Looking for ripples of gravity with LIGO. Phil Willems, California Institute of Technology. LIGO Laboratory 1 G G

Size: px
Start display at page:

Download "Looking for ripples of gravity with LIGO. Phil Willems, California Institute of Technology. LIGO Laboratory 1 G G"

Transcription

1 Looking for ripples of gravity with LIGO Phil Willems, California Institute of Technology LIGO Laboratory 1

2 LIGO: -an experiment to measure gravitational waves from the cosmos LIGO Laboratory 2

3 Laser Interferometer Gravitational wave Observatory LIGO Laboratory 3

4 What Is A Gravitational Wave? What Is Gravity? LIGO Laboratory 4

5 Gravity: the Old School Sir Isaac Newton, who invented the theory of gravity and all the math needed to understand it LIGO Laboratory 5

6 The Math Worked Perfectly, but How does the Earth over here pull on the Moon over there? Sir Newton s answer:... LIGO Laboratory 6

7 Then the Math Wasn t so Perfect Anymore Mercury s orbit precesses around the sun-each year the perihelion shifts 560 arcseconds per century But this is 43 arcseconds per century too much! (discovered 1859) This is how fast the second hand on a clock would move if one day lasted 4.3 billion years! Urbain Le Verrier, discoverer of Mercury s perihelion shift anomaly Image from St. Andrew s College Mercury Sun Image from Jose Wudka LIGO Laboratory 7 perihelion

8 Einstein s Answer: General Relativity Picture from Northwestern U. Objects move along straight lines (geodesics) through space and time. Space and time (spacetime) are curved. Thus, although straight, geodesics converge and diverge due to spacetime curvature. This looks like a gravitational force. Mass curves spacetime. Thus, mass has gravity. LIGO Laboratory 8

9 Gravitational Waves- -are produced by accelerating objects -are an oscillating strain of space (ripples of spacetime) -travel at the speed of light -are quadrupolar LIGO Laboratory 9

10 So, Why Don t We See Them? Detectable gravitational waves are only produced by the most violent astrophysical processes Even these waves are astonishingly feeble» A very strong gravitational wave will strain space by 1 part in 10,000,000,000,000,000,000,000» The Earth and Moon will get 1 trillionth of an inch farther apart as a result LIGO Laboratory 10

11 Do We Even Know They Exist? Russell Hulse Images from Les Prix Nobel Richard Taylor binary pulsar system PSR J. H. Taylor and J. M. Weisburg, unpublished (2000) LIGO Laboratory 11

12 How on Earth Do You Detect Such a Thing? Well, you don t have to do it on Earth, but we do. LIGO A 2.5 mile long Michelson interferometer LIGO Laboratory 12

13 The Michelson Interferometer + + LASER constructive interference destructive interference LIGO Laboratory 13

14 LASER LIGO Laboratory 14

15 Michelson-Morley Experiment Result: The speed of light is the same, whatever the speed of the observer. Interpretation: the Theory of Relativity LIGO Laboratory 15

16 LIGO Laboratory 16

17 LIGO Laboratory 17

18 So What If They Exist- Why Look for Them? Physicists are fussy- we don t like to believe in anything until we detect it. Gravitational waves provide a completely new window to the cosmos. LIGO Laboratory 18

19 New Instruments, New Discoveries optical telescopes radio telescopes LIGO Laboratory 19

20 LIGO Laboratory 20

21 LIGO Laboratory 21

22 Cygnus A LIGO Laboratory 22

23 LIGO Laboratory 23

24 Different Forms of Radiation Originate in different places Are caused by different processes» Light, radio waves: generated by heat and moving electric charge» Gravitational waves: generated by moving mass Are more or less blocked by intervening matter» Light is blocked by interstellar dust» Gravitational waves pass through everything LIGO Laboratory 24

25 Sources of Gravitational Waves 1: Supernovae Stars fuse hydrogen into helium within their cores This nuclear fusion powers the star-» producing the heat the makes it shine» creating the pressure that keeps it from collapsing under its own weight But the supply of hydrogen is limited LIGO Laboratory 25

26 LIGO Laboratory 26

27 LIGO Laboratory 27

28 Sources of Gravitational Waves 2: Neutron Stars and Pulsars LIGO Laboratory 28

29 PSR B Crab pulsar Vela pulsar PSR J PSR B LIGO Laboratory 29

30 Binary Neutron Star: Inspiral, Collision, Merger This is our favorite source: -very predictable -very powerful LIGO Laboratory 30

31 Binary Neutron Stars and Short and Hard Gamma Ray Bursts Two weeks ago GRB050509b was detected by the Swift satellite, both in the initial gamma ray burst and in the X-ray afterglow- the first time an afterglow of a short and hard burst was detected. The afterglow was undetectable after 400s, and a search for the source location is ongoing Short and hard GRBs are believed to be the optical signature of binary neutron star collisions LIGO Laboratory 31

32 Sources of Gravitational Waves 3: The Big Bang The farther away a galaxy is, the fast it is moving away from us- the Universe is still expanding after its birth in an explosion 15 billion years ago. LIGO Laboratory 32

33 The Heat of the Big Bang is Still Visible This heat was emitted 300,000 years after the Big Bang. The gravitational waves were emitted within a fraction of a second of the Big Bang. LIGO Laboratory 33

34 Sources of Gravitational Waves 4: Truly Bizarre and Unexpected Stuff LIGO Laboratory 34

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 22 Astronomy Today 8th Edition Chaisson/McMillan Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Neutron-Star Binaries 22.4 Gamma-Ray

More information

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 31 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

11/1/17. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

11/1/17. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard 11/1/17 Important Stuff (Section 001: 9:45 am) The Second Midterm is Thursday, November 9 The Second Midterm will be given in a different room: Willey 175 Bring 2 pencils and a photo-id. In accordance

More information

Stellar remnants II. Neutron Stars 10/18/2010. (progenitor star 1.4 < M< 3 Msun) Stars, Galaxies & the Universe Announcements

Stellar remnants II. Neutron Stars 10/18/2010. (progenitor star 1.4 < M< 3 Msun) Stars, Galaxies & the Universe Announcements Stars, Galaxies & the Universe Announcements Exam #2 on Wednesday Review sheet and study guide posted by Thursday Use office hours and Astronomy Tutorial hours Covers material since Exam #1 (plus background

More information

Exploring the Warped Side of the Universe

Exploring the Warped Side of the Universe Exploring the Warped Side of the Universe Nergis Mavalvala Department of Physics Massachusetts Institute of Technology MIT Alumni Club, Washington DC October 2014 Einstein s legacies A story about our

More information

Relativity and Black Holes

Relativity and Black Holes Relativity and Black Holes Post-MS Evolution of Very High Mass (>15 M Θ ) Stars similar to high mass except more rapid lives end in Type II supernova explosions main difference: mass of iron core at end

More information

Quantum Physics and Beyond

Quantum Physics and Beyond Physics 120 John Harris 1 Physics 120 Announcements / Issues Quiz next week at beginning of class Covers everything up through last week s class (see next 2 slides), through Reading assignments including

More information

Gravity Waves and Black Holes

Gravity Waves and Black Holes Gravity Waves and Black Holes Mike Whybray Orwell Astronomical Society (Ipswich) 14 th March 2016 Overview Introduction to Special and General Relativity The nature of Black Holes What to expect when Black

More information

+56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish

+56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish +56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish .$'46 +056'+0 +45##%'9610 Perhaps the most important scientist of all time! Invented the scientific method in Principia Greatest

More information

Pulsars - a new tool for astronomy and physics

Pulsars - a new tool for astronomy and physics 1 Reading: Chapter 24, Sect. 24.5-24.6; Chap. 20, Chap. 25, Sec. 25.1 Exam 2: Thursday, March 22; essay question given on Tuesday, March 20 Last time:death of massive stars - supernovae & neutron stars

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 25 Beyond Our Solar System 25.1 Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical

More information

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity Announcement Course webpage http://www.phys.ttu.edu/~slee/3301/ Textbook PHYS-3301 Lecture 6 HW2 (due 9/21) Chapter 2 63, 65, 70, 75, 76, 87, 92, 97 Sep. 14, 2017 General Relativity Chapter 2 Special Relativity

More information

11/1/16. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

11/1/16. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard Important Stuff (Section 001: 9:45 am) The Second Midterm is Thursday, November 10 The Second Midterm will be given in a different room: Willey 175 Bring 2 pencils and a photo-id. In accordance with the

More information

GRAVITATIONAL COLLAPSE

GRAVITATIONAL COLLAPSE GRAVITATIONAL COLLAPSE Landau and Chandrasekhar first realised the importance of General Relativity for Stars (1930). If we increase their mass and/or density, the effects of gravitation become increasingly

More information

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way Chapter 33 The History of a Star Introduction Did you read chapter 33 before coming to class? A. Yes B. No You can see about 10,000 stars with the naked eye. The milky way Radio telescopes allow us to

More information

Stars V The Bizarre Stellar Graveyard. Hook up audio!

Stars V The Bizarre Stellar Graveyard. Hook up audio! Stars V The Bizarre Stellar Graveyard Hook up audio! Attendance Quiz Are you here today? Here! (a) yes (b) no (c) c! I told you not to stick your finger in that black hole! Exam Grades Average for Midterm

More information

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum Announcements 2402 Lab will be started next week Lab manual will be posted on the course web today Lab Scheduling is almost done!! HW: Chapter.2 70, 75, 76, 87, 92, 97*, 99, 104, 111 1 st Quiz: 9/18 (Ch.2)

More information

Cracking the Mysteries of the Universe. Dr Janie K. Hoormann University of Queensland

Cracking the Mysteries of the Universe. Dr Janie K. Hoormann University of Queensland Cracking the Mysteries of the Universe Dr Janie K. Hoormann University of Queensland Timeline of Cosmological Discoveries 16c BCE: flat earth 5-11c CE: Sun at the centre 1837: Bessel et al. measure distance

More information

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 30 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA/GSFC Summer School on Nuclear and Particle Astrophysics: Connecting

More information

Chapter 18 The Bizarre Stellar Graveyard. White Dwarfs. What is a white dwarf? Size of a White Dwarf White Dwarfs

Chapter 18 The Bizarre Stellar Graveyard. White Dwarfs. What is a white dwarf? Size of a White Dwarf White Dwarfs Chapter 18 The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White

More information

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition The Bizarre Stellar Graveyard 18.1 White Dwarfs What is a white dwarf? What can happen to a white dwarf in a close binary system? What supports

More information

Gravity. Newtonian gravity: F = G M1 M2/r 2

Gravity. Newtonian gravity: F = G M1 M2/r 2 Gravity Einstein s General theory of relativity : Gravity is a manifestation of curvature of 4- dimensional (3 space + 1 time) space-time produced by matter (metric equation? g μν = η μν ) If the curvature

More information

Chapter 18 The Bizarre Stellar Graveyard

Chapter 18 The Bizarre Stellar Graveyard Chapter 18 The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf? White Dwarfs White

More information

Gravity -- Studying the Fabric of the Universe

Gravity -- Studying the Fabric of the Universe Gravity -- Studying the Fabric of the Universe Barry C. Barish Caltech "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) AAAS Annual Meeting Denver, Colorado 17-Feb-03

More information

Beyond the Solar System 2006 Oct 17 Page 1 of 5

Beyond the Solar System 2006 Oct 17 Page 1 of 5 I. Stars have color, brightness, mass, temperature and size. II. Distances to stars are measured using stellar parallax a. The further away, the less offset b. Parallax angles are extremely small c. Measured

More information

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 Astronomy 101.003 Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 atoms, approximately how many Ra 226 atoms would be left

More information

THE ORIGIN OF THE UNIVERSE AND BLACK HOLES

THE ORIGIN OF THE UNIVERSE AND BLACK HOLES THE ORIGIN OF THE UNIVERSE AND BLACK HOLES WHAT IS COSMOGONY? Cosmogony (or cosmogeny) is any model explaining the origin of the universe. Cosmogony = Coming into existence WHAT IS COSMOLOGY Cosmology

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

Overview of Gravitational Wave Physics [PHYS879]

Overview of Gravitational Wave Physics [PHYS879] Overview of Gravitational Wave Physics [PHYS879] Alessandra Buonanno Maryland Center for Fundamental Physics Joint Space-Science Institute Department of Physics University of Maryland Content: What are

More information

Gravitational Waves Listening to the Universe. Teviet Creighton LIGO Laboratory California Institute of Technology

Gravitational Waves Listening to the Universe. Teviet Creighton LIGO Laboratory California Institute of Technology Gravitational Waves Listening to the Universe Teviet Creighton LIGO Laboratory California Institute of Technology Summary So far, nearly all our knowledge of the Universe comes from electromagnetic radiation.

More information

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers.

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. Black Holes Special Relativity Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. 2. The speed of light is the same for all inertial observers regardless

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Ray Frey, University of Oregon 1. GW Physics and Astrophysics 2. How to detect GWs The experimental challenge 3. Prospects June 16, 2004 R. Frey QNet 1 General Relativity Some

More information

Testing Gravity and Extreme Physics with Pulsars

Testing Gravity and Extreme Physics with Pulsars Testing Gravity and Extreme Physics with Pulsars John Rowe Animation Australia Telescope National Facility, CSIRO René Breton School of Physics & Astronomy The University of Manchester Liverpool Physics

More information

Formation of the Universe & What is in Space? The Big Bang Theory and components of the Universe

Formation of the Universe & What is in Space? The Big Bang Theory and components of the Universe Formation of the Universe & What is in Space? The Big Bang Theory and components of the Universe The Big Bang Theory The Big Bang Theory The Big Bang Theory is the most widely accepted scientific explanation

More information

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics Gravitational Wave Astronomy the sound of spacetime Marc Favata Kavli Institute for Theoretical Physics What are gravitational waves? Oscillations in the gravitational field ripples in the curvature of

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/42442 holds various files of this Leiden University dissertation. Author: Saravanan, S. Title: Spin dynamics in general relativity Issue Date: 2016-07-07

More information

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary

Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary Earth Space Systems Semester 1 Exam Astronomy Vocabulary Astronomical Unit- Aurora- Big Bang- Black Hole- 1AU is the average distance between the Earth and the Sun (93 million miles). This unit of measurement

More information

Astronomy 104: Stellar Astronomy

Astronomy 104: Stellar Astronomy Astronomy 104: Stellar Astronomy Lecture 19: Stellar Remnants (Hanging Out with the Degenerates) Spring Semester 2013 Dr. Matt Craig 1 1 Things To Do Today and Next Time Chapter 12.2 (Neutron Stars) Chapter

More information

Chapter 14: The Bizarre Stellar Graveyard

Chapter 14: The Bizarre Stellar Graveyard Lecture Outline Chapter 14: The Bizarre Stellar Graveyard 14.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to a white dwarf in a close binary system? What is a white dwarf?

More information

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra The Big Bang Theory Rachel Fludd and Matthijs Hoekstra Theories from Before the Big Bang came from a black hole from another universe? our universe is part of a multiverse? just random particles? The Big

More information

The interpretation is that gravity bends spacetime and that light follows the curvature of space.

The interpretation is that gravity bends spacetime and that light follows the curvature of space. 7/8 General Theory of Relativity GR Two Postulates of the General Theory of Relativity: 1. The laws of physics are the same in all frames of reference. 2. The principle of equivalence. Three statements

More information

April 13, 2011 Exam 4, Friday. Review sheet posted. Sky Watch 4 due. Review session Thursday, 5 6 PM, Room WEL 3.502, right here! Reading: Chapter 9,

April 13, 2011 Exam 4, Friday. Review sheet posted. Sky Watch 4 due. Review session Thursday, 5 6 PM, Room WEL 3.502, right here! Reading: Chapter 9, April 13, 2011 Exam 4, Friday. Review sheet posted. Sky Watch 4 due. Review session Thursday, 5 6 PM, Room WEL 3.502, right here! Reading: Chapter 9, Sections 9.5.2, 9.6.1, 9.6.2. 9.7, 9.8; Chapter 10,

More information

Chapter 21 Astronomy Today 7th Edition Chaisson/McMillan

Chapter 21 Astronomy Today 7th Edition Chaisson/McMillan Lecture Outlines Chapter 21 Astronomy Today 7th Edition Chaisson/McMillan Chapter 21 Stellar Explosions Units of Chapter 21 21.1 Life after Death for White Dwarfs 21.2 The End of a High-Mass Star 21.3

More information

ASTR Midterm 2 Phil Armitage, Bruce Ferguson

ASTR Midterm 2 Phil Armitage, Bruce Ferguson ASTR 1120-001 Midterm 2 Phil Armitage, Bruce Ferguson SECOND MID-TERM EXAM MARCH 21 st 2006: Closed books and notes, 1 hour. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

BANG! Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf. Lives of High Mass Stars

BANG! Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf. Lives of High Mass Stars Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf Mass Limit for White Dwarfs S. Chandrasekhar (1983 Nobel Prize) -calculated max. mass

More information

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe Standard 1: Students will understand the scientific evidence that supports theories that explain how the universe and the solar system developed. They will compare Earth to other objects in the solar system.

More information

Chapter 13 2/19/2014. Lecture Outline Neutron Stars. Neutron Stars and Black Holes Neutron Stars. Units of Chapter

Chapter 13 2/19/2014. Lecture Outline Neutron Stars. Neutron Stars and Black Holes Neutron Stars. Units of Chapter 13.1 Neutron Stars Lecture Outline Chapter 13 Neutron Stars and After a Type I supernova, little or nothing remains of the original star. After a Type II supernova, part of the core may survive. It is

More information

ASTR 101 General Astronomy: Stars & Galaxies. NEXT Tuesday 4/4 MIDTERM #2

ASTR 101 General Astronomy: Stars & Galaxies. NEXT Tuesday 4/4 MIDTERM #2 ASTR 101 General Astronomy: Stars & Galaxies NEXT Tuesday 4/4 MIDTERM #2 The Stellar Graveyard What s In The Stellar Graveyard? Lower mass stars (M< 8M sun ) à white dwarfs Gravity vs. electron degeneracy

More information

Chapter 18 Lecture. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 18 Lecture. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc. Chapter 18 Lecture The Cosmic Perspective Seventh Edition The Bizarre Stellar Graveyard The Bizarre Stellar Graveyard 18.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to

More information

21/11/ /11/2017 Space Physics AQA Physics topic 8

21/11/ /11/2017 Space Physics AQA Physics topic 8 Space Physics AQA Physics topic 8 8.1 Solar System, Orbits and Satellites The eight planets of our Solar System Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune As well as the eight planets, the

More information

GRAVITATIONAL WAVES MOHAMMAD ISHTIAQ

GRAVITATIONAL WAVES MOHAMMAD ISHTIAQ GRAVITATIONAL WAVES MOHAMMAD ISHTIAQ Introduction It all started with Einstein s theory of general relativity What is Einstein s theory of general relativity? Theory which predicted that objects cause

More information

White dwarfs are the remaining cores of dead stars. Electron degeneracy pressure supports them against the crush of gravity. The White Dwarf Limit

White dwarfs are the remaining cores of dead stars. Electron degeneracy pressure supports them against the crush of gravity. The White Dwarf Limit The Bizarre Stellar Graveyard Chapter 18 Lecture The Cosmic Perspective 18.1 White Dwarfs Our goals for learning: What is a white dwarf? What can happen to a white dwarf in a close binary system? Seventh

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

More information

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 16 1 A Solar System Is Born SECTION Our Solar System California Science Standards 8.2.g, 8.4.b, 8.4.c, 8.4.d BEFORE YOU READ After you read this section, you should be able to answer these questions:

More information

Life and Evolution of a Massive Star. M ~ 25 M Sun

Life and Evolution of a Massive Star. M ~ 25 M Sun Life and Evolution of a Massive Star M ~ 25 M Sun Birth in a Giant Molecular Cloud Main Sequence Post-Main Sequence Death The Main Sequence Stars burn H in their cores via the CNO cycle About 90% of a

More information

Big Bang Theory PowerPoint

Big Bang Theory PowerPoint Big Bang Theory PowerPoint Name: # Period: 1 2 3 4 5 6 Recombination Photon Epoch Big Bang Nucleosynthesis Hadron Epoch Hadron Epoch Quark Epoch The Primordial Era Electroweak Epoch Inflationary Epoch

More information

chapter 31 Stars and Galaxies

chapter 31 Stars and Galaxies chapter 31 Stars and Galaxies Day 1:Technology and the Big Bang Studying the Stars A. Telescopes - Electromagnetic radiation emitted by stars and other objects include light, radio, and X-ray Space telescopes

More information

Gravitational Waves: From Einstein to a New Science

Gravitational Waves: From Einstein to a New Science Gravitational Waves: From Einstein to a New Science LIGO-G1602199 Barry C Barish Caltech - LIGO 1.3 Billion Years Ago 2 Black Holes Regions of space created by super dense matter from where nothing can

More information

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M Laser Interferometer Gravitationalwave Observatory LIGO 2000 Industrial Physics Forum Barry Barish 7 November 2000 Sir Isaac Newton Perhaps the most important scientist of all time! Invented the scientific

More information

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5 1 The End of Physics? RELATIVITY Updated 01Aug30 Dr. Bill Pezzaglia The following statement made by a Nobel prize winning physicist: The most important fundamental laws and facts of physical science have

More information

General Relativity and Gravity. Exam 2 Results. Equivalence principle. The Equivalence Principle. Experiment: throw a ball. Now throw some light

General Relativity and Gravity. Exam 2 Results. Equivalence principle. The Equivalence Principle. Experiment: throw a ball. Now throw some light General Relativity and Gravity Special Relativity deals with inertial reference frames, frames moving with a constant relative velocity. It has some rather unusual predictions Time dilation Length contraction

More information

Neutrinos: What we ve learned and what we still want to find out. Jessica Clayton Astronomy Club November 10, 2008

Neutrinos: What we ve learned and what we still want to find out. Jessica Clayton Astronomy Club November 10, 2008 Neutrinos: What we ve learned and what we still want to find out Jessica Clayton Astronomy Club November 10, 2008 Neutrinos, they are very small, they have no charge and have no mass, and do not interact

More information

Searching for gravitational waves

Searching for gravitational waves Searching for gravitational waves What are gravitational waves? Let us imagine that we are observing a star that rotates around a supermassive black hole (whose mass is millions of times that of the Sun).

More information

Gravitational Wave Astronomy. Lee Lindblom California Institute of Technology

Gravitational Wave Astronomy. Lee Lindblom California Institute of Technology Gravitational Wave Astronomy Lee Lindblom California Institute of Technology Los Angeles Valley College Astronomy Group 20 May 2007 What is Einstein s picture of gravity? What are gravitational waves?

More information

SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES

SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES Q1. The figure below shows what scientists over 1000 years ago thought the solar system was like. Give one way that the historical model of the solar

More information

Extreme Astronomy and Supernovae. Professor Lynn Cominsky Department of Physics and Astronomy Sonoma State University

Extreme Astronomy and Supernovae. Professor Lynn Cominsky Department of Physics and Astronomy Sonoma State University Extreme Astronomy and Supernovae Professor Lynn Cominsky Department of Physics and Astronomy Sonoma State University What are X- & Gamma rays? Why study X- & gamma rays? Universe as seen by eye is peaceful

More information

Universe Celestial Object Galaxy Solar System

Universe Celestial Object Galaxy Solar System ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy

More information

Properties of Stars. Characteristics of Stars

Properties of Stars. Characteristics of Stars Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical characters. The sky contains 88 constellations. Star Color and Temperature Color

More information

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 14 Neutron

More information

Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Earth Science, 13e Tarbuck & Lutgens Beyond Our Solar System Earth Science, 13e Chapter 24 Stanley C. Hatfield Southwestern Illinois College Properties of stars Distance Distances to the stars are very

More information

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left Multiple choice test questions 2, Winter Semester 2015. Based on parts covered after mid term. Essentially on Ch. 12-2.3,13.1-3,14,16.1-2,17,18.1-2,4,19.5. You may use a calculator and the useful formulae

More information

GRAVITATIONAL WAVES: BREAKTHROUGH DISCOVERY AFTER A CENTURY OF EXPECTATION

GRAVITATIONAL WAVES: BREAKTHROUGH DISCOVERY AFTER A CENTURY OF EXPECTATION GRAVITATIONAL WAVES: BREAKTHROUGH DISCOVERY AFTER A CENTURY OF EXPECTATION Scientists have announced in Feb 2016, the discovery of gravitational waves, ripples in the fabric of spacetime that were first

More information

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar. Chapter 11: Neutron Stars and Black Holes A supernova explosion of an M > 8 M sun star blows away its outer layers. Neutron Stars The central core will collapse into a compact object of ~ a few M sun.

More information

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE Cosmology Cosmology is the study of the universe; its nature, origin and evolution. General Relativity is the mathematical basis of cosmology from which

More information

5/7/2018. Black Holes. Type II.

5/7/2018. Black Holes. Type II. Black Holes Type II https://www.youtube.com/watch?v=ctnkk7tnkq8 1 Scientific American 22, 82 (2013) Scientific American 22, 82 (2013) 2 First detection of gravitational waves Recommended reading Physics

More information

Searching for gravitational waves with LIGO

Searching for gravitational waves with LIGO Searching for gravitational waves with LIGO An introduction to LIGO and a few things gravity wave Michael Landry LIGO Hanford Observatory California Institute of Technology Spokane Astronomical Society

More information

GENERAL RELATIVITY. The presence of matter affects 4-space.

GENERAL RELATIVITY. The presence of matter affects 4-space. GENERAL RELATIVITY Whereas Special Relativity is the study of constant velocity motion, General Relativity is associated with situations in which accelerations exist. As gravitation produces acceleration,

More information

Stars and Galaxies 1

Stars and Galaxies 1 Stars and Galaxies 1 Characteristics of Stars 2 Star - body of gases that gives off great amounts of radiant energy as light and heat 3 Most stars look white but are actually different colors Antares -

More information

The Quest to Detect Gravitational Waves

The Quest to Detect Gravitational Waves The Quest to Detect Gravitational Waves Peter Shawhan California Institute of Technology / LIGO Laboratory What Physicists Do lecture Sonoma State University March 8, 2004 LIGO-G040055-00-E Outline Different

More information

Stars Star birth and kinds Elemental furnaces Star death and heavy elements

Stars Star birth and kinds Elemental furnaces Star death and heavy elements Stars Star birth and kinds Elemental furnaces Star death and heavy elements Matter was not uniformly distributed as the universe expanded after the Big Bang. This lumpy universe coalesced under the force

More information

GraspIT Questions AQA GCSE Physics Space physics

GraspIT Questions AQA GCSE Physics Space physics A. Solar system: stability of orbital motions; satellites (physics only) 1. Put these astronomical objects in order of size from largest to smallest. (3) Fill in the boxes in the correct order. the Moon

More information

Chapter 13: The Stellar Graveyard

Chapter 13: The Stellar Graveyard Chapter 13: The Stellar Graveyard Habbal Astro110 http://chandra.harvard.edu/photo/2001/1227/index.html Chapter 13 Lecture 26 1 Low mass star High mass (>8 M sun ) star Ends as a white dwarf. Ends in a

More information

The Nature of Pulsars! Agenda for Ast 309N, Nov. 1. To See or Not to See (a Pulsar) The Slowing & Fading of Pulsars!

The Nature of Pulsars! Agenda for Ast 309N, Nov. 1. To See or Not to See (a Pulsar) The Slowing & Fading of Pulsars! Agenda for Ast 309N, Nov. 1 Quiz 7 Card 10/30 feedback More on pulsars and other neutron stars Begin: the saga of interacting binary systems Card: questions for review Reading: - Kaler, ch. 7 Wheeler,

More information

4/14/2008 Wheeler at astrobiology conference Wednesday, movie on gamma-ray bursts

4/14/2008 Wheeler at astrobiology conference Wednesday, movie on gamma-ray bursts 4/14/2008 Wheeler at astrobiology conference Wednesday, movie on gamma-ray bursts Astronomy in the News - Physicist John Archibald Wheeler (no relation), who coined the terms black hole and worm hole and

More information

Life After Stellar Death

Life After Stellar Death Life After Stellar Death Supernovae, Neutron Stars, Pulsars and Black Holes Edward P.J.van den Heuvel KITP, March 23 2011 Universiteit van Amsterdam The Netherlands Age of the Universe: 13.7 billion years

More information

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?)

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) Unseen Influences Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from

More information

Lecture 21: General Relativity Readings: Section 24-2

Lecture 21: General Relativity Readings: Section 24-2 Lecture 21: General Relativity Readings: Section 24-2 Key Ideas: Postulates: Gravitational mass=inertial mass (aka Galileo was right) Laws of physics are the same for all observers Consequences: Matter

More information

Gravitational Wave Astronomy using 0.1Hz space laser interferometer. Takashi Nakamura GWDAW-8 Milwaukee 2003/12/17 1

Gravitational Wave Astronomy using 0.1Hz space laser interferometer. Takashi Nakamura GWDAW-8 Milwaukee 2003/12/17 1 Gravitational Wave Astronomy using 0.1Hz space laser interferometer Takashi Nakamura GWDAW-8 Milwaukee 2003/12/17 1 In 2001 we considered what we can do using 0.1 hertz laser interferometer ( Seto, Kawamura

More information

The Science Missions of Columbia

The Science Missions of Columbia The Science Missions of Columbia Tools for Viewing The Universe Tools for Viewing The Universe & Columbia Shuttle Added Corrective Optics to the Hubble Space Telescope Hubble Discovers a New View of The

More information

General Relativity. Einstein s Theory of Gravitation. March R. H. Gowdy (VCU) General Relativity 03/06 1 / 26

General Relativity. Einstein s Theory of Gravitation. March R. H. Gowdy (VCU) General Relativity 03/06 1 / 26 General Relativity Einstein s Theory of Gravitation Robert H. Gowdy Virginia Commonwealth University March 2007 R. H. Gowdy (VCU) General Relativity 03/06 1 / 26 What is General Relativity? General Relativity

More information

Stars, Galaxies, and the Universe

Stars, Galaxies, and the Universe Stars, Galaxies, and the Universe Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. What is a giant ball of hot gases that undergo nuclear fusion? a. a planet

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Einstein s Gravity. Understanding space-time and the gravitational effects of mass

Einstein s Gravity. Understanding space-time and the gravitational effects of mass Einstein s Gravity Understanding space-time and the gravitational effects of mass Albert Einstein (1879-1955) One of the iconic figures of the 20 th century, Einstein revolutionized our understanding of

More information

Final States of a Star

Final States of a Star Pulsars Final States of a Star 1. White Dwarf If initial star mass < 8 MSun or so. (and remember: Maximum WD mass is 1.4 MSun, radius is about that of the Earth) 2. Neutron Star If initial mass > 8 MSun

More information

Gravitational Wave. Kehan Chen Math 190S. Duke Summer College

Gravitational Wave. Kehan Chen Math 190S. Duke Summer College Gravitational Wave Kehan Chen 2017.7.29 Math 190S Duke Summer College 1.Introduction Since Albert Einstein released his masterpiece theory of general relativity, there has been prediction of the existence

More information

Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils. Announcements. Review for test on Monday, Nov 7 at 3:25pm

Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils. Announcements. Review for test on Monday, Nov 7 at 3:25pm Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils Announcements Review for test on Monday, Nov 7 at 3:25pm Neutron Star - Black Hole merger Review for Test #3 Nov 8 Topics: Stars

More information

New Ideas from Astronomy and Cosmology. Martin Buoncristiani Session 5 4/21/2011

New Ideas from Astronomy and Cosmology. Martin Buoncristiani Session 5 4/21/2011 New Ideas from Astronomy and Cosmology Martin Buoncristiani Session 5 Agenda Introduction Space, Time and Matter Early views of the cosmos Important Ideas from Classical Physics Two 20 th Century revolutions

More information