L. Albert Brower, Curtis L. Hartzell, and Steffen P. AGRICULTURAL WATER RESOURCES DECISION SUPPORT SYSTEM AND EVAPOTRANSPIRATION TOOLBOX L. Albert Brower, Curtis L. Hartzell, and Steffen P. Meyer 1 ABSTRACT: There is a critical need for improvement in calculating

More information

Flood Event Analysis to Estimate the Avoided Damages Due to Flood Improvement Projects & Voluntary Buyout Program

Flood Event Analysis to Estimate the Avoided Damages Due to Flood Improvement Projects & Voluntary Buyout Program Flood Event Analysis to Estimate the Avoided Damages Due to Flood Improvement Projects & Voluntary Buyout Program Ataul Hannan, P.E., CFM Planning Division Director Harris County Flood Control District

More information

CW3E Atmospheric River Update

CW3E Atmospheric River Update CW3E Atmospheric River Update Update on ARs Currently Impacting and Forecast to Impact West Coast Precipitation continues to fall over a majority of California The Transverse Mountains (north of Santa

More information

NCTCOG GIS File Locations

NCTCOG GIS File Locations Boundaries Area Codes k:\bnd\region\area_codes.shp Area Type k:\bnd\region\areatype.shp Ciry Centroids (World) k:\bnd\usa_world\cities.shp City Centroids (NCTCOG Region) k:\bnd\region\city_point.shp vector.vector.bnd_city_point

More information

Rick Faber CE 513 Building a Base Map Lab #2 6/2/06

Rick Faber CE 513 Building a Base Map Lab #2 6/2/06 Rick Faber CE 513 Building a Base Map Lab #2 6/2/06 1. Objective & Discussion: By using data for the Guadalupe river basin in Texas, we will get a chance to build a base map of hydrologic features. These

More information

Areal Reduction Factors for the Colorado Front Range and Analysis of the September 2013 Colorado Storm

Areal Reduction Factors for the Colorado Front Range and Analysis of the September 2013 Colorado Storm Areal Reduction Factors for the Colorado Front Range and Analysis of the September 2013 Colorado Storm Doug Hultstrand, Bill Kappel, Geoff Muhlestein Applied Weather Associates, LLC - Monument, Colorado

More information

Coastal Flooding in Brevard County, Florida

Coastal Flooding in Brevard County, Florida Helen Gerlach CE 394K.3 December 4, 2015 Coastal Flooding in Brevard County, Florida Introduction My project was to create a model of the coastal flooding that occurred in Brevard County, Florida in August

More information

National Weather Service Flood Forecast Needs: Improved Rainfall Estimates

National Weather Service Flood Forecast Needs: Improved Rainfall Estimates National Weather Service Flood Forecast Needs: Improved Rainfall Estimates Weather Forecast Offices Cleveland and Northern Indiana Ohio River Forecast Center Presenter: Sarah Jamison, Service Hydrologist

More information

Current and Future Plans. R. Srinivasan

Current and Future Plans. R. Srinivasan Current and Future Plans R. Srinivasan Contents 1 The ArcSWAT Interface 2 VizSWAT: Output Visualization 3 User online support 4 MapWindows SWAT interface 5 ArcGIS SWAT/APEX interfaces 6 Radar Rainfall

More information

GIS in Water Resources Midterm Exam Fall 2016 There are four questions on this exam. Please do all four. They are not all of equal weight.

GIS in Water Resources Midterm Exam Fall 2016 There are four questions on this exam. Please do all four. They are not all of equal weight. Page 1 of 7 Name: GIS in Water Resources Midterm Exam Fall 2016 There are four questions on this exam. Please do all four. They are not all of equal weight. Question 1. (20%) (a) Three key functions of

More information

Management and Sharing of Hydrologic Information of Cache County

Management and Sharing of Hydrologic Information of Cache County Geographic Information System in Water Resources CEE6440 Fall Semester 2012 Management and Sharing of Hydrologic Information of Cache County To: Dr. David Tarboton Instructor By: Tian Gan Dec.7, 2012 I.

More information

Display and analysis of weather data from NCDC using ArcGIS

Display and analysis of weather data from NCDC using ArcGIS Display and analysis of weather data from NCDC using ArcGIS Helen M. Cox Associate Professor Geography Department California State University, Northridge and Stephen Krug Graduate Student Geography Department

More information

120 ASSESMENT OF MULTISENSOR QUANTITATIVE PRECIPITATION ESTIMATION IN THE RUSSIAN RIVER BASIN

120 ASSESMENT OF MULTISENSOR QUANTITATIVE PRECIPITATION ESTIMATION IN THE RUSSIAN RIVER BASIN 120 ASSESMENT OF MULTISENSOR QUANTITATIVE PRECIPITATION ESTIMATION IN THE RUSSIAN RIVER BASIN 1 Delbert Willie *, 1 Haonan Chen, 1 V. Chandrasekar 2 Robert Cifelli, 3 Carroll Campbell 3 David Reynolds

More information

TEMPORAL DISTIRUBTION OF PMP RAINFALL AS A FUNCTION OF AREA SIZE. Introduction

TEMPORAL DISTIRUBTION OF PMP RAINFALL AS A FUNCTION OF AREA SIZE. Introduction TEMPORAL DISTIRUBTION OF PMP RAINFALL AS A FUNCTION OF AREA SIZE Bill D. Kappel, Applied Weather Associates, LLC Edward M. Tomlinson, Ph.D., Applied Weather Associates, LLC Tye W. Parzybok, Metstat, Inc.

More information

SAMPLE. SITE SPECIFIC WEATHER ANALYSIS Rainfall Report. Bevins Engineering, Inc. Susan M. Benedict. July 1, 2017 REFERENCE:

SAMPLE. SITE SPECIFIC WEATHER ANALYSIS Rainfall Report. Bevins Engineering, Inc. Susan M. Benedict. July 1, 2017 REFERENCE: SAMPLE SITE SPECIFIC WEATHER ANALYSIS Rainfall Report PREPARED FOR: Bevins Engineering, Inc. Susan M. Benedict July 1, 2017 REFERENCE: DUBOWSKI RESIDENCE / FILE# 11511033 1500 Water Street, Pensacola,

More information

Introduction to Geographic Information Systems

Introduction to Geographic Information Systems Introduction to Geographic Information Systems Lynn_Carlson@brown.edu 401-863-9917 The Environmental And Remote TecHnologies Lab MacMillan Hall, Room 105 http://www.brown.edu/research/earthlab/ Outline

More information

ASFPM - Rapid Floodplain Mapping

ASFPM - Rapid Floodplain Mapping ASFPM - Nicole Cominoli Hydraulic Engineer USACE - Omaha District mary.n.cominoli@usace.army.mil June 3, 2015 US Army Corps of Engineers Mitigation = Risk Informed Decisions 2 The National Flood Insurance

More information

GRAPEVINE LAKE MODELING & WATERSHED CHARACTERISTICS

GRAPEVINE LAKE MODELING & WATERSHED CHARACTERISTICS GRAPEVINE LAKE MODELING & WATERSHED CHARACTERISTICS Photo Credit: Lake Grapevine Boat Ramps Nash Mock GIS in Water Resources Fall 2016 Table of Contents Figures and Tables... 2 Introduction... 3 Objectives...

More information

BSYSE 456/556 Surface Hydrologic Processes and Modeling

BSYSE 456/556 Surface Hydrologic Processes and Modeling BSYSE 456/556 Surface Hydrologic Processes and Modeling Lab 9 (Prepared by Erin Brooks and Jan Boll, UI, and Joan Wu, WSU) P Introduction One of the most difficult tasks in watershed assessment and management

More information

6/9/2014. Software Overview. System Overview

6/9/2014. Software Overview. System Overview Future Rainfall 6/9/2014 Curtis Beitel, PE, CFM, Anthony Henry and Wayne Tschirhart, PE, CFM, PMP TFMA Spring 2014 Conference Software Overview 2 Processes Hydrometric DB Event Manager Automatic Low =

More information

CIMIS. California Irrigation Management Information System

CIMIS. California Irrigation Management Information System CIMIS California Irrigation Management Information System What is CIMIS? A network of over 130 fully automated weather stations that collect weather data throughout California and provide estimates of

More information

What is CERA? Coastal Emergency Risks Assessment

What is CERA? Coastal Emergency Risks Assessment What is CERA? Coastal Emergency Risks Assessment Visualization tool using OGC standards Displays the outputs from the ADCIRC storm surge model or other coastal models Represents the maps on interactive

More information

CW3E Atmospheric River Update

CW3E Atmospheric River Update CW3E Atmospheric River Update Update on AR Currently Impacting CA, OR, and WA Precipitation continues to fall over portions of Northern California, Washington, and Oregon 6 10 inches of precipitation has

More information

Presented by Jerry A. Gomez, P.E. National Hydropower Association Northeast Regional Meeting - September 17, 2009

Presented by Jerry A. Gomez, P.E. National Hydropower Association Northeast Regional Meeting - September 17, 2009 Presented by Jerry A. Gomez, P.E. National Hydropower Association Northeast Regional Meeting - September 17, 2009 Defining Probable Maximum Precipitation (PMP) PMP is the theoretically greatest depth of

More information

Analysis of the Sacramento Soil Moisture Accounting Model Using Variations in Precipitation Input

Analysis of the Sacramento Soil Moisture Accounting Model Using Variations in Precipitation Input Meteorology Senior Theses Undergraduate Theses and Capstone Projects 12-216 Analysis of the Sacramento Soil Moisture Accounting Model Using Variations in Precipitation Input Tyler Morrison Iowa State University,

More information

StreamStats: Delivering Streamflow Information to the Public. By Kernell Ries

StreamStats: Delivering Streamflow Information to the Public. By Kernell Ries StreamStats: Delivering Streamflow Information to the Public By Kernell Ries U.S. Department of the Interior U.S. Geological Survey MD-DE-DC District 410-238-4317 kries@usgs.gov StreamStats Web Application

More information

Areal Reduction Factors for the Colorado Front Range and Analysis of the September 2013 Colorado Storm

Areal Reduction Factors for the Colorado Front Range and Analysis of the September 2013 Colorado Storm Areal Reduction Factors for the Colorado Front Range and Analysis of the September 2013 Colorado Storm Doug Hultstrand, Bill Kappel, Geoff Muhlestein Applied Weather Associates, LLC - Monument, Colorado

More information

Geodatabases and ArcCatalog

Geodatabases and ArcCatalog Geodatabases and ArcCatalog Francisco Olivera, Ph.D., P.E. Srikanth Koka Lauren Walker Aishwarya Vijaykumar Keri Clary Department of Civil Engineering April 21, 2014 Contents Geodatabases and ArcCatalog...

More information

Geoprocessing Hydrometeorological Datasets to Assess National Weather Service (NWS) Forecasts

Geoprocessing Hydrometeorological Datasets to Assess National Weather Service (NWS) Forecasts Geoprocessing Hydrometeorological Datasets to Assess National Weather Service (NWS) Forecasts Jack Settelmaier National Weather Service Southern Region HQ Fort Worth, Texas ABSTRACT The National Weather

More information

Regional Drought Decision Support System (RDDSS) Project Update and Product Concepts

Regional Drought Decision Support System (RDDSS) Project Update and Product Concepts Regional Drought Decision Support System (RDDSS) Project Update and Product Concepts Part of the Red River Basin Decision Information Network (RRBDIN) NEXT-GEN RRBDIN Decision Support for the Red River

More information

NEXRAD Downscaling. Beibei Yu. Common remotely-sensed precipitation products have a spatial resolution that is often

NEXRAD Downscaling. Beibei Yu. Common remotely-sensed precipitation products have a spatial resolution that is often NEXRAD Downscaling Beibei Yu ABSTRACT Common remotely-sensed precipitation products have a spatial resolution that is often too coarse to reveal hydrologically important spatial variability. A regression

More information

A Near Real-time Flood Prediction using Hourly NEXRAD Rainfall for the State of Texas Bakkiyalakshmi Palanisamy

A Near Real-time Flood Prediction using Hourly NEXRAD Rainfall for the State of Texas Bakkiyalakshmi Palanisamy A Near Real-time Flood Prediction using Hourly NEXRAD for the State of Texas Bakkiyalakshmi Palanisamy Introduction Radar derived precipitation data is becoming the driving force for hydrological modeling.

More information

Development and Land Use Change in the Central Potomac River Watershed. Rebecca Posa. GIS for Water Resources, Fall 2014 University of Texas

Development and Land Use Change in the Central Potomac River Watershed. Rebecca Posa. GIS for Water Resources, Fall 2014 University of Texas Development and Land Use Change in the Central Potomac River Watershed Rebecca Posa GIS for Water Resources, Fall 2014 University of Texas December 5, 2014 Table of Contents I. Introduction and Motivation..4

More information

CHAPTER VII FULLY DISTRIBUTED RAINFALL-RUNOFF MODEL USING GIS

CHAPTER VII FULLY DISTRIBUTED RAINFALL-RUNOFF MODEL USING GIS 80 CHAPTER VII FULLY DISTRIBUTED RAINFALL-RUNOFF MODEL USING GIS 7.1GENERAL This chapter is discussed in six parts. Introduction to Runoff estimation using fully Distributed model is discussed in first

More information

The Delaware Environmental Observing System. A Real-Time System Dedicated to Monitoring Environmental Conditions Across Delmarva

The Delaware Environmental Observing System. A Real-Time System Dedicated to Monitoring Environmental Conditions Across Delmarva The Delaware Environmental Observing System A Real-Time System Dedicated to Monitoring Environmental Conditions Across Delmarva Delaware Solid Waste Authority Dept of Natural Resources nd Environmental

More information

Watershed Analysis of the Blue Ridge Mountains in Northwestern Virginia

Watershed Analysis of the Blue Ridge Mountains in Northwestern Virginia Watershed Analysis of the Blue Ridge Mountains in Northwestern Virginia Mason Fredericks December 6, 2018 Purpose The Blue Ridge Mountain range is one of the most popular mountain ranges in the United

More information

Calhoun County, Texas Under 5 Meter Sea Level Rise

Calhoun County, Texas Under 5 Meter Sea Level Rise Kyle Kacal GEO 327G Calhoun County, Texas Under 5 Meter Sea Level Rise PROBLEM AND PURPOSE: Sea level rise is threat to all coastal areas. Although natural sea level rise happens at a very slow rate, hurricanes

More information

CoCoRaHS Monitoring Colorado s s Water Resources through Community Collaborations

CoCoRaHS Monitoring Colorado s s Water Resources through Community Collaborations CoCoRaHS Monitoring Colorado s s Water Resources through Community Collaborations Nolan Doesken Colorado Climate Center Atmospheric Science Department Colorado State University Presented at Sustaining

More information

Chapter 5 CALIBRATION AND VERIFICATION

Chapter 5 CALIBRATION AND VERIFICATION Chapter 5 CALIBRATION AND VERIFICATION This chapter contains the calibration procedure and data used for the LSC existing conditions model. The goal of the calibration effort was to develop a hydraulic

More information

The general procedure for estimating 24-hour PMP includes the following steps:

The general procedure for estimating 24-hour PMP includes the following steps: 14th Conference on Applied Climatology Abstract # 71520 Using PRISM Climate Grids and GIS for Extreme Precipitation Mapping George H. Taylor and Christopher Daly Oregon State University Corvallis Oregon

More information

Compilation of GIS data for the Lower Brazos River basin

Compilation of GIS data for the Lower Brazos River basin Compilation of GIS data for the Lower Brazos River basin Francisco Olivera, Ph.D., P.E. Srikanth Koka Lauren Walker Aishwarya Vijaykumar Department of Civil Engineering December 5, 2011 Contents Brief

More information

used to transport sediments throughout the lands. In this regard, understanding erosion is

used to transport sediments throughout the lands. In this regard, understanding erosion is David Rounce GIS in Water Resources 11/23/2010 Erosion Potential in Travis County INTRODUCTION Erosion has played a vital role in the morphology of the Earth as its processes have been used to transport

More information

Geodatabases and ArcCatalog

Geodatabases and ArcCatalog Geodatabases and ArcCatalog Prepared by Francisco Olivera, Ph.D. and Srikanth Koka Department of Civil Engineering Texas A&M University February 2004 Contents Brief Overview of Geodatabases Goals of the

More information

Out with the Old, In with the New: Implementing the Results of the Iowa Rapid Floodplain Modeling Project

Out with the Old, In with the New: Implementing the Results of the Iowa Rapid Floodplain Modeling Project Out with the Old, In with the New: Implementing the Results of the Iowa Rapid Floodplain Modeling Project Traci Tylski, E.I., CFM Hydraulics Engineer USACE - Omaha District Traci.M.Tylski@USACE.army.mil

More information

Watershed Modeling With DEMs

Watershed Modeling With DEMs Watershed Modeling With DEMs Lesson 6 6-1 Objectives Use DEMs for watershed delineation. Explain the relationship between DEMs and feature objects. Use WMS to compute geometric basin data from a delineated

More information

NRC Workshop - Probabilistic Flood Hazard Assessment Jan 2013

NRC Workshop - Probabilistic Flood Hazard Assessment Jan 2013 Regional Precipitation-Frequency Analysis And Extreme Storms Including PMP Current State of Understanding/Practice Mel Schaefer Ph.D. P.E. MGS Engineering Consultants, Inc. Olympia, WA NRC Workshop - Probabilistic

More information

Typical Hydrologic Period Report (Final)

Typical Hydrologic Period Report (Final) (DELCORA) (Final) November 2015 (Updated April 2016) CSO Long-Term Control Plant Update REVISION CONTROL REV. NO. DATE ISSUED PREPARED BY DESCRIPTION OF CHANGES 1 4/26/16 Greeley and Hansen Pg. 1-3,

More information

Depth-Duration Frequency (DDF) and Depth-Area- Reduction Factors (DARF)

Depth-Duration Frequency (DDF) and Depth-Area- Reduction Factors (DARF) Spatial Analysis of Storms Using GIS Brian Hoblit, Steve Zelinka, Cris Castello, and David Curtis Abstract Point data from rain gages have been historically used to develop depth-area relationships, design

More information

10/13/2011. Introduction. Introduction to GPS and GIS Workshop. Schedule. What We Will Cover

10/13/2011. Introduction. Introduction to GPS and GIS Workshop. Schedule. What We Will Cover Introduction Introduction to GPS and GIS Workshop Institute for Social and Environmental Research Nepal October 13 October 15, 2011 Alex Zvoleff azvoleff@mail.sdsu.edu http://rohan.sdsu.edu/~zvoleff Instructor:

More information

Comparing NEXRAD and Gauge Rainfall Data Near San Antonio, TX

Comparing NEXRAD and Gauge Rainfall Data Near San Antonio, TX N. Johnson 1 Comparing NEXRAD and Gauge Rainfall Data Near San Antonio, TX Surface Water Hydrology Final Project Nate Johnson 5/5/05 N. Johnson 2 Table of Contents Table of Contents... 2 1. Introduction...

More information

Studying Topography, Orographic Rainfall, and Ecosystems (STORE)

Studying Topography, Orographic Rainfall, and Ecosystems (STORE) Introduction Studying Topography, Orographic Rainfall, and Ecosystems (STORE) Lesson: Using ArcGIS Explorer to Analyze the Connection between Topography, Tectonics, and Rainfall GIS-intensive Lesson This

More information

An ArcIMS based interactive map for SeaWorld San Antonio

An ArcIMS based interactive map for SeaWorld San Antonio An ArcIMS based interactive map for SeaWorld San Antonio Morgan K. Dean Advanced GIS, Earth and Environmental Science Department University of Texas at San Antonio One UTSA Circle, San Antonio, TX. 78249,

More information

Effects of input DEM data spatial resolution on Upstream Flood modeling result A case study in Willamette river downtown Portland

Effects of input DEM data spatial resolution on Upstream Flood modeling result A case study in Willamette river downtown Portland Effects of input DEM data spatial resolution on Upstream Flood modeling result A case study in Willamette river downtown Portland By Hue Duong GEOG 593 Fall 2015 Digital Terrain Analysis Photo: Anh Duc

More information

Improving Reservoir Management Using the Storm Precipitation Analysis System (SPAS) and NEXRAD Weather Radar

Improving Reservoir Management Using the Storm Precipitation Analysis System (SPAS) and NEXRAD Weather Radar Improving Reservoir Management Using the Storm Precipitation Analysis System (SPAS) and NEXRAD Weather Radar Bill D. Kappel, Applied Weather Associates, LLC, Monument, CO Edward M. Tomlinson, Ph.D., Applied

More information

Using netcdf and HDF in ArcGIS. Nawajish Noman Dan Zimble Kevin Sigwart

Using netcdf and HDF in ArcGIS. Nawajish Noman Dan Zimble Kevin Sigwart Using netcdf and HDF in ArcGIS Nawajish Noman Dan Zimble Kevin Sigwart Outline NetCDF and HDF in ArcGIS Visualization and Analysis Sharing Customization using Python Demo Future Directions Scientific Data

More information

Coastal Emergency Risks Assessment - CERA Real-Time Storm Surge and Wave Visualization Tool

Coastal Emergency Risks Assessment - CERA Real-Time Storm Surge and Wave Visualization Tool Coastal Emergency Risks Assessment - CERA Real-Time Storm Surge and Wave Visualization Tool Introduction This document provides guidance for using the Coastal Emergency Risks Assessment (CERA) visualization

More information

Title: ArcMap: Calculating Soil Areas for Storm Water Pollution Prevention Plans Authors: Brandy Woodcock, Benjamin Byars

Title: ArcMap: Calculating Soil Areas for Storm Water Pollution Prevention Plans Authors: Brandy Woodcock, Benjamin Byars Title: ArcMap: Calculating Soil Areas for Storm Water Pollution Prevention Plans Authors: Brandy Woodcock, Benjamin Byars Introduction Abstract: The use of ArcMap to calculate soil areas for storm water

More information

Determining the Location of the Simav Fault

Determining the Location of the Simav Fault Lindsey German May 3, 2012 Determining the Location of the Simav Fault 1. Introduction and Problem Formulation: The issue I will be focusing on involves interpreting the location of the Simav fault in

More information

TXHYETO.XLS: A Tool To Facilitate Use of Texas- Specific Hyetographs for Design Storm Modeling. Caroline M. Neale Texas Tech University

TXHYETO.XLS: A Tool To Facilitate Use of Texas- Specific Hyetographs for Design Storm Modeling. Caroline M. Neale Texas Tech University TXHYETO.XLS: A Tool To Facilitate Use of Texas- Specific Hyetographs for Design Storm Modeling Caroline M. Neale Texas Tech University Acknowledgements Funding and direction provided by the Texas Department

More information

National Weather Service Greenville-Spartanburg, Forecast Office

National Weather Service Greenville-Spartanburg, Forecast Office National Weather Service Greenville-Spartanburg, Forecast Office CoCoRaHS Presentation: NC CERT Conference May, 2017 Introduction- who we are. Federal Agency Within the U.S. Dept. of Commerce Introduction-

More information

Effect of Variations in Reflectivity-Rainfall Relationships on Runoff Predictions

Effect of Variations in Reflectivity-Rainfall Relationships on Runoff Predictions Effect of Variations in Reflectivity-Rainfall Relationships on Runoff Predictions Chakradhar G. Malakpet, Emad Habib (*), Ehab A. Meselhe Department of Civil Engineering, University of Louisiana at Lafayette,

More information

Lecture 6: Precipitation Averages and Interception

Lecture 6: Precipitation Averages and Interception Lecture 6: Precipitation Averages and Interception Key Questions 1. How much and when does Whatcom County receive rain? 2. Where online can you find rainfall data for the state? 3. How is rainfall averaged

More information

Precipitation Intensity-Duration- Frequency Analysis in the Face of Climate Change and Uncertainty

Precipitation Intensity-Duration- Frequency Analysis in the Face of Climate Change and Uncertainty Precipitation Intensity-Duration- Frequency Analysis in the Face of Climate Change and Uncertainty Supporting Casco Bay Region Climate Change Adaptation RRAP Eugene Yan, Alissa Jared, Edom Moges Environmental

More information

SLR Calculator: Sea Level Rise (SLR) Inundation Surface Calculator Add-in for ArcGIS Desktop & 10.4

SLR Calculator: Sea Level Rise (SLR) Inundation Surface Calculator Add-in for ArcGIS Desktop & 10.4 1 SLR Calculator: Sea Level Rise (SLR) Inundation Surface Calculator Add-in for ArcGIS Desktop 10.3.1 & 10.4 Florida Sea Level Scenario Sketch Planning Tool Version 1.6, July 2016 University of Florida

More information

A GEOGRAPHIC ASSESSMENT OF MAJOR DISASTER DECLARATIONS ACROSS THE LOWER 48 STATES

A GEOGRAPHIC ASSESSMENT OF MAJOR DISASTER DECLARATIONS ACROSS THE LOWER 48 STATES A GEOGRAPHIC ASSESSMENT OF MAJOR DISASTER DECLARATIONS ACROSS THE LOWER 48 STATES A summary report produced by the Southern Climate Impacts Planning Program (SCIPP) Author: James Hocker Southern Climate

More information

Streams in the Ranching Country of South Texas

Streams in the Ranching Country of South Texas Streams in the Ranching Country of South Texas Watershed Analysis of HUC 12110207 Sandranell Moerbe CE GIS in Water Resources Fall 2015 INTRODUCTION This project investigates the portion of South Texas

More information