The Analysis of Microburst (Burstiness) on Virtual Switch

Size: px
Start display at page:

Download "The Analysis of Microburst (Burstiness) on Virtual Switch"

Transcription

1 The Analysis of Microburst (Burstiness) on Virtual Switch Chunghan Lee Fujitsu Laboratories Copyright 2016 FUJITSU LABORATORIES LIMITED

2 Background What is Network Function Virtualization (NFV)? NFV virtualizes network functions (e.g. Firewall, Load balancer) on IA servers The function is called as virtualized network function (VNF) Virtual switch is one of major components for virtual network on NFV Infrastructure (NFVI) QoS property is also important for NFV Virtual network* *Virtual switch is included in virtual network An image is from 1 Copyright 2014 FUJITSU LABORATORIES LIMITED

3 Microburst (1) What is microburst? Spikes in shot time period, but causing decreased performance Impact of microburst on network Although traffic with QoS property is generated, the spikes can be occurred by massive traffic in very short time period This phenomenon cannot catch the ordinary monitoring (SNMP) When packet drop is occurred by the spike, it is changed as the microburst SNMP (Coarse-grained) Spike Packet (Find-grained) Packet drop!! Sudden spikes in throughput 2 Copyright 2016 FUJITSU LABORATORIES LIMITED

4 Microburst (2) Impact of microburst on NFVI Although traffic with QoS property is generated on VNF, the sudden spikes would be occurred due to resource state Packet loss can be occurred by the spikes (microbursts) Traffic with QoS Sudden spikes!! NFVI (tx) NFVI (rx) 3 Copyright 2016 FUJITSU LABORATORIES LIMITED

5 Problem Microburst on NFVI Ordinary application measurement cannot catch the microbursts on NFVI There are queues and buffers between NFVIs A deep understanding of packet processing issued by virtual switch and Linux kernel is required to clarify the cause of microburst Traffic with QoS Sudden spikes!! NFVI (tx) NFVI (rx) 4 Copyright 2016 FUJITSU LABORATORIES LIMITED

6 GOAL Investigate the occurrence of microburst on NFVI Find the cause of microbursts on NFVI 5 Copyright 2014 FUJITSU LABORATORIES LIMITED

7 Approach Prepare two types of UDP traffic to observe the microbursts on an OvS bridge Foreground : Target with QoS property Background : Occur a lack of CPU resource at kernel Generate fore/background traffic and capture their packets with tcpdump Analyze them in packet-level to observe the microburst Profile kernel functions to clarify the cause of microbursts 6 Copyright 2016 FUJITSU LABORATORIES LIMITED

8 Overview of testbed Foreground traffic (UDP) Sending rate : 2Gbps [Datagram size : 1400 bytes (No fragmentation)] vport tx queue : default value (0), UDP buffer : default value (200 KBytes) Background traffic (UDP) 8 vports are used on the same OVS bridge iperf using UDP mode with 10 parallel flows per vport (iperf option p) Sending rate of UDP flow : 1Gbps (configured bandwidth by iperf) 7 Copyright 2016 FUJITSU LABORATORIES LIMITED

9 Server and switch spec. Overview of spec. All servers have the same spec. Server type : Fujitsu RX100S7 CPU (4 cores) Intel(R) Xeon(R) CPU 3.10GHz Memory 16GB (Speed: 1333 MHz) OS CentOS 7.2 Kernel version NIC 10G:Intel X710 iperf Open vswitch (release version) vport queue Default value (txqueuelen : 0) UDP buffer Default value (200 Kbytes) Switch spec. Fujitsu SR-X 526 (10G switch) 8 Copyright 2016 FUJITSU LABORATORIES LIMITED

10 Investigation of microburst 9 Copyright 2016 FUJITSU LABORATORIES LIMITED

11 Measurement points 6 throughput measurement points Sender : iperf, Entering OVS, Leaving OVS Receiver : iperf, Entering OVS, Leaving OVS iperf (TX) iperf Entering OVS (tcpdump) OVS (bridge) iperf (RX) iperf User Kernel Leaving OVS (tcpdump) OVS (bridge) Leaving OVS (tcpdump) NIC driver Network NIC driver Entering OVS (tcpdump) < Sender > < Receiver > Throughput measurement points 10 Copyright 2016 FUJITSU LABORATORIES LIMITED

12 Throughput at 6 measurement points Throughput of foreground per second Leaving OVS (sender), the throughput is decreased At receiver, the throughput is also decreased at iperf (RX) < Sender > Decreased throughput < Receiver > Decreased throughput 11 Copyright 2016 FUJITSU LABORATORIES LIMITED

13 Throughput of foreground at sender Throughput of foreground per 1 millisecond Entering OVS, the sending rate is fluctuated due to a lack of CPU Leaving OVS, sudden spikes in throughput are found Throughput with QoS property is changed Unit time : 1 millisecond < Entering OVS > < Sender > iperf < Leaving OVS > Entering OVS OVS (bridge) Leaving OVS NIC driver Network 12 Copyright 2016 FUJITSU LABORATORIES LIMITED

14 Packet drop and throughput at receiver A relation between throughput and packet drop The timing of packet drop is similar to the timing of sudden spikes in throughput at receiver The overflow of socket buffer is frequently occurred by the sudden spikes (spikes microbursts) < Receiver > < Packet drop at socket > iperf Leaving OVS Socket OVS (bridge) < Leaving OVS > NIC driver Network 13 Copyright 2016 FUJITSU LABORATORIES LIMITED

15 Packet drop and spacing at receiver A relation between packet drop and packet spacing The packet spacing with moving average (MA)* is decreased while the number of drop packets on socket buffer is increased Microburst Packet spacing Burstiness Packet loss < Receiver > iperf Leaving OVS Socket OVS (bridge) NIC driver *MA leg : 1000 Network 14 Copyright 2016 FUJITSU LABORATORIES LIMITED

16 Cause of microburst 15 Copyright 2016 FUJITSU LABORATORIES LIMITED

17 Find the cause of microburst Profiling kernel functions using perf Profiling rate (sampling rate) is 1 millisecond Focus on process (iperf with 2Gbps) only for the profiling Profiling Kernel by perf 16 Copyright 2016 FUJITSU LABORATORIES LIMITED

18 Common function call graph Packet processing at Linux kernel Net I/F Enqueue (qdisc, tx-ring) From OVS to qdisc OVS (bridge) From vport to OVS IP layer (TX) TCP/UDP layer (TX) Copy data iperf Kernel User 17 Copyright 2016 FUJITSU LABORATORIES LIMITED

19 Measurement points with TCP/IP stack Leaving OVS, the packet capture is occurred after qdisc Entering OVS Leaving OVS Entering OVS Leaving OVS Throughput measurement points 18 Copyright 2016 FUJITSU LABORATORIES LIMITED

20 Summary Throughput of foreground per second Leaving OVS (sender), the throughput is decreased At receiver, the throughput is also decreased at iperf (RX) < Sender > Packet drop at qdisc < Receiver > Packet drop at socket buffer by microbursts 19 Copyright 2016 FUJITSU LABORATORIES LIMITED

21 Conclusion We investigated the occurrence of microbursts on NFVI A major cause of microburst is packet queuing on qdisc, and the packet loss at socket buffer on receiver is occurred by the microbursts At qdisc, the throughput is decreased to 63% and the queue size is not enough to absorb the packets At socket buffer (rx), the throughput is decreased to 41% and the buffer capacity is also not enough We found the cause of microbursts using kernel profiling Although the total sending rate is 10 Gbps, qdisc at the sender is frequently full 20 Copyright 2016 FUJITSU LABORATORIES LIMITED

22 Future work Clarify the cause why qdisc is frequently full although the total sending rate is 10 Gbps Analyze the profiling results with kernel trace Modify Linux kernel to change the packet capture point Extend the experiments Without OVS (Clarify the overhead of OVS) With TCP, DPDK OVS, VMs based on vhost 21 Copyright 2016 FUJITSU LABORATORIES LIMITED

23 22 Copyright 2015 FUJITSU LABORATORIES LIMITED

Boost UDP Transaction Performance

Boost UDP Transaction Performance Boost UDP Transaction Performance Toshiaki Makita NTT Open Source Software Center Today's topics Background Basic technologies for network performance How to improve UDP performance 2 Who is Toshiaki Makita?

More information

These are special traffic patterns that create more stress on a switch

These are special traffic patterns that create more stress on a switch Myths about Microbursts What are Microbursts? Microbursts are traffic patterns where traffic arrives in small bursts. While almost all network traffic is bursty to some extent, storage traffic usually

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University } 2017/11/15 Midterm } 2017/11/22 Final Project Announcement 2 1. Introduction 2.

More information

A Different Kind of Flow Analysis. David M Nicol University of Illinois at Urbana-Champaign

A Different Kind of Flow Analysis. David M Nicol University of Illinois at Urbana-Champaign A Different Kind of Flow Analysis David M Nicol University of Illinois at Urbana-Champaign 2 What Am I Doing Here??? Invite for ICASE Reunion Did research on Peformance Analysis Supporting Supercomputing

More information

Weather Research and Forecasting (WRF) Performance Benchmark and Profiling. July 2012

Weather Research and Forecasting (WRF) Performance Benchmark and Profiling. July 2012 Weather Research and Forecasting (WRF) Performance Benchmark and Profiling July 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell,

More information

Congestion Control. Need to understand: What is congestion? How do we prevent or manage it?

Congestion Control. Need to understand: What is congestion? How do we prevent or manage it? Congestion Control Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Problem: regulate traffic influx such that congestion does not occur

More information

End-to-end Estimation of the Available Bandwidth Variation Range

End-to-end Estimation of the Available Bandwidth Variation Range 1 End-to-end Estimation of the Available Bandwidth Variation Range Manish Jain Georgia Tech jain@cc.gatech.edu Constantinos Dovrolis Georgia Tech dovrolis@cc.gatech.edu Abstract The available bandwidth

More information

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1 NICTA Short Course Network Analysis Vijay Sivaraman Day 1 Queueing Systems and Markov Chains Network Analysis, 2008s2 1-1 Outline Why a short course on mathematical analysis? Limited current course offering

More information

Capturing Network Traffic Dynamics Small Scales. Rolf Riedi

Capturing Network Traffic Dynamics Small Scales. Rolf Riedi Capturing Network Traffic Dynamics Small Scales Rolf Riedi Dept of Statistics Stochastic Systems and Modelling in Networking and Finance Part II Dependable Adaptive Systems and Mathematical Modeling Kaiserslautern,

More information

Administrivia. Course Objectives. Overview. Lecture Notes Week markem/cs333/ 2. Staff. 3. Prerequisites. 4. Grading. 1. Theory and application

Administrivia. Course Objectives. Overview. Lecture Notes Week markem/cs333/ 2. Staff. 3. Prerequisites. 4. Grading. 1. Theory and application Administrivia 1. markem/cs333/ 2. Staff 3. Prerequisites 4. Grading Course Objectives 1. Theory and application 2. Benefits 3. Labs TAs Overview 1. What is a computer system? CPU PC ALU System bus Memory

More information

A Mathematical Model of the Skype VoIP Congestion Control Algorithm

A Mathematical Model of the Skype VoIP Congestion Control Algorithm A Mathematical Model of the Skype VoIP Congestion Control Algorithm Luca De Cicco, S. Mascolo, V. Palmisano Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari 47th IEEE Conference on Decision

More information

Computer Networks ( Classroom Practice Booklet Solutions)

Computer Networks ( Classroom Practice Booklet Solutions) Computer Networks ( Classroom Practice Booklet Solutions). Concept Of Layering 0. Ans: (b) Sol: Data Link Layer is responsible for decoding bit stream into frames. 0. Ans: (c) Sol: Network Layer has the

More information

Reducing Noisy-Neighbor Impact with a Fuzzy Affinity- Aware Scheduler

Reducing Noisy-Neighbor Impact with a Fuzzy Affinity- Aware Scheduler Reducing Noisy-Neighbor Impact with a Fuzzy Affinity- Aware Scheduler L U I S T O M Á S A N D J O H A N T O R D S S O N D E PA R T M E N T O F C O M P U T I N G S C I E N C E U M E Å U N I V E R S I T

More information

Congestion Control. Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion

Congestion Control. Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Congestion Control Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Problem: regulate traffic influx such that congestion does not occur

More information

TDDB68 Concurrent programming and operating systems. Lecture: CPU Scheduling II

TDDB68 Concurrent programming and operating systems. Lecture: CPU Scheduling II TDDB68 Concurrent programming and operating systems Lecture: CPU Scheduling II Mikael Asplund, Senior Lecturer Real-time Systems Laboratory Department of Computer and Information Science Copyright Notice:

More information

Modelling an Isolated Compound TCP Connection

Modelling an Isolated Compound TCP Connection Modelling an Isolated Compound TCP Connection Alberto Blanc and Denis Collange Orange Labs 905 rue Albert Einstein Sophia Antipolis, France {Email: alberto.blanc,denis.collange}@orange-ftgroup.com Konstantin

More information

Min Congestion Control for High- Speed Heterogeneous Networks. JetMax: Scalable Max-Min

Min Congestion Control for High- Speed Heterogeneous Networks. JetMax: Scalable Max-Min JetMax: Scalable Max-Min Min Congestion Control for High- Speed Heterogeneous Networks Yueping Zhang Joint work with Derek Leonard and Dmitri Loguinov Internet Research Lab Department of Computer Science

More information

cs/ee/ids 143 Communication Networks

cs/ee/ids 143 Communication Networks cs/ee/ids 143 Communication Networks Chapter 4 Transport Text: Walrand & Parakh, 2010 Steven Low CMS, EE, Caltech Agenda Internetworking n Routing across LANs, layer2-layer3 n DHCP n NAT Transport layer

More information

Socket Programming. Daniel Zappala. CS 360 Internet Programming Brigham Young University

Socket Programming. Daniel Zappala. CS 360 Internet Programming Brigham Young University Socket Programming Daniel Zappala CS 360 Internet Programming Brigham Young University Sockets, Addresses, Ports Clients and Servers 3/33 clients request a service from a server using a protocol need an

More information

PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control

PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control Saurabh Jain Joint work with Dr. Dmitri Loguinov June 21, 2007 1 Agenda Introduction Analysis of RCP QI-RCP PIQI-RCP Comparison Wrap

More information

TDDI04, K. Arvidsson, IDA, Linköpings universitet CPU Scheduling. Overview: CPU Scheduling. [SGG7] Chapter 5. Basic Concepts.

TDDI04, K. Arvidsson, IDA, Linköpings universitet CPU Scheduling. Overview: CPU Scheduling. [SGG7] Chapter 5. Basic Concepts. TDDI4 Concurrent Programming, Operating Systems, and Real-time Operating Systems CPU Scheduling Overview: CPU Scheduling CPU bursts and I/O bursts Scheduling Criteria Scheduling Algorithms Multiprocessor

More information

CPU Scheduling. CPU Scheduler

CPU Scheduling. CPU Scheduler CPU Scheduling These slides are created by Dr. Huang of George Mason University. Students registered in Dr. Huang s courses at GMU can make a single machine readable copy and print a single copy of each

More information

P214 Efficient Computation of Passive Seismic Interferometry

P214 Efficient Computation of Passive Seismic Interferometry P214 Efficient Computation of Passive Seismic Interferometry J.W. Thorbecke* (Delft University of Technology) & G.G. Drijkoningen (Delft University of Technology) SUMMARY Seismic interferometry is from

More information

Advanced Topicson Network Socket Programming

Advanced Topicson Network Socket Programming Advanced Topics on Network Socket Programming Computer Science Department, University of Crete Manolis Surligas surligas@csduocgr October 18, 2017 Manolis Surligas (CSD, UoC) Advanced Topicson Network

More information

CS418 Operating Systems

CS418 Operating Systems CS418 Operating Systems Lecture 14 Queuing Analysis Textbook: Operating Systems by William Stallings 1 1. Why Queuing Analysis? If the system environment changes (like the number of users is doubled),

More information

Lecture 23: Illusiveness of Parallel Performance. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 23: Illusiveness of Parallel Performance. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 23: Illusiveness of Parallel Performance James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L23 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Your goal today Housekeeping peel

More information

Performance Evaluation of Scientific Applications on POWER8

Performance Evaluation of Scientific Applications on POWER8 Performance Evaluation of Scientific Applications on POWER8 2014 Nov 16 Andrew V. Adinetz 1, Paul F. Baumeister 1, Hans Böttiger 3, Thorsten Hater 1, Thilo Maurer 3, Dirk Pleiter 1, Wolfram Schenck 4,

More information

CHAPTER 5 - PROCESS SCHEDULING

CHAPTER 5 - PROCESS SCHEDULING CHAPTER 5 - PROCESS SCHEDULING OBJECTIVES To introduce CPU scheduling, which is the basis for multiprogrammed operating systems To describe various CPU-scheduling algorithms To discuss evaluation criteria

More information

VMware VMmark V1.1 Results

VMware VMmark V1.1 Results Vendor and Hardware Platform: IBM System x3950 M2 Virtualization Platform: VMware ESX 3.5.0 U2 Build 110181 Performance VMware VMmark V1.1 Results Tested By: IBM Inc., RTP, NC Test Date: 2008-09-20 Performance

More information

Module 5: CPU Scheduling

Module 5: CPU Scheduling Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation 5.1 Basic Concepts Maximum CPU utilization obtained

More information

Congestion Control. Topics

Congestion Control. Topics Congestion Control Topics Congestion control what & why? Current congestion control algorithms TCP and UDP Ideal congestion control Resource allocation Distributed algorithms Relation current algorithms

More information

Effective Bandwidth for Traffic Engineering

Effective Bandwidth for Traffic Engineering Brigham Young University BYU ScholarsArchive All Faculty Publications 2-5- Effective Bandwidth for Traffic Engineering Mark J. Clement clement@cs.byu.edu Rob Kunz See next page for additional authors Follow

More information

Introduction to Markov Chains, Queuing Theory, and Network Performance

Introduction to Markov Chains, Queuing Theory, and Network Performance Introduction to Markov Chains, Queuing Theory, and Network Performance Marceau Coupechoux Telecom ParisTech, departement Informatique et Réseaux marceau.coupechoux@telecom-paristech.fr IT.2403 Modélisation

More information

CS276 Homework 1: ns-2

CS276 Homework 1: ns-2 CS276 Homework 1: ns-2 Erik Peterson October 28, 2006 1 Part 1 - Fairness between TCP variants 1.1 Method After learning ns-2, I wrote a script (Listing 3) that runs a simulation of one or two tcp flows

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

Compound TCP with Random Losses

Compound TCP with Random Losses Compound TCP with Random Losses Alberto Blanc 1, Konstantin Avrachenkov 2, Denis Collange 1, and Giovanni Neglia 2 1 Orange Labs, 905 rue Albert Einstein, 06921 Sophia Antipolis, France {alberto.blanc,denis.collange}@orange-ftgroup.com

More information

Homework 1 - SOLUTION

Homework 1 - SOLUTION Homework - SOLUTION Problem M/M/ Queue ) Use the fact above to express π k, k > 0, as a function of π 0. π k = ( ) k λ π 0 µ 2) Using λ < µ and the fact that all π k s sum to, compute π 0 (as a function

More information

Approximate Fairness with Quantized Congestion Notification for Multi-tenanted Data Centers

Approximate Fairness with Quantized Congestion Notification for Multi-tenanted Data Centers Approximate Fairness with Quantized Congestion Notification for Multi-tenanted Data Centers Abdul Kabbani Stanford University Joint work with: Mohammad Alizadeh, Masato Yasuda, Rong Pan, and Balaji Prabhakar

More information

Capacity management for packet-switched networks with heterogeneous sources. Linda de Jonge. Master Thesis July 29, 2009.

Capacity management for packet-switched networks with heterogeneous sources. Linda de Jonge. Master Thesis July 29, 2009. Capacity management for packet-switched networks with heterogeneous sources Linda de Jonge Master Thesis July 29, 2009 Supervisors Dr. Frank Roijers Prof. dr. ir. Sem Borst Dr. Andreas Löpker Industrial

More information

Compound TCP with Random Losses

Compound TCP with Random Losses Compound TCP with Random Losses Alberto Blanc 1, Konstantin Avrachenkov 2, Denis Collange 1, and Giovanni Neglia 2 1 Orange Labs, 905 rue Albert Einstein, 06921 Sophia Antipolis, France {alberto.blanc,denis.collange}@orange-ftgroup.com

More information

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters

Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters Dynamic Scheduling for Work Agglomeration on Heterogeneous Clusters Jonathan Lifflander, G. Carl Evans, Anshu Arya, Laxmikant Kale University of Illinois Urbana-Champaign May 25, 2012 Work is overdecomposed

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

CSE 380 Computer Operating Systems

CSE 380 Computer Operating Systems CSE 380 Computer Operating Systems Instructor: Insup Lee & Dianna Xu University of Pennsylvania, Fall 2003 Lecture Note 3: CPU Scheduling 1 CPU SCHEDULING q How can OS schedule the allocation of CPU cycles

More information

Operational Laws Raj Jain

Operational Laws Raj Jain Operational Laws 33-1 Overview What is an Operational Law? 1. Utilization Law 2. Forced Flow Law 3. Little s Law 4. General Response Time Law 5. Interactive Response Time Law 6. Bottleneck Analysis 33-2

More information

Experimental evaluation of DDoS detection and prevention using opensource and commodity hardware

Experimental evaluation of DDoS detection and prevention using opensource and commodity hardware Experimental evaluation of DDoS detection and prevention using opensource and commodity hardware Meklit Elfiyos Dekita Master of Science in Telematics - Communication Networks and Networked Submission

More information

A flow-based model for Internet backbone traffic

A flow-based model for Internet backbone traffic A flow-based model for Internet backbone traffic Chadi Barakat, Patrick Thiran Gianluca Iannaccone, Christophe iot Philippe Owezarski ICA - SC - EPFL Sprint Labs LAAS-CNRS {Chadi.Barakat,Patrick.Thiran}@epfl.ch

More information

Wavelet and SiZer analyses of Internet Traffic Data

Wavelet and SiZer analyses of Internet Traffic Data Wavelet and SiZer analyses of Internet Traffic Data Cheolwoo Park Statistical and Applied Mathematical Sciences Institute Fred Godtliebsen Department of Mathematics and Statistics, University of Tromsø

More information

QUEUING SYSTEM. Yetunde Folajimi, PhD

QUEUING SYSTEM. Yetunde Folajimi, PhD QUEUING SYSTEM Yetunde Folajimi, PhD Part 2 Queuing Models Queueing models are constructed so that queue lengths and waiting times can be predicted They help us to understand and quantify the effect of

More information

Correlating the Perceived Quality of Networked Games to Broadband Cable Network Design Parameters. Project Update: 7/20/2011

Correlating the Perceived Quality of Networked Games to Broadband Cable Network Design Parameters. Project Update: 7/20/2011 Correlating the Perceived Quality of Networked Games to Broadband Cable Network Design Parameters Project Update: 7/20/2011 Networking Team: Rahul Amin, Jim Martin School of Computing HCI Team: Dr Juan

More information

Process Scheduling. Process Scheduling. CPU and I/O Bursts. CPU - I/O Burst Cycle. Variations in Bursts. Histogram of CPU Burst Times

Process Scheduling. Process Scheduling. CPU and I/O Bursts. CPU - I/O Burst Cycle. Variations in Bursts. Histogram of CPU Burst Times Scheduling The objective of multiprogramming is to have some process running all the time The objective of timesharing is to have the switch between processes so frequently that users can interact with

More information

Analysis of Software Artifacts

Analysis of Software Artifacts Analysis of Software Artifacts System Performance I Shu-Ngai Yeung (with edits by Jeannette Wing) Department of Statistics Carnegie Mellon University Pittsburgh, PA 15213 2001 by Carnegie Mellon University

More information

Operational Laws 33-1

Operational Laws 33-1 Operational Laws Raj Jain Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu A Mini-Course offered at UC Berkeley, Sept-Oct 2012 These slides and audio/video recordings are available

More information

Network Traffic Characteristic

Network Traffic Characteristic Network Traffic Characteristic Hojun Lee hlee02@purros.poly.edu 5/24/2002 EL938-Project 1 Outline Motivation What is self-similarity? Behavior of Ethernet traffic Behavior of WAN traffic Behavior of WWW

More information

A Data Communication Reliability and Trustability Study for Cluster Computing

A Data Communication Reliability and Trustability Study for Cluster Computing A Data Communication Reliability and Trustability Study for Cluster Computing Speaker: Eduardo Colmenares Midwestern State University Wichita Falls, TX HPC Introduction Relevant to a variety of sciences,

More information

An XG-PON Module for the NS-3 Network Simulator: the Manual

An XG-PON Module for the NS-3 Network Simulator: the Manual An XG-PON Module for the NS-3 Network Simulator: the Manual Xiuchao Wu, Kenneth N. Brown, Cormac J. Sreenan, Jerome Arokkiam Department of Computer Science, University College Cork, Ireland {xw2, k.brown,

More information

Wavelet and Time-Domain Modeling of Multi-Layer VBR Video Traffic

Wavelet and Time-Domain Modeling of Multi-Layer VBR Video Traffic Wavelet and Time-Domain Modeling of Multi-Layer VBR Video Traffic Min Dai, Dmitri Loguinov Texas A&M University 1 Agenda Background Importance of traffic modeling Goals of traffic modeling Preliminary

More information

CPU scheduling. CPU Scheduling

CPU scheduling. CPU Scheduling EECS 3221 Operating System Fundamentals No.4 CPU scheduling Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University CPU Scheduling CPU scheduling is the basis of multiprogramming

More information

Chapter 6: CPU Scheduling

Chapter 6: CPU Scheduling Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation 6.1 Basic Concepts Maximum CPU utilization obtained

More information

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013 Networking = Plumbing TELE302 Lecture 7 Queueing Analysis: I Jeremiah Deng University of Otago 29 July 2013 Jeremiah Deng (University of Otago) TELE302 Lecture 7 29 July 2013 1 / 33 Lecture Outline Jeremiah

More information

A Methodology for Clock Benchmarking

A Methodology for Clock Benchmarking A Methodology for Clock Benchmarking Julien Ridoux j.ridoux@ee.unimelb.edu.au Darryl Veitch d.veitch@ee.unimelb.edu.au ARC Special Research Centre for Ultra-Broadband Information Networks THE UNIVERSITY

More information

DIMENSIONING BANDWIDTH FOR ELASTIC TRAFFIC IN HIGH-SPEED DATA NETWORKS

DIMENSIONING BANDWIDTH FOR ELASTIC TRAFFIC IN HIGH-SPEED DATA NETWORKS Submitted to IEEE/ACM Transactions on etworking DIMESIOIG BADWIDTH FOR ELASTIC TRAFFIC I HIGH-SPEED DATA ETWORKS Arthur W. Berger * and Yaakov Kogan Abstract Simple and robust engineering rules for dimensioning

More information

An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits

An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits Peter Jacko YEQT III November 20, 2009 Basque Center for Applied Mathematics (BCAM), Bilbao, Spain Example: Congestion

More information

CS 700: Quantitative Methods & Experimental Design in Computer Science

CS 700: Quantitative Methods & Experimental Design in Computer Science CS 700: Quantitative Methods & Experimental Design in Computer Science Sanjeev Setia Dept of Computer Science George Mason University Logistics Grade: 35% project, 25% Homework assignments 20% midterm,

More information

MPTCP is not Pareto-Optimal: Performance Issues and a Possible Solution

MPTCP is not Pareto-Optimal: Performance Issues and a Possible Solution MPTCP is not Pareto-Optimal: Performance Issues and a Possible Solution Ramin Khalili, Nicolas Gast, Miroslav Popovic, Jean-Yves Le Boudec To cite this version: Ramin Khalili, Nicolas Gast, Miroslav Popovic,

More information

Fuzzy Logic Based Robust Control of Queue Management and Optimal Treatment of Traffic over TCP/IP Networks

Fuzzy Logic Based Robust Control of Queue Management and Optimal Treatment of Traffic over TCP/IP Networks Fuzzy Logic Based Robust Control of Queue Management and Optimal Treatment of Traffic over TCP/IP Networks Zhi Li BSc(Sci), MSc(Eng) Department of Mathematics and Computing The University of Southern Queensland

More information

PC Based Precision Timing Without GPS

PC Based Precision Timing Without GPS PC Based Precision Timing Without GPS Attila Pásztor EMULab at the Department of Electrical & Electronic Engineering The University of Melbourne, Victoria 31, Australia and Ericsson Hungary R&D a.pasztor@ee.mu.oz.au

More information

A Hysteresis-Based Energy-Saving Mechanism for Data Centers Christian Schwartz, Rastin Pries, Phuoc Tran-Gia www3.informatik.uni-wuerzburg.

A Hysteresis-Based Energy-Saving Mechanism for Data Centers Christian Schwartz, Rastin Pries, Phuoc Tran-Gia www3.informatik.uni-wuerzburg. Institute of Computer Science Chair of Communication Networks Prof. Dr.-Ing. P. Tran-Gia A Hysteresis-Based Energy-Saving Mechanism for Data Centers Christian Schwartz, Rastin Pries, Phuoc Tran-Gia www3.informatik.uni-wuerzburg.de

More information

CPU SCHEDULING RONG ZHENG

CPU SCHEDULING RONG ZHENG CPU SCHEDULING RONG ZHENG OVERVIEW Why scheduling? Non-preemptive vs Preemptive policies FCFS, SJF, Round robin, multilevel queues with feedback, guaranteed scheduling 2 SHORT-TERM, MID-TERM, LONG- TERM

More information

IMPROVING BANDWIDTH ALLOCATION IN CLOUD COMPUTING ENVIRONMENTS VIA "BANDWIDTH AS A SERVICE" PARTITIONING SCHEME. Anthony Amaro Jr

IMPROVING BANDWIDTH ALLOCATION IN CLOUD COMPUTING ENVIRONMENTS VIA BANDWIDTH AS A SERVICE PARTITIONING SCHEME. Anthony Amaro Jr IMPROVING BANDWIDTH ALLOCATION IN CLOUD COMPUTING ENVIRONMENTS VIA "BANDWIDTH AS A SERVICE" PARTITIONING SCHEME by Anthony Amaro Jr A thesis submitted to the Graduate College of Texas State University

More information

A discrete wavelet transform traffic model with application to queuing critical time scales

A discrete wavelet transform traffic model with application to queuing critical time scales University of Roma ÒLa SapienzaÓ Dept. INFOCOM A discrete wavelet transform traffic model with application to queuing critical time scales Andrea Baiocchi, Andrea De Vendictis, Michele Iarossi University

More information

A Virtual Queue Approach to Loss Estimation

A Virtual Queue Approach to Loss Estimation A Virtual Queue Approach to Loss Estimation Guoqiang Hu, Yuming Jiang, Anne Nevin Centre for Quantifiable Quality of Service in Communication Systems Norwegian University of Science and Technology, Norway

More information

Extended Ethernet Congestion Management (E 2 CM): Per Path ECM - A Hybrid Proposal

Extended Ethernet Congestion Management (E 2 CM): Per Path ECM - A Hybrid Proposal Extended Ethernet Congestion Management (E 2 CM): Per Path ECM - A Hybrid Proposal M. Gusat, C. Minkenberg and R. Luijten IBM Research GmbH, Zurich March 14 th 2007 Outline Status at 802.1 Critique Analysis

More information

Mininet on OpenBSD. Using rdomains for Interactive SDN Testing and Development. Ayaka Koshibe. AsiaBSDCon

Mininet on OpenBSD. Using rdomains for Interactive SDN Testing and Development. Ayaka Koshibe. AsiaBSDCon Mininet on OpenBSD Using rdomains for Interactive SDN Testing and Development Ayaka Koshibe akoshibe@openbsd.org AsiaBSDCon 2018 SDN? Network split into programmable nodes that handle traffic and entities

More information

Mininet on OpenBSD. Using rdomains for Interactive SDN Testing and Development. Ayaka Koshibe. BSDCan

Mininet on OpenBSD. Using rdomains for Interactive SDN Testing and Development. Ayaka Koshibe. BSDCan Mininet on OpenBSD Using rdomains for Interactive SDN Testing and Development Ayaka Koshibe akoshibe@openbsd.org BSDCan 2018 SDN? Anything you want it to mean... Or rather, a way to logically centralize

More information

Dynamic resource sharing

Dynamic resource sharing J. Virtamo 38.34 Teletraffic Theory / Dynamic resource sharing and balanced fairness Dynamic resource sharing In previous lectures we have studied different notions of fair resource sharing. Our focus

More information

Dynamic Silicon Firewall

Dynamic Silicon Firewall Dynamic Silicon Firewall A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Master of Science in the Department of Electrical

More information

Bounded Delay for Weighted Round Robin with Burst Crediting

Bounded Delay for Weighted Round Robin with Burst Crediting Bounded Delay for Weighted Round Robin with Burst Crediting Sponsor: Sprint Kert Mezger David W. Petr Technical Report TISL-0230-08 Telecommunications and Information Sciences Laboratory Department of

More information

Thermal, Mechanical & Networking Issues. Dave Bailey University of Manchester

Thermal, Mechanical & Networking Issues. Dave Bailey University of Manchester Thermal, Mechanical & Networking Issues Dave Bailey University of Manchester Outline Thermal Simulations Mechanical Issues Long-term studies of conductive glue Automated assembly Few words on 10 Gig Ethernet

More information

Operational Laws. Operational Laws. Overview. Operational Quantities

Operational Laws. Operational Laws. Overview. Operational Quantities Operational Laws Raj Jain Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu Mini-Course offered at UC erkeley, Sept-Oct 2012 These slides and audio/video recordings are available

More information

Distributed Systems Fundamentals

Distributed Systems Fundamentals February 17, 2000 ECS 251 Winter 2000 Page 1 Distributed Systems Fundamentals 1. Distributed system? a. What is it? b. Why use it? 2. System Architectures a. minicomputer mode b. workstation model c. processor

More information

Energy-efficient Mapping of Big Data Workflows under Deadline Constraints

Energy-efficient Mapping of Big Data Workflows under Deadline Constraints Energy-efficient Mapping of Big Data Workflows under Deadline Constraints Presenter: Tong Shu Authors: Tong Shu and Prof. Chase Q. Wu Big Data Center Department of Computer Science New Jersey Institute

More information

A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single Node Case. 1

A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single Node Case. 1 A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single Node Case 1 Abhay K Parekh 2 3 and Robert G Gallager 4 Laboratory for Information and Decision Systems

More information

2/5/07 CSE 30341: Operating Systems Principles

2/5/07 CSE 30341: Operating Systems Principles page 1 Shortest-Job-First (SJR) Scheduling Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time Two schemes: nonpreemptive once

More information

Microeconomic Algorithms for Flow Control in Virtual Circuit Networks (Subset in Infocom 1989)

Microeconomic Algorithms for Flow Control in Virtual Circuit Networks (Subset in Infocom 1989) Microeconomic Algorithms for Flow Control in Virtual Circuit Networks (Subset in Infocom 1989) September 13th, 1995 Donald Ferguson*,** Christos Nikolaou* Yechiam Yemini** *IBM T.J. Watson Research Center

More information

PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control

PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control Saurabh Jain and Dmitri Loguinov Texas A&M University, College Station, TX 77843 Email: saujain@tamu.edu, dmitri@cs.tamu.edu Abstract

More information

ESTIMATION OF THE BURST LENGTH IN OBS NETWORKS

ESTIMATION OF THE BURST LENGTH IN OBS NETWORKS ESTIMATION OF THE BURST LENGTH IN OBS NETWORKS Pallavi S. Department of CSE, Sathyabama University Chennai, Tamilnadu, India pallavi.das12@gmail.com M. Lakshmi Department of CSE, Sathyabama University

More information

Continuous-time hidden Markov models for network performance evaluation

Continuous-time hidden Markov models for network performance evaluation Performance Evaluation 49 (2002) 129 146 Continuous-time hidden Markov models for network performance evaluation Wei Wei, Bing Wang, Don Towsley Department of Computer Science, University of Massachusetts,

More information

Rate adaptation, Congestion Control and Fairness: A Tutorial. JEAN-YVES LE BOUDEC Ecole Polytechnique Fédérale de Lausanne (EPFL)

Rate adaptation, Congestion Control and Fairness: A Tutorial. JEAN-YVES LE BOUDEC Ecole Polytechnique Fédérale de Lausanne (EPFL) Rate adaptation, Congestion Control and Fairness: A Tutorial JEAN-YVES LE BOUDEC Ecole Polytechnique Fédérale de Lausanne (EPFL) December 2000 2 Contents 31 Congestion Control for Best Effort: Theory 1

More information

2 k Factorial Designs Raj Jain

2 k Factorial Designs Raj Jain 2 k Factorial Designs Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-06/ 17-1 Overview!

More information

A Quantitative View: Delay, Throughput, Loss

A Quantitative View: Delay, Throughput, Loss A Quantitative View: Delay, Throughput, Loss Antonio Carzaniga Faculty of Informatics University of Lugano September 27, 2017 Outline Quantitative analysis of data transfer concepts for network applications

More information

Performance Metrics & Architectural Adaptivity. ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So

Performance Metrics & Architectural Adaptivity. ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So Performance Metrics & Architectural Adaptivity ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So What are the Options? Power Consumption Activity factor (amount of circuit switching) Load Capacitance (size

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 2: Operational analysis Lecturer: Prof. Sanjay Jha NETWORKS RESEARCH GROUP, CSE, UNSW Operational analysis Operational: Collect performance

More information

EP2200 Course Project 2017 Project II - Mobile Computation Offloading

EP2200 Course Project 2017 Project II - Mobile Computation Offloading EP2200 Course Project 2017 Project II - Mobile Computation Offloading 1 Introduction Queuing theory provides us a very useful mathematic tool that can be used to analytically evaluate the performance of

More information

Input-queued switches: Scheduling algorithms for a crossbar switch. EE 384X Packet Switch Architectures 1

Input-queued switches: Scheduling algorithms for a crossbar switch. EE 384X Packet Switch Architectures 1 Input-queued switches: Scheduling algorithms for a crossbar switch EE 84X Packet Switch Architectures Overview Today s lecture - the input-buffered switch architecture - the head-of-line blocking phenomenon

More information

The conceptual view. by Gerrit Muller University of Southeast Norway-NISE

The conceptual view. by Gerrit Muller University of Southeast Norway-NISE by Gerrit Muller University of Southeast Norway-NISE e-mail: gaudisite@gmail.com www.gaudisite.nl Abstract The purpose of the conceptual view is described. A number of methods or models is given to use

More information

Wireless Internet Exercises

Wireless Internet Exercises Wireless Internet Exercises Prof. Alessandro Redondi 2018-05-28 1 WLAN 1.1 Exercise 1 A Wi-Fi network has the following features: Physical layer transmission rate: 54 Mbps MAC layer header: 28 bytes MAC

More information

CS 550 Operating Systems Spring CPU scheduling I

CS 550 Operating Systems Spring CPU scheduling I 1 CS 550 Operating Systems Spring 2018 CPU scheduling I Process Lifecycle Ready Process is ready to execute, but not yet executing Its waiting in the scheduling queue for the CPU scheduler to pick it up.

More information

Processor Sharing Flows in the Internet

Processor Sharing Flows in the Internet STANFORD HPNG TECHNICAL REPORT TR4-HPNG4 Processor Sharing Flows in the Internet Nandita Dukkipati, Nick McKeown Computer Systems Laboratory Stanford University Stanford, CA 9434-93, USA nanditad, nickm

More information

A Starvation-free Algorithm For Achieving 100% Throughput in an Input- Queued Switch

A Starvation-free Algorithm For Achieving 100% Throughput in an Input- Queued Switch A Starvation-free Algorithm For Achieving 00% Throughput in an Input- Queued Switch Abstract Adisak ekkittikul ick ckeown Department of Electrical Engineering Stanford University Stanford CA 9405-400 Tel

More information

Queuing Networks. - Outline of queuing networks. - Mean Value Analisys (MVA) for open and closed queuing networks

Queuing Networks. - Outline of queuing networks. - Mean Value Analisys (MVA) for open and closed queuing networks Queuing Networks - Outline of queuing networks - Mean Value Analisys (MVA) for open and closed queuing networks 1 incoming requests Open queuing networks DISK CPU CD outgoing requests Closed queuing networks

More information