Review Lecture 15. Luminosity = L, measured in Watts, is the power output(at all wavelengths) of the star,

Size: px
Start display at page:

Download "Review Lecture 15. Luminosity = L, measured in Watts, is the power output(at all wavelengths) of the star,"

Transcription

1 Review Lecture The Central Problem in astronomy is distance. What we see is basically a twodimensional picture of the sky. To interpret many pieces of information available to the astronomer we need to know how far away a star or galaxy is. Example: If you look at the sky, Sirius is brighter than etelgeuse. ut etelgeuse is actually 300 times more luminous or brighter than Sirius. That is, etelgeuse actually emits far more energy than Sirius. The reason is that etelgeuse is just much further away from us than Sirius; thus, apparently less bright or dimmer. To get at these quantities we need three definitions. Luminosity = L, measured in Watts, is the power output(at all wavelengths) of the star, L =σat in Watts W where σ= 67. x0 4 m K temperature measured in Kelvin. 4, A is the surface area of the star, and T is the This power is spread out into the area of a sphere, where spherical area =4 according to the Inverse Square Law. πd Apparent brightness and the Inverse Square Law, measured in Watts/meter, is what we appear to see. luminosity L brightness = b = = spherical area 4 π d () Thus, we can only find the luminosity of the star if we know the apparent brightness of the star and the distance to the star, d. The brightness at the surface of a star is called the flux 4 lu minosity L flux = σt = = surface area in W/m. 4πd [Note: This looks like the Stefan-oltzmann Law and is similar. If you will, flux is the brightness of a star measured at the surface of the star.]

2 rightness - unfortunately, Hipparchus (30.C.) measured brightness in terms of apparent magnitude, m, with a scale such that m = the brightest star in the sky visible to the eye m = 6 the dimmest m = represents 00 times brighter by instrument in a logarithmic fashion. Thus, if x represents the increase in brightness for m =, then x = 00 x =.. So, going from the brightest to the dimmest brightness magnitude (.) = 00 m = brightest (.) 4 = 39. m = (.) 3 =.7 m = 3 (.) = 6. m = 4. m = m = 6 dimmest Note: The eye has a different response to light than mechanical devices. Thus: m V = visual apparent magnitude m = bolometric apparent magnitude (magnitude including all wavelengths) Relationship between apparent magnitude and apparent brightness What this says is that if I have two stars with magnitudes m and m, where is brighter than, then the ratio of brightnesses is given by ( ) ( ) m m m b. =. = b This can be rewritten to solve for the difference in magnitudes by taking the log of both sides, i.e. m b log 0. = mlog 0. = 04. m = log0 or b (3) b m =.log0 b As an example, consider α Centauri(m = 0) and ernard s Star(m = 0), then ()

3 m = 0 and the ratio of brightnesses is (.) 0 = (.) (.) = 00 = 0,000. Thus Centauri has an apparent brightness 0,000 greater than ernard s Star. α The inverse square law of equation says that equation 3 can be rewritten as m = b d.log 0 =.log0 = log b d 0 d d (4) Absolute magnitude measures the apparent brightness of a star at 0 parsecs. y implication, a star at a distance of 0 parsecs would have the same apparent magnitude as absolute magnitude. Let the standard distance then be d standard = 0 parsecs = 3 x 0 7 m Example: The Sun m Sun = -6., the Sun is the brightest star in the sky d sun = AU =. x 0 m The Inverse Square Law says thatbrightness~ = distance d = = 7 b ( ) sun dstandard 3x0 m = x0 = 4x0 b d. x0 m standard sun 6 This says the ratio of brightness is inversely proportional to the squared distances. Thus, the Sun is 4 x 0 times brighter where it is, as seen from the Earth, than at 0 parsecs. What is the absolute magnitude of the Sun at 0 parsecs. Note: increased distance decreased intensity m positive. According to equation, we need to determine m such that Two methods: (. ) m = 4x0 m m + m ) Estimate 4 x 0 = 4 x (00) 6 m ( ) =. x. = (. ) (.) =. 4 is somewhere between. and 6.. Guess m =. (.) = 6. ( ) ( ) =. =. m = 30 m= m + m =. + 30= + 3.

4 ) Calculate by taking logarithms of both sides ( ) m. = 4x0 m ( 4x0 ) = ( ) = m ( ) log( 4x0 ). 6 log log. log. m = = = log (. ). 4 estimate The Absolute Visual Magnitude of the Sun is M Sun = = + The Sun would be a dim star just visible in Cortland at 0 parsecs. Distance Distance can only be determined directly from a local group of stars near enough to have their parallax measured. d = in par s p( in arcsec onds) ( sec ) From Earth the smallest parallax measurable is about.0 arcseconds corresponding to a distance of 00 pc = 36 light years. There are only about 000 stars within this range. Satellite measurements extend this distance to about 000 pc and 00,000 stars. In comparison to the Sun, equation () can be written as L d b = L d b Sun Sun Sun () Absolute Magnitude from distances Equation 3 can be rewritten as D m = M m = log = log D logd d = log0 logd = logd

5 This can be rearranged to say that the absolute magnitude can be determined from the apparent magnitude and the distance from the observer, i.e. (6) M = m+ log0 d This equation can be used to produce the log-log plot shown below. To use the plot you need two of the three quantities: relative magnitude, distance, or absolute magnitude. In the figure below, Sirius has a bolometric apparent magnitude of m = -.4 (the brightest star in the sky other than the Sun has a visual magnitude of ), and from parallax measurements d =.7 parsecs away. Finding this point on the plot and extrapolating over we find that Sirius has an absolute magnitude of M Sirius = + and a luminosity relative to the Sun of L Sirius = 3L sun. Conversely, the Sun has an absolute magnitude of +; thus, at 0 parsecs the relative magnitude would be +.

6 Distance (pc) 0.0 Sun Jupiter Name Part Apparent Magnitude A Stars Within 4 Parsecs Absolute Magnitude 6 Spectral Type.3 Alpha Centauri A C G K0 M G Mass (M Sun ) Radius (R Sun ). ernard s Star 0 3 M.3 Wolf M. D +36 o 47 0 M L76- A 3.9 Sirius A - A A Wh Df.9 Ross 4 3 M 3. Ross 4 3. L ε Eridani 4 6 K Ross 4 M Cygni A 6 K K7 ε 3.4 Indi 7 K 3. Procyon A F Wh Dwarf 3. Σ 39 A D +43 o 44 A C τ 3.6 Ceti 4 6 G CD -36 o M 3.7 D + o 66 A G L7-3 4 M 3. CD -39 o M0 3.9 Kapteyn s Star 9 M0 4.0 Kruger 60 A 0 C 4.0 Ross 64 A 4.0 D - o 43 0 M M4 M M K M4 M4 M

Guiding Questions. Measuring Stars

Guiding Questions. Measuring Stars Measuring Stars Guiding Questions 1. How far away are the stars? 2. What is meant by a first-magnitude or second magnitude star? 3. Why are some stars red and others blue? 4. What are the stars made of?

More information

Measuring stellar distances.

Measuring stellar distances. Measuring stellar distances This method can be used to measure distances up to 100pc Some new technology allows measuring distances up to 200pc using this method p= 1/d Stellar Parallax.htm This method

More information

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0. Name: Date: 1. How far away is the nearest star beyond the Sun, in parsecs? A) between 1 and 2 pc B) about 12 pc C) about 4 pc D) between 1/2 and 1 pc 2. Parallax of a nearby star is used to estimate its

More information

Parallax: Measuring the distance to Stars

Parallax: Measuring the distance to Stars Measuring the Stars Parallax: Measuring the distance to Stars Use Earth s orbit as baseline Parallactic angle = 1/2 angular shift Distance from the Sun required for a star to have a parallactic angle of

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Announcements HW#3 due Tuesday (Tomorrow) at 3 pm Lab Observing Trip Tues (9/28) & Thurs (9/30) First Exam next Wed. (9/22) in class - will post review sheet, practice exam

More information

Astron 104 Laboratory #8 The H-R Diagram

Astron 104 Laboratory #8 The H-R Diagram Name: Date: Section: Astron 104 Laboratory #8 The H-R Diagram Section 10.1, 10.5 Introduction The Hertzsprung-Russell diagram, or H-R diagram for short, relates two fundamental properties of stars and

More information

Astron 104 Laboratory #9 The H-R Diagram

Astron 104 Laboratory #9 The H-R Diagram Name: Date: Section: Astron 104 Laboratory #9 The H-R Diagram Section 10.1, 10.5 If we know the temperature of a star (or its Spectral Type) and the stars intrinsic brightness (or luminosity), a great

More information

Light and Stars ASTR 2110 Sarazin

Light and Stars ASTR 2110 Sarazin Light and Stars ASTR 2110 Sarazin Doppler Effect Frequency and wavelength of light changes if source or observer move Doppler Effect v r dr radial velocity dt > 0 moving apart < 0 moving toward Doppler

More information

Astronomy. The Nature of Stars

Astronomy. The Nature of Stars Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am The Nature of Stars Distances to stars A Star's brightness and Luminosity A Magnitude scale Color indicates a Star's temperature

More information

Observed Properties of Stars ASTR 2120 Sarazin

Observed Properties of Stars ASTR 2120 Sarazin Observed Properties of Stars ASTR 2120 Sarazin Extrinsic Properties Location Motion kinematics Extrinsic Properties Location Use spherical coordinate system centered on Solar System Two angles (θ,φ) Right

More information

Lecture Outlines. Chapter 17. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 17. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 17 Astronomy Today 8th Edition Chaisson/McMillan Chapter 17 Measuring the Stars Units of Chapter 17 17.1 The Solar Neighborhood 17.2 Luminosity and Apparent Brightness 17.3 Stellar

More information

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance How to Understand Stars Chapter 7 How do stars differ? Is the Sun typical? Image of Orion illustrates: The huge number of stars Colors Interstellar gas Location in space Two dimensions are easy measure

More information

ASTR-1020: Astronomy II Course Lecture Notes Section III

ASTR-1020: Astronomy II Course Lecture Notes Section III ASTR-1020: Astronomy II Course Lecture Notes Section III Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

Stars I. Distance and Magnitude. How Does One Measure Distance? Distances. Stellar Parallax. Distance Equation some examples!

Stars I. Distance and Magnitude. How Does One Measure Distance? Distances. Stellar Parallax. Distance Equation some examples! Stars I Distance and Magnitude Chapter 17 Why doesn t comparison work? Distances The nearest star (Alpha Centauri) is 40 trillion kilometers away(4 ly) Distance is one of the most important quantities

More information

Chapter 11 Surveying the Stars

Chapter 11 Surveying the Stars Chapter 11 Surveying the Stars Luminosity Luminosity: Rate of energy emitted by star every second. Apparent brightness (flux): Amount of energy passing through every second per unit area. Luninosity =

More information

Astronomy 210 Spring 2017: Quiz 5 Question Packet 1. can: 2. An electron moving between energy levels

Astronomy 210 Spring 2017: Quiz 5 Question Packet 1. can: 2. An electron moving between energy levels Permitted energy levels Astronomy 210 Spring 2017: Quiz 5 Question Packet 1 1. An electron in energy level 1 2 can: (A) only emit a photon. (B) only absorb a photon. (C) either emit, or absorb a photon.

More information

The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax

The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax The Family of Stars Chapter 13 Measuring the Properties of Stars 1 Those tiny glints of light in the night sky are in reality huge, dazzling balls of gas, many of which are vastly larger and brighter than

More information

Properties of Stars. 1.1 Brightnesses of Stars

Properties of Stars. 1.1 Brightnesses of Stars Properties of Stars 1.1 Brightnesses of Stars I m sure you have noticed that some stars are very bright, others less bright, and some are quite dim. There is a true brightness of a star and an apparent

More information

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question Key Concepts: Lecture 21: Measuring the properties of stars (cont.) The Hertzsprung-Russell (HR) Diagram (L versus T) The Hertzprung-Russell Diagram The Stefan-Boltzmann Law: flux emitted by a black body

More information

Properties of Stars. For such huge objects, stars have comparatively simple properties when seen from a long way off

Properties of Stars. For such huge objects, stars have comparatively simple properties when seen from a long way off Properties of Stars For such huge objects, stars have comparatively simple properties when seen from a long way off apparent magnitude distance and direction in space luminosity - absolute magnitude temperature

More information

Reading and Announcements. Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19

Reading and Announcements. Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19 Reading and Announcements Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19 Stars The stars are distant and unobtrusive, but bright and enduring as our fairest

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D. Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Nature of Stars 8-2 Parallax For nearby stars - measure distances with parallax July 1 AU d p A A A January ³ d = 1/p (arcsec) [pc] ³ 1pc when p=1arcsec; 1pc=206,265AU=3

More information

The Hertzsprung - Russell Diagram Laboratory 11

The Hertzsprung - Russell Diagram Laboratory 11 The Hertzsprung - Russell Diagram Laboratory 11 Objective: In this laboratory a random sample of stars will be used to create a HR Diagram. From the diagram it will be determined which category certain

More information

Pr P ope p rti t es s of o f St S a t rs

Pr P ope p rti t es s of o f St S a t rs Properties of Stars Distances Parallax ( Triangulation ): - observe object from two separate points - use orbit of the Earth (1 AU) - measure angular shift of object - angle depends on distance to object

More information

Chapter 10 Measuring the Stars

Chapter 10 Measuring the Stars Chapter 10 Measuring the Stars Some of the topics included in this chapter Stellar parallax Distance to the stars Stellar motion Luminosity and apparent brightness of stars The magnitude scale Stellar

More information

Modern Astronomy Review #1

Modern Astronomy Review #1 Modern Astronomy Review #1 1. The red-shift of light from distant galaxies provides evidence that the universe is (1) shrinking, only (3) shrinking and expanding in a cyclic pattern (2) expanding, only

More information

HOMEWORK - Chapter 17 The Stars

HOMEWORK - Chapter 17 The Stars Astronomy 20 HOMEWORK - Chapter 7 The Stars Use a calculator whenever necessary. For full credit, always show your work and explain how you got your answer in full, complete sentences on a separate sheet

More information

Structure & Evolution of Stars 1

Structure & Evolution of Stars 1 Structure and Evolution of Stars Lecture 2: Observational Properties Distance measurement Space velocities Apparent magnitudes and colours Absolute magnitudes and luminosities Blackbodies and temperatures

More information

Observed Properties of Stars - 2 ASTR 2120 Sarazin

Observed Properties of Stars - 2 ASTR 2120 Sarazin Observed Properties of Stars - 2 ASTR 2120 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Hipparchus 1) Classified stars by brightness,

More information

1 (a) Explain what is meant by a white dwarf when describing the evolution of a star [1]

1 (a) Explain what is meant by a white dwarf when describing the evolution of a star [1] 1 (a) Explain what is meant by a white dwarf when describing the evolution of a star.... [1] (b) Antares is a red giant and one of the brightest stars in the night sky. The parallax angle for this star

More information

Distances to Stars. Important as determines actual brightness but hard to measure as stars are so far away

Distances to Stars. Important as determines actual brightness but hard to measure as stars are so far away SECTION II: Nature of Stars Astronomers measure properties of Stars Distance Mass Apparent Brightness Surface Temperature Radius Find that some are related Large Mass Large Absolute Brightness We will

More information

Astronomy 122 Outline

Astronomy 122 Outline Astronomy 122 Outline This Class (Lecture 12): Stars Next Class: The Nature of Stars Homework #5 is posted. Nightlabs have started! Stellar properties Parallax (distance) Colors Spectral Classes Music:

More information

Astronomical Measurements: Brightness-Luminosity-Distance-Radius- Temperature-Mass. Dr. Ugur GUVEN

Astronomical Measurements: Brightness-Luminosity-Distance-Radius- Temperature-Mass. Dr. Ugur GUVEN Astronomical Measurements: Brightness-Luminosity-Distance-Radius- Temperature-Mass Dr. Ugur GUVEN Space Science Distance Definitions One Astronomical Unit (AU), is the distance from the Sun to the Earth.

More information

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift 17. The Nature of the Stars Parallax reveals stellar distance Stellar distance reveals luminosity Luminosity reveals total energy production The stellar magnitude scale Surface temperature determines stellar

More information

15.1 Properties of Stars

15.1 Properties of Stars Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? How do we measure

More information

Lecture 14: Studying the stars. Astronomy 111 Monday October 16, 2017

Lecture 14: Studying the stars. Astronomy 111 Monday October 16, 2017 Lecture 14: Studying the stars Astronomy 111 Monday October 16, 2017 Reminders Homework #7 due Monday I will give a lecture on DES and LIGO tomorrow at 4pm in the Mitchell Institute Studying the stars

More information

Observational Astronomy - Lecture 8 Stars I - Distances, Magnitudes, Spectra, HR Diagram

Observational Astronomy - Lecture 8 Stars I - Distances, Magnitudes, Spectra, HR Diagram Observational Astronomy - Lecture 8 Stars I - Distances, Magnitudes, Spectra, HR Diagram Craig Lage New York University - Department of Physics craig.lage@nyu.edu April 7, 2014 1 / 36 JPL Horizons Database.

More information

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc.

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc. Chapter 15 Lecture The Cosmic Perspective Seventh Edition Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures?

More information

Characterizing Stars

Characterizing Stars Characterizing Stars The stars Every star you see in the sky is a large hot ball of gas like our star the Sun. Each one possibly making up a solar system with planets and debris orbiting around them. Stellar

More information

Properties of Stars (continued) Some Properties of Stars. What is brightness?

Properties of Stars (continued) Some Properties of Stars. What is brightness? Properties of Stars (continued) Some Properties of Stars Luminosity Temperature of the star s surface Mass Physical size 2 Chemical makeup 3 What is brightness? Apparent brightness is the energy flux (watts/m

More information

The Hertzprung-Russell (HR) Diagram

The Hertzprung-Russell (HR) Diagram Name: Partner(s): 1102 or 3311: Desk # Date: The Hertzprung-Russell (HR) Diagram Purpose Reproduce Hertzsprung s and Russell s simultaneous discovery Investigate the relationships between luminosity, mass,

More information

Properties of Stars. N. Sharp (REU/NOAO/AURA/NSF)

Properties of Stars. N. Sharp (REU/NOAO/AURA/NSF) Properties of Stars N. Sharp (REU/NOAO/AURA/NSF) What properties of the stars can we determine just from this image? Measuring Stars Measuring Stars Information you can get from 1 image: Position on the

More information

The magnitude system. ASTR320 Wednesday January 30, 2019

The magnitude system. ASTR320 Wednesday January 30, 2019 The magnitude system ASTR320 Wednesday January 30, 2019 What we measure: apparent brightness How bright a star appears to be in the sky depends on: How bright it actually is Luminosity and its distance

More information

Examination paper for FY2450 Astrophysics

Examination paper for FY2450 Astrophysics 1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Rob Hibbins Phone: 94820834 Examination date: 31-05-2014 Examination time: 09:00 13:00 Permitted examination

More information

Remember from Stefan-Boltzmann that 4 2 4

Remember from Stefan-Boltzmann that 4 2 4 Lecture 17 Review Most stars lie on the Main sequence of an H&R diagram including the Sun, Sirius, Procyon, Spica, and Proxima Centauri. This figure is a plot of logl versus logt. The main sequence is

More information

Light. Geometric Optics. Parallax. PHY light - J. Hedberg

Light. Geometric Optics. Parallax. PHY light - J. Hedberg Light 1. Geometric Optics 1. Parallax 2. Magnitude Scale 1. Apparent Magnitude 2. Describing Brightness 3. Absolute Magnitude 3. Light as a Wave 1. Double Slit 2. The Poynting Vector 4. Blackbody Radiation

More information

Measuring the Stars. The measurement of distances The family of distance-measurement techniques used by astronomers to chart the universe is called

Measuring the Stars. The measurement of distances The family of distance-measurement techniques used by astronomers to chart the universe is called Measuring the Stars How to measure: Distance Stellar motion Luminosity Temperature Size Evolutionary stage (H-R diagram) Cosmic distances Mass The measurement of distances The family of distance-measurement

More information

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101 Astronomical Observations: Distance & Light 7/2/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool: Lasers on the Moon Astronomy 101 Outline for Today Astronomy Picture of the Day

More information

Distances to the stars Friedrich Bessel Cygni 10 light years. Just beat Struve and Henderson who measured Vega and α Centauri respectively.

Distances to the stars Friedrich Bessel Cygni 10 light years. Just beat Struve and Henderson who measured Vega and α Centauri respectively. Distances to the stars Friedrich Bessel 1838 61 Cygni 10 light years. Just beat Struve and Henderson who measured Vega and α Centauri respectively. Distances to the stars the technique p < 1arcsecond d

More information

1 - Stars: Introduction. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

1 - Stars: Introduction. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 1 - Stars: Introduction introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The Milky Way Is a spiral galaxy, about 50 kpc across and about 1 kpc thick 1 parsec is 3.1 10 16 m, or 3.26 light

More information

Stellar Composition. How do we determine what a star is made of?

Stellar Composition. How do we determine what a star is made of? Stars Essential Questions What are stars? What is the apparent visual magnitude of a star? How do we locate stars? How are star classified? How has the telescope changed our understanding of stars? What

More information

Astronomy 102: Stars and Galaxies Exam 2

Astronomy 102: Stars and Galaxies Exam 2 October 13, 2004 Name: Astronomy 102: Stars and Galaxies Exam 2 Instructions: Write your answers in the space provided; indicate clearly if you continue on the back of a page. No books, notes, or assistance

More information

Astronomy Exam 3 - Sun and Stars

Astronomy Exam 3 - Sun and Stars Astronomy Exam 3 - Sun and Stars Study online at quizlet.com/_4zgp6 1. `what are the smallest group of stars in the H-R diagram 2. A star has a parallax of 0.05". what is the distance from the earth? white

More information

Astronomy 150: Killer Skies. Lecture 20, March 7

Astronomy 150: Killer Skies. Lecture 20, March 7 Assignments: Astronomy 150: Killer Skies HW6 due next time at start of class Lecture 20, March 7 Office Hours begin after class or by appointment Night Observing continues this week, 7-9 pm last week!

More information

301 Physics 1/20/09. The Family of Stars. Chapter 12. Triangulation. Trigonometric Parallax. Course/Syllabus Overview Review of 301 stuff Start Ch.

301 Physics 1/20/09. The Family of Stars. Chapter 12. Triangulation. Trigonometric Parallax. Course/Syllabus Overview Review of 301 stuff Start Ch. 1/20/09 Course/Syllabus Overview Review of 301 stuff Start Ch. 12 More than just knowing various facts Understand how we arrive at these conclusions 301 Physics Physics Concepts Light Properties of (frequency,wavelength,energy)

More information

A star is at a distance of 1.3 parsecs, what is its parallax?

A star is at a distance of 1.3 parsecs, what is its parallax? Stars Spectral lines from stars Binaries and the masses of stars Classifying stars: HR diagram Luminosity, radius, and temperature Vogt-Russell theorem Main sequence Evolution on the HR diagram A star

More information

Y Centauri A 6. Alpha O Centauri B 7. Alpha

Y Centauri A 6. Alpha O Centauri B 7. Alpha H-R Star Spectrum Lab The H-R diagram, as it s known for short, plots a star s luminosity its true brightness against its surface temperature in Kelvin. Are there patterns that emerge and what does this

More information

Today in Astronomy 142: observations of stars

Today in Astronomy 142: observations of stars Today in Astronomy 142: observations of stars What do we know about individual stars?! Determination of stellar luminosity from measured flux and distance Magnitudes! Determination of stellar surface temperature

More information

The Cosmic Distance Ladder

The Cosmic Distance Ladder The Cosmic Distance Ladder (Mário Santos) What is it? A way to calculate distances to objects very far away based on the measured distances to nearby objects: 1. Start with the distance to the Sun (1 AU)

More information

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift 17. The Nature of the Stars Parallax reveals stellar distance Stellar distance reveals luminosity Luminosity reveals total energy production The stellar magnitude scale Surface temperature determines stellar

More information

Chapter 8: The Family of Stars

Chapter 8: The Family of Stars Chapter 8: The Family of Stars We already know how to determine a star s surface temperature chemical composition motion Next, we will learn how we can determine its distance luminosity radius mass Measuring

More information

HR Diagram Lab. Area 1 Area 4. Area 5. Area 2. Area 6 Area 3

HR Diagram Lab. Area 1 Area 4. Area 5. Area 2. Area 6 Area 3 Name / 65 pts HR Diagram Lab Introduction Some of the greatest advances concerning the nature of stars have come about by comparing their properties using graphs. In the early 1900 s, while studying the

More information

The Properties of Stars

The Properties of Stars 10/7/011 The Proerties of Stars Distance, Luminosity, and Radius Trigonometric Parallax To measure the distance to star X, hotograh it on two dates searated by 6 months. In the figure, A and are the ositions

More information

PHYS f: Problem set #0 Solutions

PHYS f: Problem set #0 Solutions PHYS-638-07f: Problem set #0 Solutions. 1. Angles, magnitudes, inverse square law: a. How far from the Earth would the Sun have to be moved so that its apparent angular diameter would be 1 arc second?

More information

PHYS-333: Problem set #1 Solutions

PHYS-333: Problem set #1 Solutions PHYS-333: Problem set #1 Solutions VERSION of February 10, 2018. 1. Energy flux and magnitude: a. Suppose two objects have energy fluxes of f and f + f, where f f. Derive an approximate expression for

More information

Lab: Distance to the Globular Cluster M15 Containing RR Lyrae Stars

Lab: Distance to the Globular Cluster M15 Containing RR Lyrae Stars Astronomy 1100 Name Lab: Distance to the Globular Cluster M15 Containing RR Lyrae Stars Distance to Stars: This distance to stars, star clusters and galaxies is an essential piece of information in astronomy.

More information

Making and Using the Hertzsprung - Russell Diagram

Making and Using the Hertzsprung - Russell Diagram Making and Using the Hertzsprung - Russell Diagram Name The Hertzsprung-Russell Diagram is one of the main tools we use to organize data describing how stars evolve, ages of star clusters, masses of stars

More information

17 The Nature of the Stars

17 The Nature of the Stars 17 The Nature of the Stars WEB LINK 17.1 Some stars in this cluster (called M39) are distinctly blue in color, while others are yellow or red. (Heidi Schweiker/NOAO/AURA/NSF) To the unaided eye, the night

More information

Determining the Properties of the Stars

Determining the Properties of the Stars Determining the Properties of the Stars This set of notes by Nick Strobel covers: The properties of stars--their distances, luminosities, compositions, velocities, masses, radii, and how we determine those

More information

Chapter 15 Surveying the Stars Pearson Education, Inc.

Chapter 15 Surveying the Stars Pearson Education, Inc. Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? 1. How

More information

λ = 650 nm = c = m s 1 f =? c = fλ f = c λ = ( m s 1 ) ( m) = = Hz T = 1 f 4.

λ = 650 nm = c = m s 1 f =? c = fλ f = c λ = ( m s 1 ) ( m) = = Hz T = 1 f 4. Chapter 13 Stars Section 13.1 Astronomical measurements Worked example: Try yourself 13.1.1 CALCULATING THE FREQUENCY AND PERIOD OF LIGHT The speed of light in a vacuum is approximately 3.0 10 8 m s 1.

More information

The Distance Modulus. Absolute Magnitude. Chapter 9. Family of the Stars

The Distance Modulus. Absolute Magnitude. Chapter 9. Family of the Stars Foundations of Astronomy 13e Seeds Phys1403 Introductory Astronomy Instructor: Dr. Goderya Chapter 9 Family of the Stars Cengage Learning 016 Topics for Today s Class 1. Recap: Intrinsic Brightness a)

More information

Ast 241 Stellar Atmospheres and Interiors

Ast 241 Stellar Atmospheres and Interiors Ast 241 Stellar Atmospheres and Interiors Goal: basic understanding of the nature of stars Very important for astronomers Most of (known) mass and luminosity from stars Normal galaxies To understand galaxies

More information

Gaia Launched in Dec D map of the stars near Sun = 10% of Galaxy Measure the positions of a billion stars to brightness V=20 Precise to

Gaia Launched in Dec D map of the stars near Sun = 10% of Galaxy Measure the positions of a billion stars to brightness V=20 Precise to Gaia Launched in Dec 2013 3D map of the stars near Sun = 10% of Galaxy Measure the positions of a billion stars to brightness V=20 Precise to 0.000024 arcseconds = hair at 1000km Accurate parallax/distances?

More information

Universe. Tenth Edition. The Nature of the Stars. Parallax. CHAPTER 17 The Nature of Stars

Universe. Tenth Edition. The Nature of the Stars. Parallax. CHAPTER 17 The Nature of Stars Universe Tenth Edition The Nature of the Stars Roger A. Freedman, Robert M. Geller, William J. Kaufmann III CHAPTER 17 The Nature of Stars W. H. Freeman and Company Parallax Careful measurements of the

More information

Basic Properties of the Stars

Basic Properties of the Stars Basic Properties of the Stars The Sun-centered model of the solar system laid out by Copernicus in De Revolutionibus (1543) made a very specific prediction: that the nearby stars should exhibit parallax

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Announcement: Tonight s observing session with Stephanie Ho has been CANCELLED. She has rescheduled it for 8-9pm on Thursday Nov. 3 rd. Hopefully the clouds will part by then. Lecture

More information

Lecture 16 The Measuring the Stars 3/26/2018

Lecture 16 The Measuring the Stars 3/26/2018 Lecture 16 The Measuring the Stars 3/26/2018 Test 2 Results D C B A Questions that I thought were unfair: 13, 18, 25, 76, 77, 80 Curved from 85 to 79 Measuring stars How far away are they? How bright are

More information

E1. This question is about stars. (a) Distinguish between apparent magnitude and absolute magnitude. [2]

E1. This question is about stars. (a) Distinguish between apparent magnitude and absolute magnitude. [2] 1 Option E Astrophysics M09/4/PHYSI/SP3/ENG/TZ1/XX+ E1. This question is about stars. (a) Distinguish between apparent magnitude and absolute magnitude. [2] apparent magnitude is a measure of how bright

More information

Temperature, Blackbodies & Basic Spectral Characteristics.

Temperature, Blackbodies & Basic Spectral Characteristics. Temperature, Blackbodies & Basic Spectral Characteristics. Things that have one primary temperature but also exhibit a range of temperatures are known in physics as blackbodies. They radiate energy thermally.

More information

Introductory Astronomy

Introductory Astronomy 1 Introductory Astronomy NAME: Homework 19: Some Star Basics: Homeworks and solutions are posted on the course web site. Homeworks are NOT handed in and NOT marked. But many homework problems ( 50 70 %)

More information

Daily Science 04/04/2017

Daily Science 04/04/2017 Daily Science 04/04/2017 Which statement best describes the difference between type A stars and type B stars as shown in the diagram? a. Type A stars burn for a shorter amount of time than type B stars.

More information

Astronomy 122. Lunar Eclipse. Make sure to pick up a grating from Emily! You need to give them back after class.

Astronomy 122. Lunar Eclipse. Make sure to pick up a grating from Emily! You need to give them back after class. Astronomy 122 Make sure to pick up a grating from Emily! You need to give them back after class. This Class (Lecture 11): Twinkle, Twinkle, Little Star Next Class: Stellar Evolution: The Main Sequence

More information

Get ready for quiz # 5! Get out a ½ sheet and Calculator

Get ready for quiz # 5! Get out a ½ sheet and Calculator Get ready for quiz # 5! Get out a ½ sheet and Calculator The above image shows the solar eclipse earlier this month as covered and uncovered by several different solar observatories. The innermost image

More information

Hertzsprung-Russel Diagrams and Distance to Stars

Hertzsprung-Russel Diagrams and Distance to Stars Chapter 10 Hertzsprung-Russel Diagrams and Distance to Stars 10.1 Purpose In this lab, we will explore how astronomer classify stars. This classificatin one way that can be used to determine the distance

More information

Astro 1050 Mon. Apr. 3, 2017

Astro 1050 Mon. Apr. 3, 2017 Astro 1050 Mon. Apr. 3, 017 Today: Chapter 15, Surveying the Stars Reading in Bennett: For Monday: Ch. 15 Surveying the Stars Reminders: HW CH. 14, 14 due next monday. 1 Chapter 1: Properties of Stars

More information

ClassAction: Stellar Properties Module Instructor s Manual

ClassAction: Stellar Properties Module Instructor s Manual ClassAction: Stellar Properties Module Instructor s Manual Table of Contents Section 1: Warm-up Questions...3 Temperature and Color.....4 Section 2: General Questions.....5 Apparent Magnitude and Brightness....6

More information

How does the Sun shine? What is the Sun s structure? Lifetime of the Sun. Luminosity of the Sun. Radiation Zone. Core 3/30/17

How does the Sun shine? What is the Sun s structure? Lifetime of the Sun. Luminosity of the Sun. Radiation Zone. Core 3/30/17 What is the Sun s structure? From inside out, the layers are: Core Radiation Zone Convection Zone Photosphere Chromosphere Corona How does the Sun shine? The Sun has its own energy source Main difference

More information

Answer Key Testname: MT S

Answer Key Testname: MT S Answer Key Testname: MT1-333-12S 1) B 2) A 3) E 4) C 5) C 6) C 7) C 8) A 9) E 10) C 11) A 12) C 13) C 14) C 15) C 16) D 17) A 18) D 19) A 20) C 21) B 22) A 23) A 24) C 25) B 26) C 27) A star with apparent

More information

H-R Diagram Lab. Vocabulary:

H-R Diagram Lab. Vocabulary: H-R Diagram Lab Vocabulary: luminosity: brightness dependent on a star s size; temperature and distance spectral class: classification of stars by their spectrum and luminosity magnitude: measure of the

More information

a. Star A c. The two stars are the same distance b. Star B d. Not enough information

a. Star A c. The two stars are the same distance b. Star B d. Not enough information Name: Astro 102 S17 Test 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Your test is Version A. Please fill in the circle for A for this question on

More information

Astronomy 141 Life in the Universe Professor Gaudi Homework #4 Solutions

Astronomy 141 Life in the Universe Professor Gaudi Homework #4 Solutions Astronomy 141 Life in the Universe Autumn Quarter 008 Prof Gaudi Homework #4 Solutions These questions concern the concept of targets for searches for extrasolar planets specifically (a) the number of

More information

IB Physics - Astronomy

IB Physics - Astronomy Solar System Our Solar System has eight planets. The picture below shows their relative sizes, but NOT their relative distances. A planet orbits the sun, and has gravitationally cleared its orbital area

More information

Marian Physics! Apparent Magnitude. Flat Prairie Publishing

Marian Physics! Apparent Magnitude. Flat Prairie Publishing Marian Physics! Apparent Flat Prairie Publishing Apparent Assignment Apparent Apparent The scale used in astronomy to measure the brightness of stars is steeped in history and perhaps not a whole lot of

More information

Astronomical Distance Determination

Astronomical Distance Determination Distance ladder: Determine distances, d 1, for a nearby set of objects using technique 1, but then Astronomical Distance Determination http://apod.nasa.gov/apod/ Find new brighter objects at distances

More information

The Magnitude Scale. The Color Index.

The Magnitude Scale. The Color Index. The Magnitude Scale The Color Index. The Magnitude Scale Measuring the brightness of astronomical objects While cataloging stars in the sky, the Greek Astronomer Hipparchus developed the magnitude system,

More information

A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet

A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet Student Name: Lab TA Name: A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet One of the most basic physical properties of a star is its luminosity, the rate at which it radiates energy

More information

The Magnitude Scale Measuring the brightness of astronomical objects

The Magnitude Scale Measuring the brightness of astronomical objects The Magnitude Scale Measuring the brightness of astronomical objects While cataloging stars in the sky, the Greek Astronomer Hipparchus developed the magnitude system, which is still used by astronomers

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 6. The Structure and Scale of the Universe

More information