² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

Size: px
Start display at page:

Download "² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical"

Transcription

1 ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles ² Dark matter: direct detection ² Dark matter: indirect detection ² Cosmic rays in the Galaxy ² Antimatter in cosmic rays ² Ultrahigh energy cosmic rays ² High energy cosmic neutrinos ² The early universe: constraints on new physics ² The early universe: baryo/leptogenesis ² The early universe: inflation & the primordial density perturbation ² Cosmic microwave background, large-scale structure & dark energy

2 Per Carlson (Physics Today, Feb 2012) 1912: Victor Hess discovers cosmic rays (named so in 1927 by Millikan) Nobel Prize 1936 [1928: Paul Dirac predicts the existence of antiparticles Nobel Prize 1933] 1932: Carl Anderson discovers the positron in cosmic rays - Nobel Prize 1936 (cloud chamber invented by C T R Wilson - Nobel Prize 1927) [1935: Hideki Yukawa predicts the existence of mesons Nobel Prize 1949] 1937: Seth Neddermeyer & Carl Anderson discover the muon in cosmic rays 1947: Cecil Powell discovers the pion in cosmic rays Nobel Prize : George Rochester & Clifford Butler discover the kaon (Patrick Blackett awarded Nobel Prize 1948 for development of the Wilson cloud chamber method )

3 Another cosmic ray signal of new physics? As the most precise measurement of the cosmic ray positron flux to date, these results show clearly the power and capabilities of the AMS detector, said AMS spokesperson, Samuel Ting. Over the coming months, AMS will be able to tell us conclusively whether these positrons are a signal for dark matter, or whether they have some other origin. Phys. Rev. Lett. 110: (2013)

4 We are constantly bombarded by cosmic rays with energies ranging up to ~10 11 GeV arriving isotropically from all directions in the sky so their sources are unknown knee Courtesey: Simon Swordy Most of them are protons (although heavier elements are also present) and the energy spectrum is a featureless power-law, at least up to the knee at ~1 PeV

5 The composition of cosmic rays (up to the knee ) mirrors that of the interstellar medium with refractory elements enhanced, suggesting acceleration of circumstellar gas & dust grains by supernova shock waves (Meyer, Drury & Ellison, ApJ 487:182/197, 1997)

6 The sources of galactic cosmic rays have long been presumed to be supernova remnants Direct evidence for acceleration of electrons (to > 40 TeV) from observation of synchrotron emission: radio X-rays Energetics: GCR energy density Volume of extended halo Total GCR energy Residence time of CRs in Galaxy Power needed Galactic SN rate Cassiopeia A: Chandra Required output/sn (remnant) This is only ~5-10% of the benchmark kinetic energy of erg produced in a SN explosion Cassiopeia A: VLA

7 1 st -order Fermi acceleration by shock waves (DSA) CR trajectory B 1 B 2 Shock velocity v s : β = v s /c Simple diffusion theory: prob. of CR crossing shock > m times is (1-β) m Average fractional energy gained at each crossing is: Δε/ε = β differential spectrum ε -2 High velocity plasma Low velocity plasma For 2 nd -order Fermi acceleration with Δε/ε β 2, the slope can be harder However if ~10% of the shock wave K.E. is converted into relativistic particles, then backreaction of cosmic ray pressure on shock will make spectrum somewhat harder and slightly concave but the time-integrated spectrum may still be close to the Fermi form (Caprioli, Amato & Blasi, Astropart.Phys.33:160,2010) If cosmic rays diffuse out of Galaxy on a time-scale decreasing 1/ε 0.6, then the observed spectrum ε -2.6 is matched (but why is no anisotropy ε 0.6 observed?)

8 We are witnessing rapid advances in γ-ray astronomy the sources of low energy cosmic rays may soon be known: SNRs? Ø Do we see γ-rays from hadronic interactions (π 0 decays), or are they from inverse-compton scattering by (radio synchrotron emitting) electrons? Ø Can 1 st -order Fermi acceleration at SNR shocks explain the spectrum (injection, magnetic field amplification, diffusion losses vs anisotropy)? Ø What are the unidentified Milky Way γ-ray sources are there new RXJ (HESS, 2004) source classes (micro-quasars, PWN, binaries ), acceleration mechanisms? Fermi HESS Southern Plane Survey 2005 Much progress has been made but these questions are not fully answered to unambiguously identify the cosmic ray sources, we must detect TeV neutrinos! also the PAMELA and Fermi anomalies have highlighted the limitations of the standard cosmic ray diffusion model

9 Cosmic ray acceleration in RXJ : electrons or protons? B = 10 μg models: F. Aharonian (HESS collabora-on, 2006) γ-ray emission well fitted by IC scattering of ~10 2 TeV electrons on CMB/starlight alternatively γ-rays may be from decays of π 0 s produced by ~10 3 TeV protons There is no definite evidence yet that all SNRs accelerate protons to high energies this will be proven only when the neutrinos from π 0 decay are detected

10 Detection of the Characteristic Pion-Decay Signature in Supernova Remnants Fermi has now identified several SNRs where the γ-rays are definitely from decays of π 0 s Nevertheless we are far from having a standard model of cosmic ray acceleration

11 Efficient diffusive shock acceleration should give a concave spectrum (due to feedback on the shock by cosmic ray pressure) (Voelk et al, A&A396:649,2002) but the synchrotron radio spectrum of this young SNR is a convex power-law well-fitted by log-normal spectrum expected from 2 nd order Fermi acceleration by MHD turbulence behind the shock wave (Cowsik & Sarkar, MNRAS:207:745,1984)

12 The standard model for galactic cosmic rays SNR shock waves accelerate relativistic particles by Fermi mechanism power law spectrum (synchrotron radio/x-ray + γ-ray emission) Diffusion through magnetic fields in Galaxy (disk + halo) Secondary production during propagation: e ± lose energy through synchrotron & inverse Compton scattering Measurables: Energy spectra of individual species, diffuse radiation

13 Diffusion of galactic cosmic rays Transport equation: diffusion energy losses injection Boundary conditions: Green function: describes flux from a discrete, burst-like source integrate over spatial distribution and time-variation of injection GALPROP (Moskalenko & Strong ApJ 493:694,1998, 509:212,1998) solves time-dependent transport equation but yields ~the same answer for equilibrium fluxes as the leaky box model in which cosmic rays have small energy dependent probability of escape from Galaxy exponential distribution of path lengths between cosmic ray sources and Earth

14 The leaky box model (Cowsik, Yash Pal, Tandon & Verma 1966) Transport equation: diffusion energy losses injection Averaging over extended cosmic ray halo steady state solution Escape through diffusion: τ esc ~ E -δ, with δ ~ 0.6 (from secondary/primary ratios) Energy loss through synchrotron radiation/ic scattering: τ cool ~ E -1

15 The production of secondaries provides a diagnostic of the propagation of nuclear cosmic rays in Galaxy interstellar medium ~90% H, ~10% He Acceleration of protons

16 Elements such as Li, Be, B in cosmic rays are not found in the interstellar medium they are secondaries created in the spallation of the high energy primary nuclei in interstellar collisions Cosmic rays Solar system

17 Primary e Production: Energy spectra (from radio spectrum) Propagation: Observed: Primary protons/nuclei Production: presumably same as e Propagation: Observed: Secondary production: propagation: observed:

18 Secondary-to-primary ratios Evoli, Gaggero, Grasso & Maccione, JCAP 10:018,2008 All measured ratios consistent with leaky box model with τ esc ~ E -δ, δ ~ NB: Kolmogorov spectrum for interstellar magnetic field turbulence implies δ = 1/3, while Kraichnan spectrum implies δ = 1/2

19 But we do not see anisotropy increasing monotonically with energy as might be expected for diffusive transport in the Galaxy with τ esc ~ E -0.6 (Ptuskin, 2005)

20 The two zone USINE model Maurin, Taillet, Donato, Salati, Barrau & Boudoul [astro-ph/ ] Semi-analytic formulation provides better insight and estimation of uncertainties

Subir Sarkar

Subir Sarkar Trinity 2016 Oxford ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

Production of Secondary Cosmic Rays in Supernova Remnants

Production of Secondary Cosmic Rays in Supernova Remnants Production of Secondary Cosmic Rays in Supernova Remnants E. G. Berezhko, Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677891 Yakutsk, Russia E-mail: ksenofon@ikfia.sbras.ru

More information

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris Gamma rays from supernova remnants in clumpy environments!! Stefano Gabici APC, Paris Overview of the talk Galactic cosmic rays Gamma rays from supernova remnants Hadronic or leptonic? The role of gas

More information

Potential Neutrino Signals from Galactic γ-ray Sources

Potential Neutrino Signals from Galactic γ-ray Sources Potential Neutrino Signals from Galactic γ-ray Sources, Christian Stegmann Felix Aharonian, Jim Hinton MPI für Kernphysik, Heidelberg Madison WI, August 28 31, 2006 TeV γ-ray Sources as Potential ν Sources

More information

Cosmic Ray Astronomy. Qingling Ni

Cosmic Ray Astronomy. Qingling Ni Cosmic Ray Astronomy Qingling Ni What is Cosmic Ray? Mainly charged particles: protons (hydrogen nuclei)+helium nuclei+heavier nuclei What s the origin of them? What happened during their propagation?

More information

Supernova Remnants and GLAST

Supernova Remnants and GLAST SLAC-PUB-14797 Supernova Remnants and GLAST Patrick Slane Harvard-Smithsonian Center for Astrophysics Abstract. It has long been speculated that supernova remnants represent a major source of cosmic rays

More information

Implication of AMS-02 positron fraction measurement. Qiang Yuan

Implication of AMS-02 positron fraction measurement. Qiang Yuan Implication of AMS-02 positron fraction measurement Qiang Yuan (yuanq@ihep.ac.cn) Institute of High Energy Physics, Chinese Academy of Sciences Collaborated with Xiaojun Bi, Guo-Ming Chen, Yi-Qing Guo,

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Seeing the moon shadow in CRs

Seeing the moon shadow in CRs Seeing the moon shadow in CRs and using the Earth field as a spectrometer Tibet III Amenomori et al. arxiv:0810.3757 see also ARGO-YBJ results Bartoli et. al, arxiv:1107.4887 Milargo: 100% coverage r owe

More information

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath Cosmic Ray Transport (in the Galaxy) Luke Drury Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath 1 A few disclaimers and preliminary remarks! Not my main field of research

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

Questions 1pc = 3 ly = km

Questions 1pc = 3 ly = km Cosmic Rays Historical hints Primary Cosmic Rays: - Cosmic Ray Energy Spectrum - Composition - Origin and Propagation - The knee region and the ankle Secondary CRs: -shower development - interactions Detection:

More information

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center! > News < Anti-matter, dark matter measurement By measuring the cosmic rays (Mainly electron, positron, proton, anti-proton and light nuclei) AMS-02 will be launched onboard the Shuttle Endeavour On May

More information

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects

More information

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Marianne Lemoine-Goumard (CENBG, Université Bordeaux, CNRS-IN2P3, France) On behalf of the Fermi-LAT and HESS Collaborations

More information

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation? Astrophysical issues +/ in the cosmic ray e spectra: Have we seen dark matter annihilation? Julien Lavalle Department of Theoretical Physics University of Torino and INFN Collab: Torino: R. Lineros, F.

More information

The role of ionization in the shock acceleration theory

The role of ionization in the shock acceleration theory The role of ionization in the shock acceleration theory Giovanni Morlino INAF - L.go E. Fermi 5, Firenze, Italy E-mail: morlino@arcetri.astro.it We study the acceleration of heavy nuclei at SNR shocks

More information

Cosmic Rays - R. A. Mewaldt - California Institute of Technology

Cosmic Rays - R. A. Mewaldt - California Institute of Technology Cosmic Rays - R. A. Mewaldt - California Institute of Technology Cosmic rays are high energy charged particles, originating in outer space, that travel at nearly the speed of light and strike the Earth

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

Cosmic ray electrons from here and there (the Galactic scale)

Cosmic ray electrons from here and there (the Galactic scale) Cosmic ray electrons from here and there (the Galactic scale) Julien Lavalle Department of Theoretical Physics Torino University and INFN Outline: (i) local electrons (ii) comments on synchrotron [based

More information

GeV-TeV Galactic Cosmic Rays (GCRs)

GeV-TeV Galactic Cosmic Rays (GCRs) GeV-TeV Galactic Cosmic Rays (GCRs) Julien Lavalle CNRS Lab. Univers & Particules de Montpellier (LUPM) Theory group Université Montpellier II & CNRS/IN2P3 France 16t Lomonosov Conference on Elementary

More information

Supernova Remnants as Cosmic Ray Accelerants. By Jamie Overbeek Advised by Prof. J. Finley

Supernova Remnants as Cosmic Ray Accelerants. By Jamie Overbeek Advised by Prof. J. Finley Supernova Remnants as Cosmic Ray Accelerants By Jamie Overbeek Advised by Prof. J. Finley Cosmic Rays Discovered by Victor Hess in 1911 during a balloon flight through Austria He used an electroscope to

More information

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon Cosmic Rays Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon Nobel Prize in 1936 Origin of high energy cosmic rays is still not completely understood

More information

Sources: acceleration and composition. Luke Drury Dublin Institute for Advanced Studies

Sources: acceleration and composition. Luke Drury Dublin Institute for Advanced Studies Sources: acceleration and composition Luke Drury Dublin Institute for Advanced Studies Hope to survey... Current status of shock acceleration theory from an astrophysical (mainly cosmic-ray origin) perspective...

More information

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park 99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park #5 How do Cosmic Rays gain their energy? I. Acceleration mechanism of CR

More information

Lecture 14 Cosmic Rays

Lecture 14 Cosmic Rays Lecture 14 Cosmic Rays 1. Introduction and history 2. Locally observed properties 3. Interactions 4. Demodulation and ionization rate 5. Midplane interstellar pressure General Reference MS Longair, High

More information

Recent Observations of Supernova Remnants

Recent Observations of Supernova Remnants 1 Recent Observations of Supernova Remnants with VERITAS Tülün Ergin (U. of Massachusetts Amherst, MA) on behalf of the VERITAS Collaboration (http://veritas.sao.arizona.edu) 2 Contents Supernova Remnants

More information

The High-Energy Interstellar Medium

The High-Energy Interstellar Medium The High-Energy Interstellar Medium Andy Strong MPE Garching on behalf of Fermi-LAT collaboration Cosmic Ray Interactions: Bridging High and Low Energy Astrophysics Lorentz Centre Workshop March 14-18

More information

Cosmic Rays, Photons and Neutrinos

Cosmic Rays, Photons and Neutrinos Cosmic Rays, Photons and Neutrinos Michael Kachelrieß NTNU, Trondheim [] Introduction Outline Plan of the lectures: Cosmic rays Galactic cosmic rays Basic observations Acceleration Supernova remnants Problems

More information

Cosmic rays and the diffuse gamma-ray emission

Cosmic rays and the diffuse gamma-ray emission Cosmic rays and the diffuse gamma-ray emission Dipartimento di Fisica, Torino University and INFN Sezione di Torino via P. Giuria 1, 10125 Torino, Italy E-mail: donato@to.infn.it The diffuse γ-ray emission

More information

W.R. Webber. New Mexico State University, Astronomy Department, Las Cruces, NM 88003, USA

W.R. Webber. New Mexico State University, Astronomy Department, Las Cruces, NM 88003, USA A Galactic Cosmic Ray Electron Spectrum at Energies from 2 MeV to 2 TeV That Fits Voyager 5-60 MeV Data at Low Energies and PAMELA and AMS-2 Data at 10 GeV Using an Electron Source Spectrum ~E -2.25 A

More information

Ultra High Energy Cosmic Rays I

Ultra High Energy Cosmic Rays I Ultra High Energy Cosmic Rays I John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020 ev. Problem: the microwave background radiation is discovered

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

a cosmic- ray propagation and gamma-ray code

a cosmic- ray propagation and gamma-ray code GALPROP: a cosmic- ray propagation and gamma-ray code A. Strong, MPE Garching Tools for SUSY, Annecy, June 28 2006 The basis: cosmic-ray production & propagation in the Galaxy intergalactic space HALO

More information

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer Cosmic Rays: A Way to Introduce Modern Physics Concepts Steve Schnetzer Rutgers CR Workshop May 19, 2007 Concepts Astrophysics Particle Physics Radiation Relativity (time dilation) Solar Physics Particle

More information

Evidence of Stochastic Acceleration of Secondary. Antiprotons by Supernova Remnants! Ilias Cholis, 08/09/2017

Evidence of Stochastic Acceleration of Secondary. Antiprotons by Supernova Remnants! Ilias Cholis, 08/09/2017 C [ ] -4 Evidence of Stochastic Acceleration of Secondary 2.2 1.0 2.0 1.8 1.6 1.4 1.2 C k p p Φ /Φ ratio fit Antiprotons by Supernova Remnants! 0.8 0.6 0.4 0.2 0.0-6 - 1 k [ GV ] -1 AMS-02 PAMELA Fermi

More information

ASTRONOMY AND ASTROPHYSICS - High Energy Astronomy From the Ground - Felix Aharonian HIGH ENERGY ASTRONOMY FROM THE GROUND

ASTRONOMY AND ASTROPHYSICS - High Energy Astronomy From the Ground - Felix Aharonian HIGH ENERGY ASTRONOMY FROM THE GROUND HIGH ENERGY ASTRONOMY FROM THE GROUND Felix Aharonian Dublin Institute for Advanced Studies, Dublin, Ireland and Max Planck Institut für Kernphysik, Heidelberg, Germany Keywords: nonthermal Universe, cosmic

More information

Gamma ray emission from supernova remnant/molecular cloud associations

Gamma ray emission from supernova remnant/molecular cloud associations Gamma ray emission from supernova remnant/molecular cloud associations Stefano Gabici APC, Paris stefano.gabici@apc.univ-paris7.fr The Origin of galactic Cosmic Rays Facts: the spectrum is (ALMOST) a single

More information

Cosmic Rays 1. Introduction

Cosmic Rays 1. Introduction Cosmic Rays 1. Introduction Lecture 1: Introduction to cosmic rays Lecture 2: Atmospheric µ and ν and ν telescopes Lecture 3: Giant air shower experiments Exercise: Expectations for γ-ray & ν-astronomy

More information

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen The LHAASO-KM2A detector array and physical expectations Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen Outline 1. Introduction 2. The KM2A Detector Array 3. Physical Expectations 3.1 Sensitivity

More information

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011 SEARCHES FOR ANTIMATTER DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011 OUTLINE Early History Baryon Asymmetry of the Universe? Current Limits on Antimatter Nuclei from Distant Galaxies

More information

The Origin of the Galactic Cosmic Radiation

The Origin of the Galactic Cosmic Radiation The Origin of the Galactic Cosmic Radiation A White Paper submitted to the Stars and Stellar Evolution Science Panel of Astro2010 - The Astronomy and Astrophysics Decadal Survey Corresponding Author: G.

More information

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Propagation in the Galaxy 2: electrons, positrons, antiprotons Propagation in the Galaxy 2: electrons, positrons, antiprotons As we mentioned in the previous lecture the results of the propagation in the Galaxy depend on the particle interaction cross section. If

More information

Low-Energy Cosmic Rays

Low-Energy Cosmic Rays Low-Energy Cosmic Rays Cosmic rays, broadly defined, are charged particles from outside the solar system. These can be electrons, protons, or ions; the latter two dominate the number observed. They are

More information

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays Short Course on High Energy Astrophysics Exploring the Nonthermal Universe with High Energy Gamma Rays Lecture 1: Introduction Felix Aharonian Dublin Institute for Advanced Studies, Dublin Max-Planck Institut

More information

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier 1 EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY Léa Jouvin, A. Lemière and R. Terrier 2 Excess of VHE cosmic rays (CRs) γ-ray count map Matter traced by CS 150 pc After subtracting the

More information

Cosmic ray escape from supernova remnants

Cosmic ray escape from supernova remnants Mem. S.A.It. Vol. 82, 760 c SAIt 2011 Memorie della Cosmic ray escape from supernova remnants Stefano Gabici Astroparticule et Cosmologie (APC), CNRS, Université Paris 7 Denis Diderot, Paris, France, e-mail:

More information

From the Knee to the toes: The challenge of cosmic-ray composition

From the Knee to the toes: The challenge of cosmic-ray composition New Views of the Universe December 8 th 13 th, 2005, Chicago From the Knee to the toes: The challenge of cosmic-ray composition Jörg R. Hörandel University of Karlsruhe www-ik.fzk.de/~joerg New Views of

More information

On the GCR/EGCR transition and UHECR origin

On the GCR/EGCR transition and UHECR origin UHECR 2014 13 15 October 2014 / Springdale (Utah; USA) On the GCR/EGCR transition and UHECR origin Etienne Parizot 1, Noémie Globus 2 & Denis Allard 1 1. APC Université Paris Diderot France 2. Tel Aviv

More information

Cosmic Rays in large air-shower detectors. Lecture 1: Introduction to cosmic rays Lecture 2: Current status & future

Cosmic Rays in large air-shower detectors. Lecture 1: Introduction to cosmic rays Lecture 2: Current status & future Cosmic Rays in large air-shower detectors Lecture 1: Introduction to cosmic rays Lecture 2: Current status & future Highlights of history of cosmic rays 1912: Victor Hess, Nobel prize 1936 Ascended to

More information

STUDY OF EXTENSIVE AIR SHOWERS IN THE EARTH S ATMOSPHERE

STUDY OF EXTENSIVE AIR SHOWERS IN THE EARTH S ATMOSPHERE STUDY OF EXTENSIVE AIR SHOWERS IN THE EARTH S ATMOSPHERE I. BACIOIU * Institute of Space Science, P.O. Box MG-23, RO-077125 Bucharest-Magurele, Romania, E-mail: iuliana.bacioiu@spacescience.ro Abstract.

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Radio Observations of TeV and GeV emitting Supernova Remnants

Radio Observations of TeV and GeV emitting Supernova Remnants Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline

More information

Cosmic Pevatrons in the Galaxy

Cosmic Pevatrons in the Galaxy Cosmic Pevatrons in the Galaxy Jonathan Arons UC Berkeley Cosmic Rays Acceleration in Supernova Remnants Pulsar Wind Nebulae Cosmic rays Cronin, 1999, RMP, 71, S165 J(E) = AE! p, p " 2.7,1GeV < E

More information

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC)

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC) 1 Diffusive shock acceleration: a first order Fermi process 2 Shock waves Discontinuity in physical parameters shock front n 2, p 2, T 2 n 1, p 1, T 1 v 2 v 1 downstream medium (immaterial surface) upstream

More information

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature THE THREE OF CR ISSUE! ACCELERATION CRs TRANSPORT Sources B amplifica2on mechanisms Evidences Diffusion Mechanisms Contribu2ons Theory vs data Oversimplifica8on of the Nature Not accurate systema8cs SNAPSHOT!

More information

arxiv: v1 [astro-ph] 17 Nov 2008

arxiv: v1 [astro-ph] 17 Nov 2008 Dark Matter Annihilation in the light of EGRET, HEAT, WMAP, INTEGRAL and ROSAT arxiv:0811.v1 [astro-ph 1 Nov 008 Institut für Experimentelle Kernphysik, Universiät Karlsruhe E-mail: gebauer@ekp.uni-karlsruhe.de

More information

Proton/Helium spectral anomaly and other signatures of diffusive shock acceleration/propagation in/from SNR

Proton/Helium spectral anomaly and other signatures of diffusive shock acceleration/propagation in/from SNR Proton/Helium spectral anomaly and other signatures of diffusive shock acceleration/propagation in/from SNR M. Malkov CASS/UCSD Collaborators: P. Diamond, R. Sagdeev 1 Supernova Remnant Shocks- Cosmic

More information

Diffusive shock acceleration with regular electric fields

Diffusive shock acceleration with regular electric fields Diffusive shock acceleration with regular electric fields V.N.Zirakashvili Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN), 142190

More information

Effect of the Regular Galactic Magnetic Field on the Propagation of Galactic Cosmic Rays in the Galaxy

Effect of the Regular Galactic Magnetic Field on the Propagation of Galactic Cosmic Rays in the Galaxy Effect of the Regular Galactic Magnetic Field on the Propagation of Galactic Cosmic Rays in the Galaxy Department of Electrical and Electronic Systems Engineering, National Institute of Technology, Ibaraki

More information

Nonthermal Emission in Starburst Galaxies

Nonthermal Emission in Starburst Galaxies Nonthermal Emission in Starburst Galaxies! Yoel Rephaeli!!! Tel Aviv University & UC San Diego Cosmic Ray Origin! San Vito, March 20, 2014 General Background * Stellar-related nonthermal phenomena * Particle

More information

Recent discoveries from TeV and X- ray non-thermal emission from SNRs

Recent discoveries from TeV and X- ray non-thermal emission from SNRs Recent discoveries from TeV and X- ray non-thermal emission from SNRs «From Neutrino to multimessenger astronomy» Marseille Fabio Acero LUPM (LPTA), Montpellier Fabio Acero 1 Outline Evidence of acceleration

More information

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV (with spatial dependent CR transport) D. Grasso (INFN, Pisa) with D. Gaggero, A. Marinelli, A. Urbano, M. Valli IceCube recent results

More information

High and low energy puzzles in the AMS-02 positron fraction results

High and low energy puzzles in the AMS-02 positron fraction results High and low energy puzzles in the AMS-02 positron fraction results Dario Grasso (INFN, Pisa) D. Gaggero (SISSA), L.Maccione (MPI, Munich), C. Evoli(DESY), G. Di Bernardo (Göteborg) AMS-02 positron fraction

More information

Acceleration Mechanisms Part I

Acceleration Mechanisms Part I Acceleration Mechanisms Part I From Fermi to DSA Luke Drury Dublin Institute for Advanced Studies Will discuss astrophysical acceleration mechanisms - how do cosmic accelerators work? - concentrating mainly

More information

The positron and antiproton fluxes in Cosmic Rays

The positron and antiproton fluxes in Cosmic Rays The positron and antiproton fluxes in Cosmic Rays Paolo Lipari INFN Roma Sapienza Seminario Roma 28th february 2017 Preprint: astro-ph/1608.02018 Author: Paolo Lipari Interpretation of the cosmic ray positron

More information

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV Mount Rainier by Will Christiansen Silvia Vernetto & Paolo Lipari 35th ICRC 12-20 July 2017 - Busan - South Korea Gamma ray astronomy

More information

Non-thermal emission from pulsars experimental status and prospects

Non-thermal emission from pulsars experimental status and prospects Non-thermal emission from pulsars experimental status and prospects # γ!"# $%&'() TeV γ-ray astrophysics with VERITAS ( $γ" *$%&'() The charged cosmic radiation - how it all began... Discovery: Victor

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

Remnants and Pulsar Wind

Remnants and Pulsar Wind High Energy Supernova Remnants and Pulsar Wind Nebulae F. Giordano Dipartimento Interateneo di Fisica and INFN Sez. Bari For the Fermi-LAT Collaboration Scineghe 2010 The Afterlife of a star IC443 Crab

More information

X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and magnetic field amplification in Supernova Remnants

X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and magnetic field amplification in Supernova Remnants X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and magnetic field amplification in Supernova Remnants Yousaf Butt, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

More information

An Auger Observatory View of Centaurus A

An Auger Observatory View of Centaurus A An Auger Observatory View of Centaurus A Roger Clay, University of Adelaide based on work particularly done with: Bruce Dawson, Adelaide Jose Bellido, Adelaide Ben Whelan, Adelaide and the Auger Collaboration

More information

TeV Cosmic Ray Anisotropies at Various Angular Scales

TeV Cosmic Ray Anisotropies at Various Angular Scales TeV Cosmic Ray Anisotropies at Various Angular Scales Gwenael Giacinti University of Oxford, Clarendon Laboratory Based on : GG & G.Sigl GG, M.Kachelriess, D.Semikoz Phys. Rev. Lett. 109, 071101(2012)

More information

Understanding High Energy Neutrinos

Understanding High Energy Neutrinos Understanding High Energy Neutrinos Paolo Lipari: INFN Roma Sapienza NOW-2014 Conca Specchiulla 12th september 2014 An old dream is becoming a reality : Observing the Universe with Neutrinos ( A new way

More information

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010 Interstellar gamma rays New insights from Fermi Andy Strong on behalf of Fermi-LAT collaboration COSPAR Scientific Assembly, Bremen, July 2010 Session E110: ' The next generation of ground-based Cerenkov

More information

High energy radiation from molecular clouds (illuminated by a supernova remnant

High energy radiation from molecular clouds (illuminated by a supernova remnant High energy radiation from molecular clouds (illuminated by a supernova remnant A. Marcowith (L.P.T.A. Montpellier) collaboration with S. Gabici (D.I.A.S.) 1 Outlook Introduction: Scientific interests.

More information

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search Nicolò Masi Bologna University and INFN - 31 May 2016 Topics 1. Towards a unified picture of CRs production and propagation: Astrophysical uncertainties with GALPROP Local Interstellar Spectra: AMS-02

More information

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Marie-Hélène Grondin Centre d'etudes Nucléaires de Bordeaux- Gradignan SNR/PWN Workshop Montpellier, 2010 June 1 th M.-H. Grondin, SNR/PWN Wokshop,

More information

arxiv: v2 [astro-ph.he] 30 May 2014

arxiv: v2 [astro-ph.he] 30 May 2014 PeV neutrinos from interactions of cosmic rays with the interstellar medium in the Galaxy A. Neronov 1, D.Semikoz 2, C.Tchernin 1 1 ISDC, Department of Astronomy, University of Geneva, Ch. d Ecogia 16,

More information

Topic 7. Relevance to the course

Topic 7. Relevance to the course Topic 7 Cosmic Rays Relevance to the course Need to go back to the elemental abundance curve Isotopes of certain low A elements such as Li, Be and B have larger abundances on Earth than you would expect

More information

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley)

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) w/ Todd Thompson & Eli Waxman Thompson, Quataert, & Waxman 2007, ApJ, 654, 219 Thompson,

More information

Ultrahigh Energy Cosmic Rays propagation II

Ultrahigh Energy Cosmic Rays propagation II Ultrahigh Energy Cosmic Rays propagation II The March 6th lecture discussed the energy loss processes of protons, nuclei and gamma rays in interactions with the microwave background. Today I will give

More information

Pulsar Wind Nebulae: A Multiwavelength Perspective

Pulsar Wind Nebulae: A Multiwavelength Perspective Pulsar Wind Nebulae: Collaborators: J. D. Gelfand T. Temim D. Castro S. M. LaMassa B. M. Gaensler J. P. Hughes S. Park D. J. Helfand O. C. de Jager A. Lemiere S. P. Reynolds S. Funk Y. Uchiyama A Multiwavelength

More information

Antimatter spectra from a time-dependent modeling of supernova remnants

Antimatter spectra from a time-dependent modeling of supernova remnants Journal of Physics: Conference Series Antimatter spectra from a time-dependent modeling of supernova remnants To cite this article: M Kachelrieß et al 2010 J. Phys.: Conf. Ser. 259 012092 View the article

More information

Introduction to cosmic rays

Introduction to cosmic rays Introduction to cosmic rays 1 COSMIC RAYS: Messages from exploding stars and even more powerful objects What are cosmic rays? How were they discovered? How do we detect them? What can we learn from them?

More information

Properties of Elementary Particle Fluxes in Cosmic Rays. TeVPA Aug. 7, Yuan-Hann Chang National Central University, Taiwan

Properties of Elementary Particle Fluxes in Cosmic Rays. TeVPA Aug. 7, Yuan-Hann Chang National Central University, Taiwan Properties of Elementary Particle Fluxes in Cosmic Rays TeVPA Aug. 7, 2017 Yuan-Hann Chang National Central University, Taiwan Elementary Particles in Space There are hundreds of different kinds of charged

More information

Cosmic Rays. M. Swartz. Tuesday, August 2, 2011

Cosmic Rays. M. Swartz. Tuesday, August 2, 2011 Cosmic Rays M. Swartz 1 History Cosmic rays were discovered in 1912 by Victor Hess: he discovered that a charged electroscope discharged more rapidly as he flew higher in a balloon hypothesized they were

More information

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016 Review of direct measurements of cosmic rays Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016 CR astrophуsics main problems Sources? - Accelerators? The basic paradigm of CR acceleration

More information

Dark Matter in the Universe

Dark Matter in the Universe Dark Matter in the Universe NTNU Trondheim [] Experimental anomalies: WMAP haze: synchrotron radiation from the GC Experimental anomalies: WMAP haze: synchrotron radiation from the GC Integral: positron

More information

Galactic cosmic rays phenomenology: nuclei, antimatter, dark matter

Galactic cosmic rays phenomenology: nuclei, antimatter, dark matter Galactic cosmic rays phenomenology: nuclei, antimatter, dark matter Fiorenza Donato Torino University and INFN NPQCD 1st Workshop Cortona, April 20, 2015 1. What are cosmic rays (CRs) 2. Searches for dark

More information

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker 46 1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker From Aharonian et al. 2011 From Letessier-Sevon & Stanev 2011 Fermi 2-year sky map Outline 1. 2. 3. 4. knee ankle (b)

More information

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas Photodissociation Regions Radiative Transfer Dr. Thomas G. Bisbas tbisbas@ufl.edu Interstellar Radiation Field In the solar neighbourhood, the ISRF is dominated by six components Schematic sketch of the

More information

Astrophysical issues in indirect DM detection

Astrophysical issues in indirect DM detection Astrophysical issues in indirect DM detection Julien Lavalle CNRS Lab. Univers & Particules de Montpellier (LUPM), France Université Montpellier II CNRS-IN2P3 (UMR 5299) Service de Physique Théorique Université

More information

Cosmic rays in the local interstellar medium

Cosmic rays in the local interstellar medium Cosmic rays in the local interstellar medium Igor V. Moskalenko Igor V. Moskalenko/NASA-GSFC 1 LMC (Magellanic Cloud Emission Nuclear Data-2004/09/28, Line Survey: Smith, Points) Santa Fe R - H G - [S

More information

Particle acceleration in Supernova Remnants

Particle acceleration in Supernova Remnants Particle acceleration in Supernova Remnants Anne Decourchelle Service d Astrophysique, CEA Saclay Collaborators: J. Ballet, G. Cassam-Chenai, D. Ellison I- Efficiency of particle acceleration at the forward

More information

Spectral Intensities of Antiprotons and the Lifetime Of Cosmic Rays

Spectral Intensities of Antiprotons and the Lifetime Of Cosmic Rays Spectral Intensities of Antiprotons and the Lifetime Of Cosmic Rays Physics Department and McDonnell Center for the Space Sciences Washington University, St. Louis, MO 63130, USA E-mail: cowsik@wustl.edu

More information

arxiv: v2 [astro-ph.he] 29 Sep 2009

arxiv: v2 [astro-ph.he] 29 Sep 2009 Mon. Not. R. Astron. Soc. 000, 1?? (2007) Printed 29 July 2017 (MN LATEX style file v2.2) High Energy Emission from the Starburst Galaxy NGC 253 arxiv:0906.1921v2 [astro-ph.he] 29 Sep 2009 Yoel Rephaeli

More information

The Physics of Cosmic Rays! Ellen Zweibel! University of Wisconsin-Madison! &! Center for Magnetic Self-Organization!

The Physics of Cosmic Rays! Ellen Zweibel! University of Wisconsin-Madison! &! Center for Magnetic Self-Organization! The Physics of Cosmic Rays! Ellen Zweibel! University of Wisconsin-Madison! &! Center for Magnetic Self-Organization! Galaxies(are(Pervaded(by(Magne2c( Fields(&(Rela2vis2c(Par2cles( Synchrotron radiation

More information

Dr. John Kelley Radboud Universiteit, Nijmegen

Dr. John Kelley Radboud Universiteit, Nijmegen arly impressive. An ultrahighoton triggers a cascade of particles mulation of the Auger array. The Many Mysteries of Cosmic Rays Dr. John Kelley Radboud Universiteit, Nijmegen Questions What are cosmic

More information