OFFICE OF NAVAL RESEARCH GRANT: N R&T CODE: Scientific Officer: Dr. Kenneth J. Wynne TECHNICAL REPORT NO.

Size: px
Start display at page:

Download "OFFICE OF NAVAL RESEARCH GRANT: N R&T CODE: Scientific Officer: Dr. Kenneth J. Wynne TECHNICAL REPORT NO."

Transcription

1 OFFICE OF NAVAL RESEARCH GRANT: N R&T CODE: Scientific Officer: Dr. Kenneth J. Wynne TECHNICAL REPORT NO. 48 Polarization Holographic Gratings in Azopolymers for Detecting and Producing Circularly Polarized Light by P. Rochon, V. Drnoyan and A. Natansohn Submitted for publication in International Conference on Applications of Photonics Technology (SPIE) Department of Chemistry Queen's University Kingston, On., Canada June 23,1998 Reproduction in whole or in part is permitted for any purpose of the United States Government This document has been approved for public release and sale; its distribution is unlimited. 00 QUALITY D53PECTBD ? W

2 REPORT DOCUMENTATION PAGE Q.'.i= NO. 07:-!-G!33., i,r-- I:' if!»1 "» ' f.ii-l. I!i'l''''1 till " 5''.' «- 7;,..«.,««.-, *.-«.< '<>-..-*««- «" f 1^-;^:,T^;;.":v J,-;,iv J H, n. e '-^"i^i^h";^ iru^j/irivt?.-' eq ir<3 i- I"*' i- rt, ', 1 0., -., W>.'ii'.»'"".""-»* "" ""' 3 «PORT TYPE ANO DATES COVERED 1 AGENCY USE ONLY (L»v bunk> I 2. R?Oni DA. c J.., D..* /, Q A. TITLE AMD SU3TITLE 1 vju "- ~ - L-^-i S. FUNDING NUM3ERS Polarization Holographic Gratings in Azopolymers for Detecting and Producing Circularly Polarized Light 6. AUTHORS) P. Rochon, V. Drnoyan and A. Natansohn N PERFORMING ORGANIZATION NAME(S) AS>>..UORESS(ES) Department of Chemistry Queen's University Kingston, Ontario K7L 3N6 Canada 9. SPONSORING/MONITORING AGENCY NAME(S) AMU AuORESS(ES) Department of the Navy Office of the Naval Research 800 North Quincy Street, Arlington, VA SUPPLEMENTARY NOTES 8. PERFORMING ORGANLIATION REPORT HUM5ER SPONSORING/MONITORING AGENCY REPORT NU.M3ES International Conference on Applications of Photonics Technology (SPIE) 12a DISTRIBUTION/AVAILABILITY STATEMENT Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited. 13. A3STRACT {Maximum 20Ovtoixb) 12b. DISTRIBUTION CODE Polarization holographic gratings were inscribed in azobenzene side chain polymer films. The polarization gratings were produced using two orthogonally circularly polarized beams and the resulting stable transmission gratings were studied using a low power HeNe laser The gratings were observed to efficiently separate left and right circularly polarized light from the probe beam and two generate to elliptically polarized beams in the first order diffraction direction. Azobenzene polymers, holographic gratings, device, circularly, polarized light, separator 17. SECURITY CLASSIFICATION OF REPORT unclassified N5.N SECURITY CLASSIFICATION OF THIS PAGE unclassified 13. SECURITY CLASSIFICATION OF ABSTRACT ini-1 a^i f 1P f 15. NUMSER OF PAGES 16. PRJCE COD: 20.'LIMITATION OF A35T?J unlimited S: a.-.a3:d Fo^TiiT^- ^

3 Polarization holographic graüngs in azopolymers for detecting and producing circularly polarized light. P. Rochon Department of Physics, Royal Military College of Canada. Kingston. Ontario K7K 7B4 V. Dmoyan and A. Natansolin Department of Chemistry. Queen's University Kingston Ontario K7L 3N6 ABSTRACT Polarization holographic gratings were inscribed in azobenzene side chain polymer Films. The polarization»ratings were produced usine two orthogonally circularly polarized beams and the resulting stable transmission gratings were studied using a low power HcNe laser. The gratinss were observed to efficiently separate left and right circularly polarized light from the probe beam and two generate two elliptically polarized beams in the first order diffraction direction. 2. INTRODUCTION The availability of materials in which optical arusotropv can be photoinduced has led to a number of interesting ctudies on die recording of polarization holograms 1?. These are made by the interference of two beams recorded in die mnenal where die interference pattern is not a variation of intensity but rather a variation in the polarization state of the resultant wave in die material. The local polarization of die light is then recorded in an optically anisotropic material. In the present paper we consider the case when the holographic recording beams are of equal intensity and are orthogonally circularly polarized. One of die interesting properties of the holographic grating produced by these two beams is that it diffracts'die left () and right-hand () circularly polarized light from a probe beam into two separate directions. Tliis can dien lead to a simple device that could measure the total polarization state of an input beam over a wide u-nelenodi ran*e The dieorv also predict that this craung could be used to produce circularly polarized light of selected handedness again over a wide wave lengdi range. In the present study we consider the production of these holographic «ratings in azobenzene side chain polymers Azobenzene side chain polymers have been shown to have large, stable birefringence can be optically induced usin«moderate power argon lasers and short exposure times* The recording medium is a thin film ( ca. 400 nm duck) which is made bv spin coating the polvmer which is dissolved in tetrahydrofuran onto a glass substrate. The azobenzene molecules are intrinsically anisotropic but thev are initially deposited in random directions making die film amorphous and Isotropie The molecules can be made to change shape and direction by the process of photoisomenzation. Upon exposure to lmearlv polarized light the molecules tend to re-align in a direction that is perpendicular to the polarization direction. This results in a local optical arusotropv that can be detected using a probe which does not cause photoisomenzation but which is still sensitive to die local birefringence. The optically induced birefringence in side chain azopolymers is stable over extended periods ( years). therefore die holographic graüngs can be components of a polarization measurement system as long as the films are protected against erasure.

4 3.EXPERIMENT The holographic polarization grating was produced by the superposition of two orthogonal circularly polarized beams as illustrated below: probe So film FIGURE 1: Optical set-up S + i The wrilin«beams 1 and 2. are from a 50 inw/cnr Argon laser at 488 nm and the probe beam is trom a 10 pw HeNe laser at 63? S ran. The film was a s.de chain azopolymer*. pdrlm. which was cast onto a glass substrate. The writing beams are orthogonally circularly polarized to produce the following polarization patterns on the film Aj^,^i nr ^.«?.?! A 12T '/- \i/ ****&$ 1- /N ILa ^ = - A ^ is ^-^ & ^5^, FIGURE 2 : Polarization gratings We note that Ute first pattern is a rotation of the first pattern about the x-axis or z-axis( out of the paper).the anale between the writuw beams was adjusted to give a grating spacing of about 6 micrometers. The polarization graues wet produced bv ing for 100 seconds, whichls enough time for the optically induced birefringence to reach saturation l^t^l birefringence was Uten allowed to relax in die da* for 500 seconds to reach the more ^^^te birefringence levels of An= The probe beam was then used to obtain the diffraction characteristics of the gratings_ The prob^beam portion state was varied using a quarter wave plate and die polarization could be continuously varied from left circular to linear to right circular.

5 4. RESULTS AND DISCUSSION The polarization grating can be described by the following transmission Jone 's matrix JÖ ( (\ 0\ i 1 T = e 1% WAq)) 0 1 J ^2 V J 1 -i \ -10 / +sin(z^p? / V" -n Where A, IS the average phase delay through the film. Aa> = "d-an/a. is die anisotropic phase delay due to the birefringence. and 6 = 2-x/A is the phase delav along die grating with spacing A. In the above equation trie first term in die brackets is the dircctlv transmitted beam, the second term is the beam in die +1 order of diffraction and the third term is the beam in die -1 order of diffraction. One can readily sec that in die above case a right circularly polarised beam of light. would only L- be diffracted into die -1 order and that die resultant beam would be left circularly polarised. We have investigated dus anisotropic diffraction property of the polarization gratings for circularly polarized light and die results are summarised in the following table which gives the direction and polarization state of the diffracted beams. TABLE1: Diffraction of a circularly polarized probe beam BEAM 1 Probe S-, S.i The results are in agreement with die above theoretical predictions. For example when Beam 1 of the writing beam is and the probe beam Is dien we observe that the diffracted beam occurs mostly in die -1 direction and die is it polarized. The beam in the +1 direction is less dian 2% ofthat in the -1 direction. When the probe beam is dien the light is diffracted into the +1 direction and is. Also as indicated in die table, when the writing geometry or the sample geometry are inverted then the diffraction of the polarized beams is also affected.

6 i >u<* rak» t^m Hop«: not over write the inscribed information. The The holographic grating is stable as ^"^.^.^"^^rjln In figure 3 we present the results linearly polarized test beam was constant and rotating a quarter-wave plate vancd the polanzauon state content (%) 80 FIGURE 3: Polarizauon detection of a lest beam TV res u, K,nd,ea,ed Ü«d,e polar.zado of,.,c,cs, *;- ^ "^'^ e^ed^l 1,» u S ed in device applications. However, d,e ddffracuon efficiency ; was,,oun^*» ".^ du Uie Mabi'iiv nf the holographic srating can also b^ inu-casca D\ UMIU IU 0 I«- 0 those chromophores during die process of photoinduced birefnngence. 5. ACKNOWLEDGEMENTS Funding was provided by the Office of Naval Research USA. NSERC Canada, and the Department of National Defence of Canada. 6. REFERENCES 1- Sh.D.KakicliashviliOpt.Spectrosc. (1977).42. p ,,,,, i T Todorov L Nikolova. and N. Tomova Appl. Optics (1984). 2.K 4^0 ;-4., 1 _ I" Ü-S^r^^taTIÄiS^ Ä" Mode Op,,c, O^,»..»-I» 7- F. Lagngne-Laberüiet. T. Buffeteau and C. Sounsseau. J. Phys. Chem. (1998). B M ibw.

AD -A PAGE RMB No gathetriflg af *, t OnifrmatiOn sed commenti regaraing this.jdtn estimate or any other *%w ct of this

AD -A PAGE RMB No gathetriflg af *, t OnifrmatiOn sed commenti regaraing this.jdtn estimate or any other *%w ct of this 1 form PAGE Approved AD -A272 994 4 PAGE RMB No. 0704-0188 gathetriflg af *, t OnifrmatiOn sed commenti regaraing this.jdtn estimate or any other *%w ct of this "a'oiiet'on of ;tton.4eacort i e ri S"rces.

More information

OFFICE OF NAVAL RESEARCH GRANT: N R&T CODE: Scientific Officer: Dr. Kenneth J. Wynne TECHNICAL REPORT NO.

OFFICE OF NAVAL RESEARCH GRANT: N R&T CODE: Scientific Officer: Dr. Kenneth J. Wynne TECHNICAL REPORT NO. OFFICE OF NAVAL RESEARCH GRANT: N00014-93-1-0615 R&T CODE: 3132081 Scientific Officer: Dr. Kenneth J. Wynne TECHNICAL REPORT NO. 47 Irradiance and Temperature Dependence of Photo-Induced Orientation in

More information

Microstructure of Reflection Holographic Grating Inscribed in. an Absorptive Azopolymer Film

Microstructure of Reflection Holographic Grating Inscribed in. an Absorptive Azopolymer Film Microstructure of Reflection Holographic Grating Inscribed in an Absorptive Azopolymer Film Hyunhee Choi Department of Physics, Soongsil University, Seoul 156-743, Korea Microstructure of reflection holographic

More information

SURFACE RELIEF GRATING AND RETARDAGRAPHY: OPTICAL MANIPULATION OF AZOBENZENE POLYMER FILMS AND ITS APPLICATIONS

SURFACE RELIEF GRATING AND RETARDAGRAPHY: OPTICAL MANIPULATION OF AZOBENZENE POLYMER FILMS AND ITS APPLICATIONS Finnish-Japanese Workshop on Functional Materials Espoo and Helsinki, Finland 25-25.5.2009 Utsunomiya Univesity Center for Optical Research and Education Toyohiko Yatagai SURFACE RELIEF GRATING AND RETARDAGRAPHY:

More information

Polarization Holographic Device Using Photoreactive Polymer Liquid Crystals

Polarization Holographic Device Using Photoreactive Polymer Liquid Crystals Polarization Holographic Device Using Photoreactive Polymer Liquid Crystals Hiroshi Ono and Nobuhiro Kawatsuki Copyright AD-TECH; licensee AZoM.com Pty Ltd. This is an AZo Open Access Rewards System (AZo-OARS)

More information

Photoresponsive Behavior of Photochromic Liquid-Crystalline Polymers

Photoresponsive Behavior of Photochromic Liquid-Crystalline Polymers Photoresponsive Behavior of Photochromic Liquid-Crystalline Polymers Tomiki Ikeda Chemical Resources Laboratory, Tokyo Institute of Technology R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

More information

Diffraction from Polarization Holographic Gratings with Surface Relief in Side-chain Azobenzene Polyesters

Diffraction from Polarization Holographic Gratings with Surface Relief in Side-chain Azobenzene Polyesters Dublin Institute of Technology ARROW@DIT Articles Centre for Industrial and Engineering Optics 1997-01-01 Diffraction from Polarization Holographic Gratings with Surface Relief in Side-chain Azobenzene

More information

Supporting Information

Supporting Information Supporting Information Devlin et al. 10.1073/pnas.1611740113 Optical Characterization We deposit blanket TiO films via ALD onto silicon substrates to prepare samples for spectroscopic ellipsometry (SE)

More information

Pre-lab Quiz/PHYS 224. Your name Lab section

Pre-lab Quiz/PHYS 224. Your name Lab section Pre-lab Quiz/PHYS 224 THE DIFFRACTION GRATING AND THE OPTICAL SPECTRUM Your name Lab section 1. What are the goals of this experiment? 2. If the period of a diffraction grating is d = 1,000 nm, where the

More information

Optical Storage and Surface Relief Gratings in Azo-Compounds

Optical Storage and Surface Relief Gratings in Azo-Compounds Optical Storage and Surface Relief Gratings in Azo-Compounds Cleber R. Mendonça University of São Paulo Instituto de Física de São Carlos Brazil Azoaromatic compounds photo-isomerization polymers guest

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

REPORT DOCUMENTATION PAGE. &f\ftlol~1h6-0zös

REPORT DOCUMENTATION PAGE. &f\ftlol~1h6-0zös MASTER COPY REPORT DOCUMENTATION PAGE lusüf inis LUfi ruti iuirk.ujjut.iiuk ruturua^a Form Approved OMB No. 0704-0188 Public report.ng burden «or thi, collection of information is estimated to average

More information

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems - The overall optical transmission through many optical components such as polarizers, EO modulators, filters, retardation plates.

More information

Gratings in Electrooptic Polymer Devices

Gratings in Electrooptic Polymer Devices Gratings in Electrooptic Polymer Devices Venkata N.P.Sivashankar 1, Edward M. McKenna 2 and Alan R.Mickelson 3 Department of Electrical and Computer Engineering, University of Colorado at Boulder, Boulder,

More information

Polarization-Dependent Measurements of Light Scattering in Sea Ice

Polarization-Dependent Measurements of Light Scattering in Sea Ice Polarization-Dependent Measurements of Light Scattering in Sea Ice Arlon. J. Hunt Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory 1 Cyclotron Rd., Berkeley, CA 94720 phone:

More information

Z-scan Measurement of Upconversion in Er:YAG

Z-scan Measurement of Upconversion in Er:YAG Proceedings of the 13 th Annual Directed Energy Symposium (Bethesda, MD) Dec. 2010 Z-scan Measurement of Upconversion in Er:YAG Jeffrey O. White, Thomas A. Mercier, Jr., John E. McElhenny Army Research

More information

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. POLARISATION Light is a transverse electromagnetic wave. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. If the E field

More information

Supplementary Information Our InGaN/GaN multiple quantum wells (MQWs) based one-dimensional (1D) grating structures

Supplementary Information Our InGaN/GaN multiple quantum wells (MQWs) based one-dimensional (1D) grating structures Polarized white light from hybrid organic/iii-nitrides grating structures M. Athanasiou, R. M. Smith, S. Ghataora and T. Wang* Department of Electronic and Electrical Engineering, University of Sheffield,

More information

Mechanism of Optically Inscribed High-Efficiency Diffraction Gratings in Azo Polymer Films

Mechanism of Optically Inscribed High-Efficiency Diffraction Gratings in Azo Polymer Films 8836 J. Phys. Chem. 1996, 100, 8836-8842 Mechanism of Optically Inscribed High-Efficiency Diffraction Gratings in Azo Polymer Films Christopher J. Barrett and Almeria L. Natansohn* Department of Chemistry,

More information

Testing stress birefringence of an optical window. Chiayu Ai and. James C. Wyant. WYKO Corp., 2650 E. Elvira Road, Tucson, AZ ABSTRACT

Testing stress birefringence of an optical window. Chiayu Ai and. James C. Wyant. WYKO Corp., 2650 E. Elvira Road, Tucson, AZ ABSTRACT Testing stress birefringence of an optical window Chiayu Ai and James C. Wyant WYKO Corp., 2650 E. Elvira Road, Tucson, AZ 85706 ABSTRACT This paper describes a method to measure the birefringence of an

More information

Unusual Optical Properties of Aligned Carbon Nanotube Mats in Infrared Energy Region

Unusual Optical Properties of Aligned Carbon Nanotube Mats in Infrared Energy Region Unusual Optical Properties of Aligned Carbon Nanotube Mats in Infrared Energy Region G. L. Zhao 1,*, D. Bagayoko 1, and L. Yang 2 1 Department of Physics and High Performance Computing Laboratory Southern

More information

AD-A FATION PAGE cmb No SUPPLEMENTARY NOTESlIII lllll II ili JUN PRICE CODE

AD-A FATION PAGE cmb No SUPPLEMENTARY NOTESlIII lllll II ili JUN PRICE CODE Form Approved AD-A252 270 FATION PAGE cmb No. 0704-0188 ge I~ uour oer resorse. including tile time for reviewing instructions. searchng existing cata sourcf-.. 'r, P 'llecicon o0 of information Send Commintsr

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 S1 Submitted to J. Mater. Chem. C Version of March 26, 2015 Supporting

More information

Influence of Wavelength of Light on Photoinduced Orientation of Azobenzene-Containing Polymethacrylate Film

Influence of Wavelength of Light on Photoinduced Orientation of Azobenzene-Containing Polymethacrylate Film Polymer Journal, Vol. 38, No. 7, pp. 724 73 (26) #26 The Society of Polymer Science, Japan Influence of Wavelength of Light on Photoinduced Orientation of Azobenzene-Containing Polymethacrylate Film Emi

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Polarization of Light Spring 2015 Semester Matthew Jones Types of Polarization Light propagating through different materials: One polarization component can

More information

Fresnel rhomb and other devices for handling and teaching polarization: inexpensive design

Fresnel rhomb and other devices for handling and teaching polarization: inexpensive design Fresnel rhomb and other devices for handling and teaching polarization: inexpensive design B. Ya. Zeldovich, I. V. Ciapurin, H. V. Sarkissian, C. Tsai School of Optics / CREOL, University of Central Florida;

More information

Light for which the orientation of the electric field is constant although its magnitude and sign vary in time.

Light for which the orientation of the electric field is constant although its magnitude and sign vary in time. L e c t u r e 8 1 Polarization Polarized light Light for which the orientation of the electric field is constant although its magnitude and sign vary in time. Imagine two harmonic, linearly polarized light

More information

Quarter wave plates and Jones calculus for optical system

Quarter wave plates and Jones calculus for optical system 2/11/16 Electromagnetic Processes In Dispersive Media, Lecture 6 1 Quarter wave plates and Jones calculus for optical system T. Johnson 2/11/16 Electromagnetic Processes In Dispersive Media, Lecture 6

More information

Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals

Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals electronic-liquid Crystal Crystal Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals Lorenzo Marrucci Dipartimento di Scienze Fisiche Università

More information

SMR WINTER COLLEGE QUANTUM AND CLASSICAL ASPECTS INFORMATION OPTICS. The Origins of Light s angular Momentum

SMR WINTER COLLEGE QUANTUM AND CLASSICAL ASPECTS INFORMATION OPTICS. The Origins of Light s angular Momentum SMR.1738-8 WINTER COLLEGE on QUANTUM AND CLASSICAL ASPECTS of INFORMATION OPTICS 30 January - 10 February 2006 The Origins of Light s angular Momentum Miles PADGETT University of Glasgow Dept. of Physics

More information

POLARIZATION FUNDAMENTAL OPTICS POLARIZATION STATES 1. CARTESIAN REPRESENTATION 2. CIRCULAR REPRESENTATION. Polarization. marketplace.idexop.

POLARIZATION FUNDAMENTAL OPTICS POLARIZATION STATES 1. CARTESIAN REPRESENTATION 2. CIRCULAR REPRESENTATION. Polarization. marketplace.idexop. POLARIZATION POLARIZATION STATS Four numbers are required to describe a single plane wave Fourier component traveling in the + z direction. These can be thought of as the amplitude and phase shift of the

More information

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification Nuclear Instruments and Methods in Physics Research B 210 (2003) 250 255 www.elsevier.com/locate/nimb Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

More information

Improvement of the diffraction properties in holographic polymer dispersed liquid crystal bragg gratings q

Improvement of the diffraction properties in holographic polymer dispersed liquid crystal bragg gratings q Optics Communications 218 (2003) 27 32 www.elsevier.com/locate/optcom Improvement of the diffraction properties in holographic polymer dispersed liquid crystal bragg gratings q YanJun Liu a, *, Bin Zhang

More information

Volume 6 Water Surface Profiles

Volume 6 Water Surface Profiles A United States Contribution to the International Hydrological Decade HEC-IHD-0600 Hydrologic Engineering Methods For Water Resources Development Volume 6 Water Surface Profiles July 1975 Approved for

More information

Polarization of Light and Birefringence of Materials

Polarization of Light and Birefringence of Materials Polarization of Light and Birefringence of Materials Ajit Balagopal (Team Members Karunanand Ogirala, Hui Shen) ECE 614- PHOTONIC INFORMATION PROCESSING LABORATORY Abstract-- In this project, we study

More information

Jones calculus for optical system

Jones calculus for optical system 2/14/17 Electromagnetic Processes In Dispersive Media, Lecture 6 1 Jones calculus for optical system T. Johnson Key concepts in the course so far What is meant by an electro-magnetic response? What characterises

More information

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite Jin Yan, Meizi Jiao, Linghui Rao, and Shin-Tson Wu* College of Optics and Photonics,

More information

Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission

Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission DOI:.38/NNANO.25.86 Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission Amir Arbabi, Yu Horie, Mahmood Bagheri, and Andrei

More information

Optimisation of an Acrylamide-based Photopolymer System for Holographic Inscription of Surface Patterns with Sub-micron Resolution

Optimisation of an Acrylamide-based Photopolymer System for Holographic Inscription of Surface Patterns with Sub-micron Resolution Dublin Institute of Technology ARROW@DIT Articles Centre for Industrial and Engineering Optics 21-1-1 Optimisation of an Acrylamide-based Photopolymer System for Holographic Inscription of Surface Patterns

More information

, i, ~. '~~~* a F- WI W U V U S S S S S S It

, i, ~. '~~~* a F- WI W U V U S S S S S S It AD-A194 365 REACTION DYNAMICS ON SEMICONDUCTOR SURFACES(U) h RENSSELAER POLYTECHNIC INST TROY NY DEPT OF MATERIALS ENGINEERING J B HUDSON 29 FEB 86 NOB8e4-86-K-0259 UNCLASSIFIED F/G 7/4 NI @MonossonE ,

More information

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002 151-232: Imaging Systems Laboratory II Laboratory 6: The Polarization of Light April 16 & 18, 22 Abstract. In this lab, we will investigate linear and circular polarization of light. Linearly polarized

More information

Interlerometric analysis of stress-induced birefringence in a rotating glass disk

Interlerometric analysis of stress-induced birefringence in a rotating glass disk Copyright 1998 Society of Photo-Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE and is made available as an electronic reprint with permission of SPIE. One print or electronic

More information

December 1999 FINAL TECHNICAL REPORT 1 Mar Mar 98

December 1999 FINAL TECHNICAL REPORT 1 Mar Mar 98 REPORT DOCUMENTATION PAGE AFRL-SR- BL_TR " Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruct the collection

More information

arxiv: v1 [physics.optics] 1 Dec 2007

arxiv: v1 [physics.optics] 1 Dec 2007 Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation L. Marrucci, C. Manzo, and D. Paparo CNR-INFM Coherentia and Dipartimento di Scienze

More information

KULTIWAVELENGTH LASER PROPAGATION STUDY ~ III. Quarterly Progress Report No. h March 16, June 15, J. Richard Kerr

KULTIWAVELENGTH LASER PROPAGATION STUDY ~ III. Quarterly Progress Report No. h March 16, June 15, J. Richard Kerr CO o KULTIWAVELENGTH LASER PROPAGATION STUDY ~ III i> Quarterly Progress Report No. h March 16, 1971 - June 15, 1971 J. Richard Kerr Oregon Graduate Center for Study and Research Portland, Oregon July,

More information

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite Jin Yan, Meizi Jiao, Linghui Rao, and Shin-Tson Wu* College of Optics and Photonics,

More information

Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination Supplementary Information

Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination Supplementary Information Light-induced spiral mass transport in azo-polymer films under vorte-beam illumination Supplementary Information Antonio Ambrosio a),1, Lorenzo Marrucci 1, Fabio Borbone, Antonio Roviello and Pasqualino

More information

50%-50% Beam Splitters Using Transparent Substrates Coated by Single- or Double-Layer Quarter-Wave Thin Films

50%-50% Beam Splitters Using Transparent Substrates Coated by Single- or Double-Layer Quarter-Wave Thin Films University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 5-22-2006 50%-50% Beam Splitters Using Transparent Substrates Coated by Single- or

More information

Transient Electro-Optic Properties of Liquid Crystal Gels

Transient Electro-Optic Properties of Liquid Crystal Gels 137 Appendix A Transient Electro-Optic Properties of Liquid Crystal Gels The dynamics of the electro-optic response has significance for the use of our gels in display devices and also reveals important

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 2: Polarized light Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45 am, NC 02/99 28 Electromagnetic

More information

Nature, Vol 458, 2009 Leon Camenzind FMM University of Basel,

Nature, Vol 458, 2009 Leon Camenzind FMM University of Basel, Nature, Vol 458, 2009 Leon Camenzind University of Basel, 17.6.2011 Outlook Part I: Transient (Spin)-Grating Spectroscopy Part II: Theory of Persistent Spin Helix (PSH) Experimental results Part I Transient

More information

Numerical Modeling of Polarization Gratings by Rigorous Coupled Wave Analysis

Numerical Modeling of Polarization Gratings by Rigorous Coupled Wave Analysis Numerical Modeling of Polarization Gratings by Rigorous Coupled Wave Analysis Xiao Xiang and Michael J. Escuti Dept. Electrical and Computer Engineering, North Carolina State University, Raleigh, USA ABSTRACT

More information

geeeo. I UNCLASSIFIED NO 814-B5-K-88 F/G 716 NL SCENCESECTION L F HANCOCK ET AL 81 AUG 87 TR-i

geeeo. I UNCLASSIFIED NO 814-B5-K-88 F/G 716 NL SCENCESECTION L F HANCOCK ET AL 81 AUG 87 TR-i -AiS4 819 PROTON ABSTRACTION AS A ROUTE TO CONDUCTIVE POLYMERS 1/1 (U) PENNSYLVANIA STATE UNIV UNIVERSITY PARK PA POLYMER SCENCESECTION L F HANCOCK ET AL 81 AUG 87 TR-i I UNCLASSIFIED NO 814-B5-K-88 F/G

More information

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

DRONACHARYA COLLEGE OF ENEGINEERING DEPARTMENT OF APPLIED SCEINCE AND HUMANITIES SHORT ANSWER QUESTIONS: Unit-I. Chapter I: Interference

DRONACHARYA COLLEGE OF ENEGINEERING DEPARTMENT OF APPLIED SCEINCE AND HUMANITIES SHORT ANSWER QUESTIONS: Unit-I. Chapter I: Interference DRONACHARYA COLLEGE OF ENEGINEERING DEPARTMENT OF APPLIED SCEINCE AND HUMANITIES SUBJECT: PHYSICS-I CODE: PHY-101-F SHORT ANSWER QUESTIONS: Unit-I Chapter I: Interference 1. State the condition for sustained

More information

Parametric Models of NIR Transmission and Reflectivity Spectra for Dyed Fabrics

Parametric Models of NIR Transmission and Reflectivity Spectra for Dyed Fabrics Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5708--15-9629 Parametric Models of NIR Transmission and Reflectivity Spectra for Dyed Fabrics D. Aiken S. Ramsey T. Mayo Signature Technology

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

Fine structure of Surface Relief Gratings: experiment and a generic stochastic Monte Carlo model of the photoinduced mass transport in azo-polymer

Fine structure of Surface Relief Gratings: experiment and a generic stochastic Monte Carlo model of the photoinduced mass transport in azo-polymer Fine structure of Surface Relief Gratings: experiment and a generic stochastic Monte Carlo model of the photoinduced mass transport in azo-polymer G. Pawlik a and A.C. Mitus b Institute of Physics, Wroclaw

More information

Optical Microscopy Study of Topological Insulators Using Ellipsometry

Optical Microscopy Study of Topological Insulators Using Ellipsometry Optical Microscopy Study of Topological Insulators Using Ellipsometry Amber Schedlbauer August 23, 2011 1 Abstract An optical setup based on normal-incidence reflectivity allows the Magneto Optic Kerr

More information

R&T Code b41c011dar. Technical Report No. 40. Synthesis, Characterization, and Electropolymerization of Ferrocene Substituted Anilines.

R&T Code b41c011dar. Technical Report No. 40. Synthesis, Characterization, and Electropolymerization of Ferrocene Substituted Anilines. AD-A240 866 SE.E T E R SEP 2 0 1991 "r r OFFICE OF NAVAL RESEARCH Contract No. N00014-88-K-0732 R&T Code b41c011dar Technical Report No. 40 Synthesis, Characterization, and Electropolymerization of Ferrocene

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

VLBA IMAGING OF SOURCES AT 24 AND 43 GHZ

VLBA IMAGING OF SOURCES AT 24 AND 43 GHZ VLBA IMAGING OF SOURCES AT 24 AND 43 GHZ D.A. BOBOLTZ 1, A.L. FEY 1, P. CHARLOT 2,3 & THE K-Q VLBI SURVEY COLLABORATION 1 U.S. Naval Observatory 3450 Massachusetts Ave., NW, Washington, DC, 20392-5420,

More information

Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials

Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials SUPPLEMENTARY INFORMATION Letters DOI: 10.1038/s41566-017-0002-6 In the format provided by the authors and unedited. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials

More information

Limiting factor of the diffraction efficiency in azo dye doped polymers

Limiting factor of the diffraction efficiency in azo dye doped polymers Limiting factor of the diffraction efficiency in azo dye doped polymers P.-A. Blanchea, Ph.C. Lemaire', C. Maertensb, p Duboisb, R. JérOmeb acentre Spatial de Liege, niversité de Liege, Parc Scientifique

More information

UE SPM-PHY-S Polarization Optics

UE SPM-PHY-S Polarization Optics UE SPM-PHY-S07-101 Polarization Optics N. Fressengeas Laboratoire Matériaux Optiques, Photonique et Systèmes Unité de Recherche commune à l Université Paul Verlaine Metz et à Supélec Document à télécharger

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 6: Polarization Original: Professor McLeod SUMMARY: In this lab you will become familiar with the basics of polarization and learn to use common optical elements

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

Chapter 4: Polarization of light

Chapter 4: Polarization of light Chapter 4: Polarization of light 1 Preliminaries and definitions B E Plane-wave approximation: E(r,t) ) and B(r,t) are uniform in the plane ^ k We will say that light polarization vector is along E(r,t)

More information

Use of Wijsman's Theorem for the Ratio of Maximal Invariant Densities in Signal Detection Applications

Use of Wijsman's Theorem for the Ratio of Maximal Invariant Densities in Signal Detection Applications Use of Wijsman's Theorem for the Ratio of Maximal Invariant Densities in Signal Detection Applications Joseph R. Gabriel Naval Undersea Warfare Center Newport, Rl 02841 Steven M. Kay University of Rhode

More information

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Laser Speckle and Applications in Optics

Laser Speckle and Applications in Optics Laser Speckle and Applications in Optics M. FRANCON Optics Laboratory Faculty of Sciences University of Paris Paris, France Translated by HENRI H. ARSENAULT Department of Physics Laval University Quebec,

More information

EXPERIMENTATION OF FIBER-OPTIC TRANSMISSION OF LIGHT WITH ORBITAL ANGULAR MOMENTUM

EXPERIMENTATION OF FIBER-OPTIC TRANSMISSION OF LIGHT WITH ORBITAL ANGULAR MOMENTUM AFRL-IF-RS-TR-2006-172 Final Technical Report May 2006 EXPERIMENTATION OF FIBER-OPTIC TRANSMISSION OF LIGHT WITH ORBITAL ANGULAR MOMENTUM SUNY College at Oneonta APPROVED FOR PUBLIC RELEASE; DISTRIBUTION

More information

Photo-induced refractive index and topographical surface gratings in functionalized nanocarbon solid film. and Padma Gopalan 2,a)

Photo-induced refractive index and topographical surface gratings in functionalized nanocarbon solid film. and Padma Gopalan 2,a) Photo-induced refractive index and topographical surface gratings in functionalized nanocarbon solid film David J. McGee, 1 John Ferrie, 1 Aljoscha Plachy 1, Yongho Joo, 2 Jonathan Choi, 2 Catherine Kanimozhi,

More information

Tutorial 7: Solutions

Tutorial 7: Solutions Tutorial 7: Solutions 1. (a) A point source S is a perpendicular distance R away from the centre of a circular hole of radius a in an opaque screen. f the distance to the periphery is (R + l), show that

More information

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Supporting Information Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Yuanmu Yang, Wenyi Wang, Parikshit Moitra, Ivan I. Kravchenko, Dayrl P. Briggs,

More information

Mechanical and Electro-optic Properties of Thiol-ene based Polymer Dispersed Liquid Crystal (PDLC)

Mechanical and Electro-optic Properties of Thiol-ene based Polymer Dispersed Liquid Crystal (PDLC) Mechanical and Electro-optic Properties of Thiol-ene based Polymer Dispersed Liquid Crystal (PDLC) Askim F. Senyurt Charles E. Hoyle Joe B. Whitehead Garfield Warren School of Polymers and High Performance

More information

Three-Dimensional Vector Holograms in Photoreactive Anisotropic Media

Three-Dimensional Vector Holograms in Photoreactive Anisotropic Media Three-Dimensional Vector Holograms in Photoreactive Anisotropic Media Tomoyuki Sasaki, Akira Emoto 2, Kenta Miura, Osamu Hanaizumi, Nobuhiro Kawatsuki 3 and Hiroshi Ono 2 Department of Electronic Engineering,

More information

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13 Optics and Optical Design Chapter 6: Polarization Optics Lectures 11-13 Cord Arnold / Anne L Huillier Polarization of Light Arbitrary wave vs. paraxial wave One component in x-direction y x z Components

More information

Lecture 6. Alternative storage technologies. All optical recording. Racetrack memory. Topological kink solitons. Flash memory. Holographic memory

Lecture 6. Alternative storage technologies. All optical recording. Racetrack memory. Topological kink solitons. Flash memory. Holographic memory Lecture 6 Alternative storage technologies All optical recording Racetrack memory Topological kink solitons Flash memory Holographic memory Millipede Ferroelectric memory All-optical recording It is possible

More information

OF NAVAL RESEARCH. R&T Code Technical Report No. 4. Ultrasonic Measurements

OF NAVAL RESEARCH. R&T Code Technical Report No. 4. Ultrasonic Measurements DINt FLE CO 0OFFICE OF NAVAL RESEARCH ak Contract N00014-86-K-0639 R&T Code 4133013...2 Technical Report No. 4 Low Frequency Laser Debye-Sears Ultrasonic Measurements by G.R. Phillips, C.N. Merrow, J.K.

More information

PHY410 Optics Exam #3

PHY410 Optics Exam #3 PHY410 Optics Exam #3 NAME: 1 2 Multiple Choice Section - 5 pts each 1. A continuous He-Ne laser beam (632.8 nm) is chopped, using a spinning aperture, into 500 nanosecond pulses. Compute the resultant

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

High resolution method for measuring local quantum yield of photoluminescence and phototransformation using confocal scanning microscope

High resolution method for measuring local quantum yield of photoluminescence and phototransformation using confocal scanning microscope High resolution method for measuring local quantum yield of photoluminescence and phototransformation using confocal scanning microscope * Viktor Zakharov 1) and Andrei Veniaminov 2) National Research

More information

and the radiation from source 2 has the form. The vector r points from the origin to the point P. What will the net electric field be at point P?

and the radiation from source 2 has the form. The vector r points from the origin to the point P. What will the net electric field be at point P? Physics 3 Interference and Interferometry Page 1 of 6 Interference Imagine that we have two or more waves that interact at a single point. At that point, we are concerned with the interaction of those

More information

Real-Time Environmental Information Network and Analysis System (REINAS)

Real-Time Environmental Information Network and Analysis System (REINAS) Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 1998-09 Real-Time Environmental Information Network and Analysis System (REINAS) Nuss, Wendell

More information

Investigation of Flux Superposition in Steel using Magnetic Barkhausen Noise Tetrapole Probes

Investigation of Flux Superposition in Steel using Magnetic Barkhausen Noise Tetrapole Probes Investigation of Flux Superposition in Steel using Magnetic Barkhausen Noise Tetrapole Probes P. McNairnay,, T. W. Krause,L. Clapham Department of Physics, Engineering Physics and Astronomy, Queen s University,

More information

Two-pulse alignment of molecules

Two-pulse alignment of molecules INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 37 (2004) L43 L48 PII: S0953-4075(04)70990-6 LETTER TO THE EDITOR Two-pulse alignment

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

4. Circular Dichroism - Spectroscopy

4. Circular Dichroism - Spectroscopy 4. Circular Dichroism - Spectroscopy The optical rotatory dispersion (ORD) and the circular dichroism (CD) are special variations of absorption spectroscopy in the UV and VIS region of the spectrum. The

More information

Three-Dimensional Dye Distribution in Photo- Oriented Liquid-Crystal Alignment Layers

Three-Dimensional Dye Distribution in Photo- Oriented Liquid-Crystal Alignment Layers Kent State University From the SelectedWorks of Peter Palffy-Muhoray April 1, 00 Three-Dimensional Dye Distribution in Photo- Oriented Liquid-Crystal Alignment Layers S. Bardon D. Coleman N. A. Clark T.

More information

Electric field enhancement in metallic and multilayer dielectric gratings

Electric field enhancement in metallic and multilayer dielectric gratings Electric field enhancement in metallic and multilayer dielectric gratings B. W. Shore, M. D. Feit, M. D. Perry, R. D. Boyd, J. A. Britten, R. Chow, G. E. Loomis Lawrence Livermore National Laboratory,

More information

Multi-Purpose Nonlinear Optical Microscope. Principle and its Applications to Polar Thin Film Observation

Multi-Purpose Nonlinear Optical Microscope. Principle and its Applications to Polar Thin Film Observation Multi-Purpose Nonlinear Optical Microscope. Principle and its Applications to Polar Thin Film Observation Y. Uesu, N. Kato Department of Physics, Waseda University 3 4 1 Okubo, Shinjuku-ku, Tokyo 169-8555,

More information

Jones vector & matrices

Jones vector & matrices Jones vector & matrices Department of Physics 1 Matrix treatment of polarization Consider a light ray with an instantaneous E-vector as shown y E k, t = xe x (k, t) + ye y k, t E y E x x E x = E 0x e i

More information

Near-perfect modulator for polarization state of light

Near-perfect modulator for polarization state of light Journal of Nanophotonics, Vol. 2, 029504 (11 November 2008) Near-perfect modulator for polarization state of light Yi-Jun Jen, Yung-Hsun Chen, Ching-Wei Yu, and Yen-Pu Li Department of Electro-Optical

More information

Polarized Light. Nikki Truss. Abstract:

Polarized Light. Nikki Truss. Abstract: Polarized Light Nikki Truss 9369481 Abstract: In this experiment, the properties of linearly polarised light were examined. Malus Law was verified using the apparatus shown in Fig. 1. Reflectance of s-polarised

More information

Ultra-narrow-band tunable laserline notch filter

Ultra-narrow-band tunable laserline notch filter Appl Phys B (2009) 95: 597 601 DOI 10.1007/s00340-009-3447-6 Ultra-narrow-band tunable laserline notch filter C. Moser F. Havermeyer Received: 5 December 2008 / Revised version: 2 February 2009 / Published

More information