Celestial Coordinate Systems

Size: px
Start display at page:

Download "Celestial Coordinate Systems"

Transcription

1 Celestial Coordinate Systems Horizon Coordinates h - altitude: +-90 deg A - azimuth (0-360 deg, from N through E, on the horizon) z - zenith distance; 90 deg - h (refraction, airmass) Kaler

2 Equatorial Coordinates RA: 0-24 h (increases eastward from the Vernal Equinox) Dec: deg H - hour angle: negative - east of the meridian, positive - west of the meridian. T sid = RA + H Scott Birney

3 Ecliptic Coordinates λ - ecliptic longitude (0-360deg, increases eastwards from the Vernal equinox) β - ecliptic latitude (+-90 deg) Scott Birney ε - Earth s axial tilt = 23.5 deg

4 Galactic Coordinates l - galactic longitude (0-360 deg, increases toward galactic rotation from the galactic center b - galactic latitude, deg The Galactic plane is inclined at an angle of 62.6 deg to the celestial equator. Scott Birney RA (J2000) Dec NGP: GC:

5 Galactic Coordinates (cont.) l = 0 - Galactic center l = 90 - in the direction of Galactic rotation l = anticenter l = antirotation III II IV I l = 0-90 first quadrant l = second quadrant l = third quadrant l = fourth quadrant

6 Galactic Coordinates: Position and Velocity Components The cylindrical system R, θ, z Π, Θ, W (Z) R, Π - positive away from the GC θ, Θ - positive toward Galactic rotation z, W(Z) - positive toward the NGP Note: this is a left-handed coordinate system; right-handed Π = -Π W

7 The Cartesian system: defined with respect to the Local Standard of Rest (LSR) X, Y, Z U, V, W Z, W X, U - positive away from the GC Y, V - positive toward Gal. rotation Z, W - positive toward NGP Left-handed system; right-handed: U= -U Y, V X, U X = d cos l cos b Y = d sin l cos b Z = d sin b d - distance to the Sun

8 Coordinate Transformations 1) Spherical Trigonometry: Transformations Between Different Celestial Coordinate Systems Law of cosines: cos a = cos b cos c + sin b sin c cos A Law of sines: Kaler sin a sin b sin c = = sin A sin B sin C And: cos A = - cos B cos C + sin B sin C cos a

9 Spherical Trigonometry: Transformations Between Different Celestial Coordinate Systems - Application: Equatorial <--> Galactic (BM - p. 31) Useful angles: α G, δ G - eq. coordinates of the North Gal. Pole (G) θ - longitude of the North Celestial Pole (P) ( , defined as for RA,Dec. at B1950)

10 Coordinate Transformations 2) Euler Angles: Transformations of Vectors (Position, Velocity) From One Coordinate System to Another The three basic rotations about x, y, z axes by a total amount of θ, ω, φ are equivalent to the multiplication of the matrices: (e.g., Kovalewski & Seidelman ) R 1 = 0 cosθ sinθ 0 sinθ cosθ cosω 0 sinω R 2 = sinω 0 cosω cosφ sinφ 0 R 3 = sinφ cosφ x' x y' = R R R y z' z Read Johnson and Soderblom (1987) for an application to positions and velocities determined from proper motions, RVs and parallax.

11 From Celestial Coordinates to Coordinates in the Focal Plane: The Gnomonic Projection Girard - MSW2005

12 Standard Coordinates

13 Girard MSW2005 Standard Coordinates

14 Standard Coordinates

15 Trigonometric Parallax - The stellar parallax is the apparent motion of a star due to our changing perspective as the Earth orbits the Sun. - parsec: the distance at which 1 AU subtends an angle of 1 arcsec. Relative parallax - with respect to background stars which actually do move. d( pc) = 1 p(") Absolute parallax - with respect to a truly fixed frame in space; usually a statistical correction is applied to relative parallaxes.

16 Trigonometric Parallax Measured against a reference frame made of more distant stars, the target star describes an ellipse, the semi-major axis of which is the parallax angle (p or π ), and the semiminor axis is π cos β, where β is the ecliptic latitude. The ellipse is the projection of the Earth s orbit onto the sky. Parallax determination: at least three sets of observations, because of the proper motion of the star. Van de Kamp

17 Parallax Measurements: The First Determinations All known stars have parallaxes less than 1 arcsec. This number is beyond the precision that can be achieved in the 18th century. Tycho Brahe ( ) - observations at a precision of Proxima Cen largest known parallax (Hipparcos value) F. W. Bessel - 61 Cygni, ( modern = ) F. G. W. Struve for Vega (α Lyrae), 0.26 (modern = ) T. Henderson for α Centauri (thought to be Proxima!), (modern = ) Some 244 stars had measured parallaxes. Most measurements were done with micrometers, meridian transits, and few by photography.

18 Parallax Measurements: The Photographic Era Observatory Telescope * Percentage (%) ** Yale (Johannesburg, South Africa) 26-in f/ McCormick (Charlottesville, VA) 26-in, f/ Allegheny (Riverview Park, PA) 30-in, f/ Royal Obs. Cape of Good Hope (now SAAO) 24-in, f/ Spoul (Swarthmore, PA) 24-in. f/ USNO (Flagstaff, AZ) 61-in, f/10 reflector 6.6 Royal Obs. Greenwich 26-in, f/ Van Vleck (Middletown, CT) 20-in, f/ Yerkes (Williams Bay, WI) 40-in, f/ Mt. Wilson (San Gabriel Mountains, CA) 60-in, f/20 reflector 3.5 * All are refractors unless specified otherwise ** by 1992; other programs, with lower percentages are not listed Source: nchalada.org/archive/nchalada_lviii.html Accuracy: ~ = 10 mas

19 Parallax Measurements: The Modern Era Catalog Date #stars σ(mas) Comments YPC ±15 mas Cat. of all π through 1995 USNO pg To 1992 ~1000 ±2.5 mas Photographic parallaxes USNO ccd From 92 ~150 ±0.5 mas CCD parallaxes Nstars & GB Current 100? ± 2 mas Southern π programs Hipparcos ±1 mas First modern survey HST FGS ? 100? ±0.5 mas A few important stars SIM 2016? 10 3 ±4 µas Critical targets & exoplanets Gaia 2016? 10 9 ±10µas Ultimate modern survey van Altena - MSW2005

20 Parallax Precision and the Volume Sampled Photographic era: the accuracy is 10 mas -> 100 pc; Stars at 10 pc: have distances of 10 % of the distance accuracy Stars at 25 pc: have distances of 25 % of the distance accuracy By doubling the accuracy of the parallax, the distance reachable doubles, while the volume reachable increases by a factor of eight. Parallax Size to Various Objects Nearest star (Proxima Cen) 0.77 arcsec Brightest Star (Sirius) 0.38 arcsec Galactic Center (8.5 kpc) arcsec 118 µas Far edge of Galactic disk (~20 kpc) 50 µas Nearest spiral galaxy (Andromeda Galaxy) 1.3 µas

21 Future Measurements of Parallaxes: SIM and GAIA 1% 10% SIM 2.5 kpc 25 kpc GAIA 0.4 kpc 4 kpc Hipparcos 0.01 kpc 0.1 kpc SIM! 2.5 kpc! (1%)! SIM! 25 kpc! (10%)! SIM(planetquest.jpl.nasa.gov) You are here

22 Proper Motions: Barnard s Star Van de Kamp

23 Proper Motions - reflect the intrinsic motions of stars as these orbit around the Galactic center. - include: star s motion, Sun s motion, and the distance between the star and the Sun. - they are an angular measurement on the sky, i.e., perpendicular to the line of sight; that s why they are also called tangential motions/tangential velocities. Units are arcsec/ year, or mas/yr (arcsec/century). - largest proper motion known is that of Barnard s star 10.3 /yr; typical ~ 0.1 /yr - relative proper motions; wrt a non-inertial reference frame (e. g., other more distant stars) - absolute proper motions; wrt to an inertial reference frame (galaxies, QSOs) V 2 = V T 2 + V R 2 µ("/ yr) = V T (km /s) 4.74d( pc)

24 Proper Motions µ α = dα dt µ δ = dδ dt µ α - is measured in seconds of time per year (or century); it is measured along a small circle; therefore, in order to convert it to a velocity, and have the same rate of change as µ δ, it has to be projected onto a great circle, and transformed to arcsec. µ δ - is measured in arcsec per year (or century); or mas/ yr; it is measured along a great circle.

25 µ 2 = (µ α cosδ) 2 + µ δ 2 Proper Motions

26 Proper Motions - Some Well-known Catalogs High proper-motion star catalogs > Luyten Half-Second (LHS) - all stars µ > 0.5 /yr > Luyten Two-Tenth (LTT) - all stars µ > 0.2 /year > Lowell Proper Motion Survey/Giclas Catalog - µ > 0.2 /yr High Precision and/or Faint Catalogs Ø HIPPARCOS ; 120,000 stars to V ~ 9, precision ~1 mas/yr Ø Tycho (on board HIPPARCOS mission) - 1 million stars to V ~ 11, precision 20 mas/ yr (superseded by Tycho2). Ø Tycho2 (Tycho + other older catalogs time baseline ~90 years) million stars to V ~ 11.5, precision mas/yr Ø Lick Northern Proper Motion Survey (NPM) - ~ 450,000 objects to V ~ 18, precision ~5 mas/yr Ø Yale/San Juan Southern Proper Motion Survey (SPM); 10 million objects to V ~ 18, precision 3-4 mas/yr.

27 Precession The system of equatorial coordinates is not inertial, because the NCP and the vernal equinox (VE) move (mainly due to the precession of the Earth). - It amounts to /year (or a period of 25,800 years); the VE moves westward. - Tropical year: days (Sun moves from one VE to the next; shorter by 20 minutes than the sidereal year. - Sidereal year: day (Sun returns to the same position in the sky as given by stars). - Therefore the equatorial coordinates are given for a certain equinox (e.g. 1950, or 2000); for high proper-motion stars, coordinates are also given for a certain epoch. Van de Kamp

28 Astrometric Systems (Reference Frames) A catalog of objects with absolute positions and proper motions: i.e., with respect to an inertial reference frame define an astrometric system. This system should have no rotation in time. 1) The dynamical definition: - with respect to an ideal dynamical celestial reference frame, stars move so that they have no acceleration. The choice of this system is the Solar System as a whole. Stars in this system have positions determined with respect to observed positions of planets. Observations made with meridian circles contribute to the establishment of this type of reference frame (FK3, FK4, FK5 systems). 2) The kinematic definition: - an ideal kinematic celestial frame assumes that there exists in the Universe a class of objects which have no global systemic motion and therefore are not rotating in the mean. These are chosen to be quasars and other extragalactic radio sources (with precise positions from VLBI). This system is the International Celestial Reference System (ICRS, Arial et al. 1995).

Coordinate Systems for Astronomy or: How to get your telescope to observe the right object

Coordinate Systems for Astronomy or: How to get your telescope to observe the right object Coordinate Systems for Astronomy or: How to get your telescope to observe the right object Figure 1: Basic definitions for the Earth Definitions - Poles, Equator, Meridians, Parallels The rotation of the

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

Ay 1 Lecture 2. Starting the Exploration

Ay 1 Lecture 2. Starting the Exploration Ay 1 Lecture 2 Starting the Exploration 2.1 Distances and Scales Some Commonly Used Units Distance: Astronomical unit: the distance from the Earth to the Sun, 1 au = 1.496 10 13 cm ~ 1.5 10 13 cm Light

More information

Astronomical coordinate systems. ASTR320 Monday January 22, 2018

Astronomical coordinate systems. ASTR320 Monday January 22, 2018 Astronomical coordinate systems ASTR320 Monday January 22, 2018 Special public talk this week: Mike Brown, Pluto Killer Wednesday at 7:30pm in MPHY204 Other news Munnerlyn lab is hiring student engineers

More information

Basic Properties of the Stars

Basic Properties of the Stars Basic Properties of the Stars The Sun-centered model of the solar system laid out by Copernicus in De Revolutionibus (1543) made a very specific prediction: that the nearby stars should exhibit parallax

More information

Astrometric Detection of Exoplanets

Astrometric Detection of Exoplanets Astrometric Detection of Exoplanets Angles & Coordinates: 1 full circle = 360 degrees 1 degree = 60 arcminutes 1 arcminute = 60 arcseconds ~ 1 inch @ 100 yards (2.908 cm at 100 meters) 1 milliarcsec (mas)

More information

The Flammarion engraving by an unknown artist, first documented in Camille Flammarion's 1888 book L'atmosphère: météorologie populaire.

The Flammarion engraving by an unknown artist, first documented in Camille Flammarion's 1888 book L'atmosphère: météorologie populaire. The Flammarion engraving by an unknown artist, first documented in Camille Flammarion's 1888 book L'atmosphère: météorologie populaire. Horizon Coordinates: Altitude (angular height above horizon) Azimuth

More information

Coordinate Systems fundamental circle secondary great circle a zero point

Coordinate Systems fundamental circle secondary great circle a zero point Astrometry Coordinate Systems There are different kinds of coordinate systems used in astronomy. The common ones use a coordinate grid projected onto the celestial sphere. These coordinate systems are

More information

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE To the naked eye, stars appear fixed on the sky with respect to one another. These patterns are often grouped into constellations. Angular measurements

More information

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations. Chapter 1: Discovering the Night Sky Constellations: Recognizable patterns of the brighter stars that have been derived from ancient legends. Different cultures have associated the patterns with their

More information

PHY2083 ASTRONOMY. Dr. Rubina Kotak Office F016. Dr. Chris Watson Office S036

PHY2083 ASTRONOMY. Dr. Rubina Kotak Office F016. Dr. Chris Watson Office S036 PHY2083 ASTRONOMY Dr. Rubina Kotak r.kotak@qub.ac.uk Office F016 Dr. Chris Watson c.a.watson@qub.ac.uk Office S036 PHY2083 ASTRONOMY Weeks 1-6: Monday 10:00 DBB 0G.005 Wednesday 9:00 PFC 02/018 Friday

More information

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate Exercise: Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate Objectives In Part 1 you learned about Celestial Sphere and how the stars appear to move across the night

More information

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018 Stellar distances and velocities ASTR320 Wednesday January 24, 2018 Special public talk this week: Mike Brown, Pluto Killer Wednesday at 7:30pm in MPHY204 Why are stellar distances important? Distances

More information

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0)

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) Topic Guide: The Celestial Sphere GCSE (9-1) Astronomy Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) The Celestial Sphere Contents Specification Points 1 The Astronomy 2 Equatorial coordinates

More information

Coordinate Systems fundamental circle secondary great circle a zero point

Coordinate Systems fundamental circle secondary great circle a zero point Astrometry Coordinate Systems There are different kinds of coordinate systems used in astronomy. The common ones use a coordinate grid projected onto the celestial sphere. These coordinate systems are

More information

Welcome to Astronomy 402/602

Welcome to Astronomy 402/602 Welcome to Astronomy 402/602 Introductions Syllabus Telescope proposal Coordinate Systems (Lecture) Coordinate System Exercise Light (Lecture) Telescopes (Lecture) Syllabus Course goals Course expectations

More information

6/17. Universe from Smallest to Largest:

6/17. Universe from Smallest to Largest: 6/17 Universe from Smallest to Largest: 1. Quarks and Leptons fundamental building blocks of the universe size about 0 (?) importance: quarks combine together to form neutrons and protons. One of the leptons

More information

Astronomical Techniques

Astronomical Techniques Astronomical Techniques Lecture 2 Yogesh Wadadekar ISYA 2016, Tehran ISYA 2016, Tehran 1 / 51 How sun moves? How do stars move in the sky? ISYA 2016, Tehran 2 / 51 Celestial sphere ISYA 2016, Tehran 3

More information

Constellations. In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures.

Constellations. In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures. Chapter 2 The Sky Constellations In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures. Constellations A constellation is

More information

Week 2. Problem Set 1 is due Thursday via Collab. Moon awareness Weather awareness

Week 2. Problem Set 1 is due Thursday via Collab. Moon awareness Weather awareness Week 2 Lab 1 observa.ons start real soon (in progress?) Prelab done? Observa.ons should wrap up this week. Lab 2 + Prelab 2 will be out next week early and observa.ons will follow Lab 1 write-up guidance

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

Constellations. In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures.

Constellations. In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures. Chapter 2 The Sky Constellations In ancient times, constellations only referred to the brightest stars that appeared to form groups, representing mythological figures. Constellations (2) Today, constellations

More information

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation. 6/14 10. Star Cluster size about 10 14 to 10 17 m importance: where stars are born composed of stars. 11. Galaxy size about 10 21 m importance: provide a stable environment for stars. Composed of stars.

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

ASTRO 6570 Lecture 1

ASTRO 6570 Lecture 1 ASTRO 6570 Lecture 1 Historical Survey EARLY GREEK ASTRONOMY: Earth-centered universe - Some radical suggestions for a sun-centered model Shape of the Earth - Aristotle (4 th century BCE) made the first

More information

Equatorial Telescope Mounting

Equatorial Telescope Mounting Equatorial Telescope Mounting Star Catalogs simbad IRSA The Meridian Every line of celestial longitude is a meridian of longitude, but we recognize the line of longitude, or simply the great circle line,

More information

CELESTIAL COORDINATES

CELESTIAL COORDINATES ASTR 1030 Astronomy Lab 27 Celestial Coordinates CELESTIAL COORDINATES GEOGRAPHIC COORDINATES The Earth's geographic coordinate system is familiar to everyone - the north and south poles are defined by

More information

Dynamics of the Earth

Dynamics of the Earth Time Dynamics of the Earth Historically, a day is a time interval between successive upper transits of a given celestial reference point. upper transit the passage of a body across the celestial meridian

More information

These notes may contain copyrighted material! They are for your own use only during this course.

These notes may contain copyrighted material! They are for your own use only during this course. Licensed for Personal Use Only DO NOT DISTRIBUTE These notes may contain copyrighted material! They are for your own use only during this course. Distributing them in anyway will be considered a breach

More information

A2 Principi di Astrofisica. Coordinate Celesti

A2 Principi di Astrofisica. Coordinate Celesti A2 Principi di Astrofisica Coordinate Celesti ESO La Silla Tel. 3.6m Celestial Sphere Our lack of depth perception when we look into space creates the illusion that Earth is surrounded by a celestial sphere.

More information

Lecture 4: August 30, 2010

Lecture 4: August 30, 2010 Lecture 4: August 30, 2010 How many hospitals are there in the USA? Announcements: First homework has been posted Due Friday (10 th ) First Observatory Opportunity Thursday Night September 2, 8:30pm Will

More information

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc.

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc. Chapter S1 Lecture The Cosmic Perspective Seventh Edition Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. S1.1 Astronomical

More information

Physics 312 Introduction to Astrophysics Lecture 3

Physics 312 Introduction to Astrophysics Lecture 3 Physics 312 Introduction to Astrophysics Lecture 3 James Buckley buckley@wuphys.wustl.edu Lecture 3 Celestial Coordinates the Planets and more History Reason for the Seasons Summer Solstice: Northern Hemisphere

More information

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system.

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system. UNIT 2 UNIT 2 LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME Goals After mastery of this unit, you should: a. understand the basic concepts needed for any astronomical coordinate system. b. understand

More information

Astrometry in Gaia DR1

Astrometry in Gaia DR1 Astrometry in Gaia DR1 Lennart Lindegren on behalf of the AGIS team and the rest of DPAC Gaia DR1 Workshop, ESAC 2016 November 3 1 Outline of talk The standard astrometric model kinematic and astrometric

More information

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions 2-1 2. The Astronomical Context describe them. Much of astronomy is about positions so we need coordinate systems to 2.1 Angles and Positions Actual * q * Sky view q * * Fig. 2-1 Position usually means

More information

Oberth: Energy vs. Momentum

Oberth: Energy vs. Momentum 1 2 The Oberth Effect 3 Oberth: Energy vs. Momentum 4 The Celestial Sphere From our perspective on Earth the stars appear embedded on a distant 2-dimensional surface the Celestial Sphere. 5 The Celestial

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam 1 Physics 101 Fall 2014 Chapters 1-3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Suppose we look at a photograph of many galaxies.

More information

2. The Astronomical Context. Fig. 2-1

2. The Astronomical Context. Fig. 2-1 2-1 2. The Astronomical Context describe them. Much of astronomy is about positions so we need coordinate systems to 2.1 Angles and Positions * θ * Fig. 2-1 Position usually means angle. Measurement accuracy

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3B. The Orbit in Space and Time Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: The Orbit in Time 3.1 ORBITAL POSITION AS A FUNCTION OF TIME 3.1.1 Kepler

More information

Fundamentals of Satellite technology

Fundamentals of Satellite technology Fundamentals of Satellite technology Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Orbital Plane All of the planets,

More information

In all cases assume the observer is located at the latitude of Charlottesville (38 degrees north).

In all cases assume the observer is located at the latitude of Charlottesville (38 degrees north). 1. Recalling that azimuth is measured around the sky from North (North is 0 degrees, East is 90 degrees, South is 180 degrees, and West is 270 degrees) estimate (do not calculate precisely) the azimuth

More information

Structure & Evolution of Stars 1

Structure & Evolution of Stars 1 Structure and Evolution of Stars Lecture 2: Observational Properties Distance measurement Space velocities Apparent magnitudes and colours Absolute magnitudes and luminosities Blackbodies and temperatures

More information

Aileen A. O Donoghue Priest Associate Professor of Physics

Aileen A. O Donoghue Priest Associate Professor of Physics SOAR: The Sky in Motion Life on the Tilted Teacup Ride Celestial Coordinates and the Day Aileen A. O Donoghue Priest Associate Professor of Physics Reference Points Poles Equator Prime Meridian Greenwich,

More information

Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014

Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014 Brock University Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

More information

RECOMMENDATION ITU-R S Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link

RECOMMENDATION ITU-R S Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link Rec. ITU-R S.1525-1 1 RECOMMENDATION ITU-R S.1525-1 Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link (Question ITU-R 236/4) (21-22) The ITU Radiocommunication

More information

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods? Chapter S1 Celestial Timekeeping and Navigation S1.1 Astronomical Time Periods Our goals for learning:! How do we define the day, month, year, and planetary time periods?! How do we tell the time of day?!

More information

Exercise - I. 1. The point in the sky that is located 90 degrees above the horizon is the

Exercise - I. 1. The point in the sky that is located 90 degrees above the horizon is the Exercise - I 1. The point in the sky that is located 90 degrees above the horizon is the a) terrestrial horizon b) equator c) pole d) zenith e) ascending node 2. Which of the following would be the coordinates

More information

Introduction To Modern Astronomy I: Solar System

Introduction To Modern Astronomy I: Solar System ASTR 111 003 Fall 2007 Lecture 02 Sep. 10, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap. 16: Our Sun Chap. 28: Search for

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3. The Orbit in Space Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation: Space We need means of describing orbits in three-dimensional space. Example: Earth s oblateness

More information

On the definition and use of the ecliptic in modern astronomy

On the definition and use of the ecliptic in modern astronomy On the definition and use of the ecliptic in modern astronomy Nicole Capitaine (1), Michael Soffel (2) (1) : Observatoire de Paris / SYRTE (2) : Lohrmann Observatory, Dresden Technical University Introduction

More information

Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Earth Science, 13e Tarbuck & Lutgens Origins of Modern Astronomy Earth Science, 13e Chapter 21 Stanley C. Hatfield Southwestern Illinois College Early history of astronomy Ancient Greeks Used philosophical

More information

Coordinate Systems. Basis for any 3D Coordinate System. 2. Locate the x-y plane (the fundamental plane ) Usual approach to define angles:

Coordinate Systems. Basis for any 3D Coordinate System. 2. Locate the x-y plane (the fundamental plane ) Usual approach to define angles: Coordinate Systems Basis for any 3D Coordinate System Basic steps for the definition of a 3D coordinate system:. Locate the origin. Locate the -y plane (the fundamental plane ) 3. Decide on direction of

More information

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.

3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual. Descriptive Astronomy (ASTR 108) Exam 1 B February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

More information

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.

1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis. Descriptive Astronomy (ASTR 108) Exam 1 A February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the

More information

Senior Project: Global Position Determination from Observed Relative Position of Celestial Bodies

Senior Project: Global Position Determination from Observed Relative Position of Celestial Bodies Senior Project: Global Position Determination from Observed Relative Position of Celestial Bodies A Senior Project presented to the Faculty of the Aerospace Engineering Department California Polytechnic

More information

The Measurement of Time

The Measurement of Time CHAPTER TWO The Measurement of Time Solar Time In antiquity the time of day was measured by the direction of a shadow cast in sunlight. This resulted in the development of a wide variety of sophisticated

More information

Observed Properties of Stars ASTR 2120 Sarazin

Observed Properties of Stars ASTR 2120 Sarazin Observed Properties of Stars ASTR 2120 Sarazin Extrinsic Properties Location Motion kinematics Extrinsic Properties Location Use spherical coordinate system centered on Solar System Two angles (θ,φ) Right

More information

lightyears observable universe astronomical unit po- laris perihelion Milky Way

lightyears observable universe astronomical unit po- laris perihelion Milky Way 1 Chapter 1 Astronomical distances are so large we typically measure distances in lightyears: the distance light can travel in one year, or 9.46 10 12 km or 9, 600, 000, 000, 000 km. Looking into the sky

More information

Observing the Night Sky: Locating Objects

Observing the Night Sky: Locating Objects Observing the Night Sky: Locating Objects As I left the house this morning, there was a bright bluish light above and to the left of my neighbors house (approximately East) and a big very bright object

More information

Astronomy 291. Professor Bradley M. Peterson

Astronomy 291. Professor Bradley M. Peterson Astronomy 291 Professor Bradley M. Peterson The Sky As a first step, we need to understand the appearance of the sky. Important points (to be explained): The relative positions of stars remain the same

More information

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL)

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL) AST326, 2010 Winter Semester Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL) Practical Assignment: analyses of Keck spectroscopic data from the instructor (can

More information

Observing the Universe for Yourself

Observing the Universe for Yourself Observing the Universe for Yourself Figure 6-20 Solar-System Formation What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as well as the Milky Way. A constellation

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Review of Monday s Class Spherical Trigonometry Review plane trigonometry Concepts in Spherical Trigonometry Distance measures Azimuths and bearings Basic formulas:

More information

Astrometric Surveys: Modern Astrometric Catalogues

Astrometric Surveys: Modern Astrometric Catalogues Astrometric Surveys: Modern Astrometric Catalogues Carlos E. Lopez Universidad de San Juan, Argentina and Yale Southern Observatory What is Astrometry? Astrometry is that part of astronomy dealing with

More information

Coordinates on the Sphere

Coordinates on the Sphere Survey Observations Coordinates on the Sphere Any position on the surface of a sphere (such as the Earth or the night sky) can be expressed in terms of the angular coordinates latitude and longitude Latitude

More information

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance How to Understand Stars Chapter 7 How do stars differ? Is the Sun typical? Image of Orion illustrates: The huge number of stars Colors Interstellar gas Location in space Two dimensions are easy measure

More information

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole

Meridian Circle through Zenith, North Celestial Pole, Zenith Direction Straight Up from Observer. South Celestial Pole Chapter 3 How Earth and Sky Work- Effects of Latitude In chapters 3 and 4we will learn why our view of the heavens depends on our position on the Earth, the time of day, and the day of the year. We will

More information

The sky and the celestial sphere

The sky and the celestial sphere Chapter 1 The sky and the celestial sphere The Sun, and sometimes the Moon are, by and large, the only astronomical objects visible in the day sky. Traditionally, astronomy has been a nocturnal activity.

More information

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars.

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars. Sun: rises in the east sets in the west travels on an arc across the sky 24 hours Daily Motions Solar Day = 24 hours Stars: stars travel on arcs in the sky moving from east to west. some stars rise and

More information

IAU 2006 NFA GLOSSARY

IAU 2006 NFA GLOSSARY IAU 2006 NFA GLOSSARY Prepared by the IAU Division I Working Group Nomenclature for Fundamental Astronomy'' (latest revision: 20 November 2007) Those definitions corresponding to the IAU 2000 resolutions

More information

Phys Lab #1: The Sun and the Constellations

Phys Lab #1: The Sun and the Constellations Phys 10293 Lab #1: The Sun and the Constellations Introduction Astronomers use a coordinate system that is fixed to Earth s latitude and longitude. This way, the coordinates of a star or planet are the

More information

Name and Student ID Section Day/Time:

Name and Student ID Section Day/Time: AY2 - Overview of the Universe - Midterm #1 - Instructor: Maria F. Duran Name and Student ID Section Day/Time: 1) Imagine we ve discovered a planet orbiting another star at 1 AU every 6 months. The planet

More information

Brock University. Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014

Brock University. Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014 Brock University Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014 Number of hours: 50 min Time of Examination: 14:00 14:50 Instructor: B.Mitrović

More information

Numerical Model for the Orbit of the Earth

Numerical Model for the Orbit of the Earth Universal Journal of Geoscience 5(2): 33-39, 2017 DOI: 10.13189/ujg.2017.050203 http://www.hrpub.org Numerical Model for the Orbit of the Earth S. Karna 1,*, A. K. Mallik 2 1 Physics Department, Tri-Chandra

More information

Brock University. Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016

Brock University. Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016 Brock University Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016 Number of hours: 50 min Time of Examination: 17:00 17:50 Instructor:

More information

Astrometric Detection of Exoplanets. The Astrometric Detection of Planets

Astrometric Detection of Exoplanets. The Astrometric Detection of Planets Astrometric Detection of Exoplanets Detection and Properties of Planetary Systems Schedule of Lectures 05. Apr: Introduction and Background 12. Apr: The Radial Velocity Method: Method and Tools 19. Apr:

More information

Lecture 29. Our Galaxy: "Milky Way"

Lecture 29. Our Galaxy: Milky Way Lecture 29 The Milky Way Galaxy Disk, Bulge, Halo Rotation Curve Galactic Center Apr 3, 2006 Astro 100 Lecture 29 1 Our Galaxy: "Milky Way" Milky, diffuse band of light around sky known to ancients. Galileo

More information

Lecture Module 2: Spherical Geometry, Various Axes Systems

Lecture Module 2: Spherical Geometry, Various Axes Systems 1 Lecture Module 2: Spherical Geometry, Various Axes Systems Satellites in space need inertial frame of reference for attitude determination. In a true sense, all bodies in universe are in motion and inertial

More information

The Three Dimensional Universe, Meudon - October, 2004

The Three Dimensional Universe, Meudon - October, 2004 GAIA : The science machine Scientific objectives and impacts ------- F. Mignard OCA/ Cassiopée 1 Summary Few figures about Gaia Gaia major assets What science with Gaia Few introductory highlights Conclusion

More information

Test 1 Review Chapter 1 Our place in the universe

Test 1 Review Chapter 1 Our place in the universe Test 1 Review Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons Formulas will be projected on the screen You can use

More information

Reminder: Seasonal Motion

Reminder: Seasonal Motion Seasonal Motion Reminder: Seasonal Motion If you observe the sky at the same time, say midnight, but on a different date, you find that the celestial sphere has turned: different constellations are high

More information

Time, coordinates and how the Sun and Moon move in the sky

Time, coordinates and how the Sun and Moon move in the sky Time, coordinates and how the Sun and Moon move in the sky Using the colors and magnitudes of quasars drawn from the SDSS Catalog Archive Server to distinguish quasars from stars using the light they emit

More information

A Review of Coordinates

A Review of Coordinates A Review of Coordinates Latitude and Longitude On Earth, one way to describe a location is with a coordinate system which is fixed to the Earth's surface. The system is oriented by the spin axis of the

More information

Essential Astrophysics

Essential Astrophysics ASTR 530 Essential Astrophysics Course Notes Paul Hickson The University of British Columbia, Department of Physics and Astronomy January 2015 1 1 Introduction and review Several text books present an

More information

Light and Stars ASTR 2110 Sarazin

Light and Stars ASTR 2110 Sarazin Light and Stars ASTR 2110 Sarazin Doppler Effect Frequency and wavelength of light changes if source or observer move Doppler Effect v r dr radial velocity dt > 0 moving apart < 0 moving toward Doppler

More information

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc. Chapter 2 Discovering the Universe for Yourself 1 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

Aileen A. O Donoghue Priest Associate Professor of Physics

Aileen A. O Donoghue Priest Associate Professor of Physics SOAR: The Sky in Motion Life on the Tilted Teacup Ride The Year Aileen A. O Donoghue Priest Associate Professor of Physics Celestial Coordinates Right Ascension RA or From prime meridian (0 h ) to 23 h

More information

The Cosmological Distance Ladder. It's not perfect, but it works!

The Cosmological Distance Ladder. It's not perfect, but it works! The Cosmological Distance Ladder It's not perfect, but it works! First, we must know how big the Earth is. Next, we must determine the scale of the solar system. Copernicus (1543) correctly determined

More information

Guiding Questions. Discovering the Night Sky. iclicker Qustion

Guiding Questions. Discovering the Night Sky. iclicker Qustion Guiding Questions Discovering the Night Sky 1 1. What methods do scientists use to expand our understanding of the universe? 2. What makes up our solar system? 3. What are the stars? Do they last forever?

More information

Transforming from Geographic to Celestial Coordinates

Transforming from Geographic to Celestial Coordinates Transforming from Geographic to Celestial Coordinates Michael McEllin 1 Introduction The simplest astronomical observation of all is that the stars appear to move around the Earth (which, of course is

More information

2. Descriptive Astronomy ( Astronomy Without a Telescope )

2. Descriptive Astronomy ( Astronomy Without a Telescope ) How do we locate stars in the heavens? 2. Descriptive Astronomy ( Astronomy Without a Telescope ) What stars are visible from a given location? Where is the sun in the sky at any given time? Where are

More information

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy 2006 Pearson Prentice Hall Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS 1 ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS Jan Vondrák, Astronomical Institute Prague P PART 1: Reference systems and frames used in astronomy:! Historical outline,

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy AST0111-3 (Astronomía) Semester 2014B Prof. Thomas H. Puzia Theme Our Sky 1. Celestial Sphere 2. Diurnal Movement 3. Annual Movement 4. Lunar Movement 5. The Seasons 6. Eclipses

More information

Astr As ome tr tr ome y I M. Shao

Astr As ome tr tr ome y I M. Shao Astrometry I M. Shao Outline Relative astrometry vs Global Astrometry What s the science objective? What s possible, what are fundamental limits? Instrument Description Error/noise sources Photon noise

More information

Name Class Date. For each pair of terms, explain how the meanings of the terms differ.

Name Class Date. For each pair of terms, explain how the meanings of the terms differ. Skills Worksheet Chapter Review USING KEY TERMS 1. Use each of the following terms in a separate sentence: year, month, day, astronomy, electromagnetic spectrum, constellation, and altitude. For each pair

More information