PH206 Exam III Spring 2000

Size: px
Start display at page:

Download "PH206 Exam III Spring 2000"

Transcription

1 Name PH206 Exam III Spring 2000 Some Constants: % = sin(a±b)=sinacosb ± cosasinb ) = W/m 2 #K 4 cos(a±b)=cosacosb. sinasinb k B = J/K sina ± sinb = 2 sin ½(A±B) cos½(a.b) R = J/mol#K cosa ± cosb = 2 cos½(a+b) sin½[±(a-b)] A V = molecules/mol 1 cal = J c = m/s 1 atm = 101 kpa m e c 2 = MeV monatomic ideal gas: = C p /C V = ev = J I 0 = W/m 2 velocity of sound in air (room temp, 1 atm) = 343 m/s. Write your solutions on these pages, and turn in the entire exam. If you need extra paper, just ask. For problems 11 to 15: to receive full credit for correct answers, you must show your work! Report numerical answers to three (3) significant figures. Score Summary (to be filled in by instructor) Mult Choice Short Answer Problems Totals + + =

2 PH206 Spring 2000 Page 2 Multiple Choice: (Circle your choice) 1. For two point sources of light, a diffraction pattern on a distant screen is observed which has a dark spot in the center (i.e. at = 0 ). Which of the following can be concluded from this observation? a. The two sources are coherent and in phase. b. The two sources are coherent and 180 o out of phase. c. The two sources are incoherent and in phase d. The two sources are incoherent and 180 o out of phase. e. Such a pattern is impossible. 2. In a two-slit optical interference pattern the wavelength and frequency of the light are a. the same everywhere b. both greater in regions with destructive interference. c. both smaller in regions with destructive interference. d. the wavelength is smaller and the frequency higher in regions with destructive interference. e. the wavelength is larger and the frequency smaller in regions with destructive interference. 3. For a single slit diffraction pattern produced on a screen using red light, you see a central maximum, and a number of smaller maxima on either side. If the light were changed to blue light (blue light has a shorter wavelength than does red light), then a. the pattern will shrink in size (central maximum less wide, other maxima closer to it) b. the pattern increases in size (central maximum wider, other maxima farther from it) c. the width of the central maximum increases, but the positions of the other maxima do not change. d. the width of the central maximum decreases, but the positions of the other maxima do not change. e. the width of the central maximum stays the same, but the other maxima move farther from it. 4. A rocket is traveling by the Earth with a speed of 0.9 c. Just when it passes the Earth, the rocket ejects a shuttle craft in the backwards direction with a speed of 0.5 c relative to the rocket. Just after the shuttle is ejected, the shuttle emits a pulse of light. What is the speed of the light pulse as seen by an observer on the Earth? a. 1.4 c b c c. 0.4 c d. 1.0 c e. None of these 5. Unpolarized light is sent through a single polarizing sheet which has its axis vertical. How much intensity gets through the sheet? (Assume a perfect polarizer, with no additional losses). a. 100% b. 70.7% c. 50% d. 29.3% e. None of these

3 PH206 Spring 2000 Page 3 Short Answer Provide a short answer (1 or 2 sentences and/or appropriately labeled diagram) for each. 6. Why can you easily hear around corners, but not see around corners? 7. If you hold two small flashlights near each other and shine the light from both at the same spot on distant wall, you do not see a diffraction pattern. Why? 8. The small angle approximation was used for some of our equations and for some of the solutions to problems. Where does the small angle approximation come from and how small of an angle is generally necessary for it to work?

4 PH206 Spring 2000 Page 4 9. What are proper time, proper length, and rest energy and why are they useful? 10. The Andromeda galaxy is 2 million light-years from our Milky Way. That is, it takes light 2 million years to get to the Andromeda galaxy. Though nothing can travel faster than light, how is it possible that an Earth-born astronaut could get to the Andromeda galaxy in their own lifetime if only they had a fast enough rocket?

5 PH206 Spring 2000 Page 5 Problems (SHOW YOUR WORK, you will not get credit unless we can see how you got your answer.) 11. Laser light ( = 694 nm) is incident on two narrow slits which are mm apart. What is the spacing between the bright fringes of the diffraction pattern observed on a screen 5.00 m away? 12. A single narrow slit is illuminated with yellow light ( = 590 nm). If the central maximum is 9.32 cm wide on a screen 10.0 m away, how wide is the slit? 13. A radar installation operates at 9000 MHz ( Hz) with a dish antenna that is 15.0 m across. What is the maximum distance for which this system could expect to be able to distinguish two aircraft which are 150 m apart?

6 PH206 Spring 2000 Page As a rocket passes by the Earth with a speed of c an observer on the Earth measures the length of the rocket to be 9.32 m. How long is the rocket as measured by an astronaut on the rocket? 15. In a particular color television picture tube, the electrons are accelerated through a potential difference of 30.0 kv (30000 V). What is the speed of the electrons when they strike the screen? (Put your value in units of c ). END

PH206 Exam II Spring 2000

PH206 Exam II Spring 2000 Name PH206 Exam II Spring 2000 Some Constants: % = 3.14159 sin(a±b)=sinacosb ± cosasinb ) = 5.6696 10-8 W/m 2 #K 4 cos(a±b)=cosacosb. sinasinb k B = 1.38 10-23 J/K sina ± sinb = 2 sin ½(A±B) cos½(a.b)

More information

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference Phys 2435: Chap. 35, Pg 1 Geometrical Optics Assumption: the dimensions

More information

Physics 30: Chapter 5 Exam Wave Nature of Light

Physics 30: Chapter 5 Exam Wave Nature of Light Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark

More information

Level 3 Physics, 2016

Level 3 Physics, 2016 91523 915230 3SUPERVISOR S Level 3 Physics, 2016 91523 Demonstrate understanding of wave systems 2.00 p.m. Tuesday 15 November 2016 Credits: Four Achievement Achievement with Merit Achievement with Excellence

More information

Physics 214 Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name:

Physics 214 Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name: Physics 214 Midterm Exam Spring 215 Last Name: First Name NetID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Keep your calculator on your own desk. Calculators

More information

1/d o +1/d i =1/f. Chapter 24 Wave Optics. The Lens Equation. Diffraction Interference Polarization. The Nature of Light

1/d o +1/d i =1/f. Chapter 24 Wave Optics. The Lens Equation. Diffraction Interference Polarization. The Nature of Light Chapter 24 Wave Optics Diffraction Interference Polarization 2F h o The Lens Equation 1/d o +1/d i =1/f F F O d o f d i h i Geometrical and Physical Optics Geometrical Optics: The study of optical phenomena

More information

10. A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a certain sample. The corresponding Celsius temperature is: A)

10. A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a certain sample. The corresponding Celsius temperature is: A) Physics 223 practice final exam, Form X!! Fall 2017 Name Write your answers (one per question) on a Scantron form (882E) using a pencil. Write your name above. Return this exam with your scantron upon

More information

PHYS 214 Exam Spring 2017 Midterm

PHYS 214 Exam Spring 2017 Midterm PHYS 214 Exam Spring 2017 Midterm 1. Two identical loudspeakers produce sound of equal intensity and frequency = 1200 Hz. The sound waves travel at a speed of 340 m/s. The speakers are driven in phase

More information

Physics 1C Lecture 14B. Today: End of Chapter 14 Start of Chapter 27

Physics 1C Lecture 14B. Today: End of Chapter 14 Start of Chapter 27 Physics 1C Lecture 14B Today: End of Chapter 14 Start of Chapter 27 ! Example Wave Interference! Two strings with linear densities of 5.0g/m are stretched over pulleys, adjusted to have vibrating lengths

More information

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3 1. A beam of light passes from air into water. Which is necessarily true? A) The frequency is unchanged and the wavelength increases. B) The frequency is unchanged and the wavelength decreases. C) The

More information

Seat Number. Print and sign your name, and write your Student ID Number and seat number legibly in the spaces above.

Seat Number. Print and sign your name, and write your Student ID Number and seat number legibly in the spaces above. Physics 123A Final Spring 2001 Wednesday, June 6 Name last first initial Seat Number Signature Student Number Print and sign your name, and write your Student ID Number and seat number legibly in the spaces

More information

Practice Final Name. m 3 /s b) 8.75 x 10 4 c) 8.21 x 10 4 d) 7.45 x 10 4 e) 7.21 x 10 4 Ans: a

Practice Final Name. m 3 /s b) 8.75 x 10 4 c) 8.21 x 10 4 d) 7.45 x 10 4 e) 7.21 x 10 4 Ans: a I included more than 35 problems only for practice purposes. In the final you will have 35 problems, as I stated during the last class meeting on Thursday, December 7, 2006. Practice Final Name 1) In a

More information

Physics 214. Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name:

Physics 214. Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name: Last Name: First Name NetID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Keep your calculator on your own desk. Calculators may not be shared. This is

More information

Physics Spring 2008 Midterm #1 Solution

Physics Spring 2008 Midterm #1 Solution Physics 102-1 Spring 2008 Midterm #1 Solution Grading note: There are seven problems on nine pages. Point values are given with each problem. They add up to 110 points. In multi-part problems, points are

More information

Physics 25 Exam #4 December 2, 2008 Dr. Alward Page 1

Physics 25 Exam #4 December 2, 2008 Dr. Alward Page 1 1. Light with a wavelength of 589 nm in a vacuum strikes the surface of an unknown liquid at an angle of 31.2 with respect to the normal to the surface. If the light travels at a speed of 1.97 10 8 m/s

More information

Exam Review Practice Questions. Electric Forces. the force is zero. Four charges are fixed at the corners of a square of sides 4 m as shown.

Exam Review Practice Questions. Electric Forces. the force is zero. Four charges are fixed at the corners of a square of sides 4 m as shown. Exam Review Practice Questions Electric Forces QUESTION 1 Three charges of equal magnitude are positioned as shown, with Q3 equidistant from Q1 and Q2. Q1 and Q3 are positive charges; Q2 is negative. What

More information

Downloaded from

Downloaded from Question 10.1: Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected, and (b) refracted light? Refractive index

More information

A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.

A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth. Waves_P2 [152 marks] A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth. The beam is incident normally on a double slit. The distance between the slits

More information

LAST NAME First Name(s) Student Number Practical Group as on student card as on student card Code

LAST NAME First Name(s) Student Number Practical Group as on student card as on student card Code LAST NAME First Name(s) Student Number Practical Group as on student card as on student card Code PHY132H1S Term Test version A Tuesday, January 27, 2015 Duration: 80 minutes Aids allowed: A pocket calculator

More information

LAST NAME First Name(s) Student Number Practical Group as on student card as on student card Code

LAST NAME First Name(s) Student Number Practical Group as on student card as on student card Code LAST NAME First Name(s) Student Number Practical Group as on student card as on student card Code PHY132H1S Term Test version B Tuesday, January 27, 2015 Duration: 80 minutes Aids allowed: A pocket calculator

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 Physics for the Life Sciences FINAL EXAMINATION April 12, 2016 Time: 3 hours NAME: STUDENT NO.: (Last) Please Print

More information

The Diffraction Grating

The Diffraction Grating The Diffraction Grating If one extends the double slit to large number of slits very closely spaced, one gets what is called a diffraction grating. d sin θ. Maxima are still at d sin θ m = mλ, m = 0, 1,

More information

AP PHYSICS 2011 SCORING GUIDELINES (Form B)

AP PHYSICS 2011 SCORING GUIDELINES (Form B) AP PHYSICS 2011 SCORING GUIDELINES (Form B) General Notes About 2011 AP Physics Scoring Guidelines 1. The solutions contain the most common method of solving the free-response questions and the allocation

More information

Exam 3--PHYS 202--S10

Exam 3--PHYS 202--S10 ame: Exam 3--PHYS 202--S0 Multiple Choice Identify the choice that best completes the statement or answers the question A person uses a convex lens that has a focal length of 25 cm to inspect a gem The

More information

LECTURE 32: Young's Double-Slit Experiment

LECTURE 32: Young's Double-Slit Experiment Select LEARNING OBJECTIVES: LECTURE 32: Young's Double-Slit Experiment Understand the two models of light; wave model and particle model. Be able to understand the difference between diffraction and interference.

More information

Fluids density Pascal s principle (pressure vs. depth) Equation of continuity Buoyant force Bernoulli s (pressure, velocity, depth)

Fluids density Pascal s principle (pressure vs. depth) Equation of continuity Buoyant force Bernoulli s (pressure, velocity, depth) Final Exam All Finals week in the testing center. 50 multiple choice questions. Equations on the back of the test. Calculators are allowed on the test. There is a practice test in the packet. Exam 1 Review

More information

Physics 11 Exam 3 Spring 2016

Physics 11 Exam 3 Spring 2016 Physics 11 Exam 3 Spring 2016 Name: Circle the BEST Answer 1 Electromagnetic waves consist of A) compressions and rarefactions of electromagnetic pulses. B) oscillating electric and magnetic fields. C)

More information

PH 222-3A Spring 2010

PH 222-3A Spring 2010 PH -3A Spring 010 Interference Lecture 6-7 Chapter 35 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 35 Interference The concept of optical interference is critical to understanding

More information

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points.

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points. Physics 5B FINAL EXAM Winter 2009 PART I (15 points): True/False Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth

More information

Final Exam, Part A. December 12, Score:

Final Exam, Part A. December 12, Score: Physics 152 December 12, 2005 Final Exam, Part A Roster No.: Score: Exam time limit: 2 hours. You may use a calculator and both sides of TWO sheets of notes, handwritten only. Closed book; no collaboration.

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

Physics E1bx April 28 May 5, 2015

Physics E1bx April 28 May 5, 2015 Physics E1bx: Assignment for April 28 May 5 Homework #9: Sound and Diffraction Due Tuesday, May 5, at 6:00PM This assignment must be turned in by 6:00PM on Tuesday, May 5. Late homework will not be accepted.

More information

Physics 5B PRACTICE FINAL EXAM A Winter 2009

Physics 5B PRACTICE FINAL EXAM A Winter 2009 Physics 5B PRACTICE FINAL EXAM A Winter 2009 INSTRUCTIONS: This is a closed book exam. You may consult four (twosided) 8 1/2" 11" sheets of paper of personal notes. However, you may not collaborate and/or

More information

RED. BLUE Light. Light-Matter

RED. BLUE Light.   Light-Matter 1 Light-Matter This experiment demonstrated that light behaves as a wave. Essentially Thomas Young passed a light of a single frequency ( colour) through a pair of closely spaced narrow slits and on the

More information

Double-Slit Interference

Double-Slit Interference Double-Slit Interference 1. Objectives. The objective of this laboratory is to verify the double-slit interference relationship. 2. Theory. a. When monochromatic, coherent light is incident upon a double

More information

C. Incorrect! The velocity of electromagnetic waves in a vacuum is the same, 3.14 x 10 8 m/s.

C. Incorrect! The velocity of electromagnetic waves in a vacuum is the same, 3.14 x 10 8 m/s. AP Physics - Problem Drill 21: Physical Optics 1. Which of these statements is incorrect? Question 01 (A) Visible light is a small part of the electromagnetic spectrum. (B) An electromagnetic wave is a

More information

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants. PHYSICS 253 SAMPLE FINAL EXAM Name Student Number CHECK ONE: Instructor 1 10:00 Instructor 2 1:00 Note that problems 1-19 are worth 2 points each, while problem 20 is worth 15 points and problems 21 and

More information

Chapter 35. Interference

Chapter 35. Interference Chapter 35 Interference The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity patterns formed by small apertures.

More information

Physics General Physics II. Electricity, Magnetism and Optics Lecture 20 Chapter Wave Optics. Fall 2015 Semester Prof.

Physics General Physics II. Electricity, Magnetism and Optics Lecture 20 Chapter Wave Optics. Fall 2015 Semester Prof. Physics 21900 General Physics II Electricity, Magnetism and Optics Lecture 20 Chapter 23.1-2 Wave Optics Fall 2015 Semester Prof. Matthew Jones Announcement Exam #2 will be on Thursday, November 5 th (tomorrow)

More information

How fast can things go?

How fast can things go? Heinemann Physics 12 4e Year 12 Physics Student Name: Practice Exam 1 (Units 3 & 4) This sample exam has been prepared as part of the Pearson suite of resources for the Units 3 and 4 VCE Physics course,

More information

PHYSICS 109 FINAL EXAMINATION

PHYSICS 109 FINAL EXAMINATION PRINTED NAME: PHYSICS 109 FINAL EXAMINATION Problem January 24, 2002 8:30 11:30 am Jadwin A09 Score 1 /20 2 /10 3 /20 4 /20 5 /20 6 /10 7 /20 Total /120 When you are told to begin, check that this examination

More information

Higher Physics. Particles and Waves

Higher Physics. Particles and Waves Perth Academy Physics Department Higher Physics Particles and Waves Particles and Waves Homework Standard Model 1 Electric Fields and Potential Difference 2 Radioactivity 3 Fusion & Fission 4 The Photoelectric

More information

THE DIFFRACTION GRATING SPECTROMETER

THE DIFFRACTION GRATING SPECTROMETER Purpose Theory THE DIFFRACTION GRATING SPECTROMETER a. To study diffraction of light using a diffraction grating spectrometer b. To measure the wavelengths of certain lines in the spectrum of the mercury

More information

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one 5.1.1 Oscillating Systems Waves Review Checklist 5.1.2 Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one Four pendulums are built as shown

More information

Final Exam, Physics 122-Summer 2003, Fri. 8/22/2003

Final Exam, Physics 122-Summer 2003, Fri. 8/22/2003 S.S.N.: General Instructions Final Exam, Physics 122-Summer 2003, Fri. 8/22/2003 Instructor: Dr. S. Liberati Do all the problems by writing on the exam book (continue to work on the back of each page if

More information

University of Maryland Department of Physics. Spring 2009 Final Exam 20. May (175 points) Post grades on web? (Initial, please) Yes No

University of Maryland Department of Physics. Spring 2009 Final Exam 20. May (175 points) Post grades on web? (Initial, please) Yes No University of Maryland Department of Physics Physics 122 20. May 2009 (175 points) Post grades on web? (Initial, please) Yes No (If you agree, I will post your grades and your detailed scores for each

More information

A 0.2 m s -1. B 10 m s -1. C 20 m s -1. D 40 m s -1

A 0.2 m s -1. B 10 m s -1. C 20 m s -1. D 40 m s -1 Q1. Two points on a progressive wave are one-eighth of a wavelength apart. The distance between them is 0.5 m, and the frequency of the oscillation is 10 Hz. What is the minimum speed of the wave? 0.2

More information

General Physics II PHYS 102 Final Exam Spring st May 2011

General Physics II PHYS 102 Final Exam Spring st May 2011 Qatar University Arts and Sciences College Mathematics and Physics Department General Physics II PHYS 102 Final Exam Spring 2011 31 st May 2011 Student Name: ID Number: 60 Please read the following carefully

More information

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova Exam 4 P202 Spring 2004 Instructor: Prof. Sinova Name: Date: 4/22/04 Section: All work must be shown to get credit for the answer marked. You must show or state your reasoning. If the answer marked does

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , 1 O P T I C S 1. Define resolving power of a telescope & microscope and give the expression for its resolving power. 2. Explain briefly the formation of mirage in deserts. 3. The radii of curvature of

More information

Prac%ce Quiz 8. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar.

Prac%ce Quiz 8. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. Prac%ce Quiz 8 These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. A laser beam shines vertically upwards. What laser power is needed

More information

Level 3 Physics, 2018

Level 3 Physics, 2018 91523 915230 3SUPERVISOR S Level 3 Physics, 2018 91523 Demonstrate understanding of wave systems 2.00 p.m. Tuesday 20 November 2018 Credits: Four Achievement Achievement with Merit Achievement with Excellence

More information

Waves Part 3B: Interference

Waves Part 3B: Interference Waves Part 3B: Interference Last modified: 31/01/2018 Contents Links Interference Path Difference & Interference Light Young s Double Slit Experiment What Sort of Wave is Light? Michelson-Morley Experiment

More information

Standing waves [49 marks]

Standing waves [49 marks] Standing waves [49 marks] 1. The graph shows the variation with time t of the velocity v of an object undergoing simple harmonic motion (SHM). At which velocity does the displacement from the mean position

More information

PHYS 124 LEC A01 Final Examination Autumn 2007

PHYS 124 LEC A01 Final Examination Autumn 2007 PHYS 4 LEC A0 Final Examination Autumn 007 Name: ID Number: S Instructor: Marc de Montigny Time: Tuesday, December 8, 007 9:00 AM :00 PM Room: Main Gym Van Vliet Building Rows 7, 9,, 3, 5 Instructions:

More information

Atomic emission spectra experiment

Atomic emission spectra experiment Atomic emission spectra experiment Contents 1 Overview 1 2 Equipment 1 3 Measuring the grating spacing using the sodium D-lines 4 4 Measurement of hydrogen lines and the Rydberg Constant 5 5 Measurement

More information

REVISION: WAVES, SOUND & LIGHT 11 JUNE 2013

REVISION: WAVES, SOUND & LIGHT 11 JUNE 2013 REVISION: WAVES, SOUND & LIGHT 11 JUNE 2013 Lesson Description In this lesson we revise: the Doppler Effect, Huygens Principle, Diffraction of Light & the Photoelectric Effect Key Concepts The Doppler

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice Exam Instructions The final exam will be weighted as follows: Modules 1 6 15 20% Modules

More information

Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this.

Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this. Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this. Superposition of Sinusoidal Waves Assume two waves are traveling in the same direction, with the same frequency,

More information

Chapter 16 Assignment Solutions

Chapter 16 Assignment Solutions Chapter 16 Assignment Solutions Table of Contents Page 452 #25-30, 40, 53-55... 1 Page 452 #24, 32-39, 49-52, 59-62... 2 Page 454 #65-69, 75-78... 4 Page 452 #25-30, 40, 53-55 25) Sound does not travel

More information

Physics 116. Nov 3, Lecture 21 Wave optics. R. J. Wilkes 11/3/11 1

Physics 116. Nov 3, Lecture 21 Wave optics. R. J. Wilkes   11/3/11 1 Physics 116 Lecture 21 Wave optics Nov 3, 2011 R. J. Wilkes Email: ph116@u.washington.edu 11/3/11 1 Announcements 3 clickers have quiz data logged, but no registration: 622961 649314 614235 If one of these

More information

Physics 101 Final Exam Problem Guide

Physics 101 Final Exam Problem Guide Physics 101 Final Exam Problem Guide Liam Brown, Physics 101 Tutor C.Liam.Brown@gmail.com General Advice Focus on one step at a time don t try to imagine the whole solution at once. Draw a lot of diagrams:

More information

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

4. What is the speed (in cm s - 1 ) of the tip of the minute hand? Topic 4 Waves PROBLEM SET Formative Assessment NAME: TEAM: THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers, and units! Topic 4.1 Oscillations A mass is attached to a horizontal spring.

More information

Chapter 38 Homework (due 12/12/13)!!

Chapter 38 Homework (due 12/12/13)!! Chapter 38 Homework (due 12/12/13) 38.1 38.13 38.17 38.22 38.26 38.29 38.33 38.41 38.47 page 1 Problem 38.1 Light of wavelength 540 nm passes through a slit of width 2 mm. The width of the central maximum

More information

FACULTY OF SCIENCE DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS DATE: 3/12/2015 SESSION 11:30 14:30 DURATION: 3 HOURS MARKS: 110

FACULTY OF SCIENCE DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS DATE: 3/12/2015 SESSION 11:30 14:30 DURATION: 3 HOURS MARKS: 110 FACULTY OF SCIENCE DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS MODULE CAMPUS PHY1DB1 DFC EXAM DECEMBER 2015 DATE: 3/12/2015 SESSION 11:30 14:30 ASSESSOR(S) INTERNAL MODERATOR DR S.M. RAMAILA

More information

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark EXAM 1 WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark Autumn 2018 Name: Each multiple-choice question is worth 3 marks. 1. A light beam is deflected by two mirrors, as shown. The incident beam

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/ PHYSICS-I

Name :. Roll No. :... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/ PHYSICS-I Name :. Roll No. :..... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/2011-12 2011 PHYSICS-I Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates

More information

PHYS 124 Section A01 Final Examination Autumn 2006

PHYS 124 Section A01 Final Examination Autumn 2006 PHYS 14 Section A1 Final Examination Autumn 6 Name : S Student ID Number : Instructor : Marc de Montiny Time : Monday, December 18, 6 9: 11: AM Room : Tory Lecture (Turtle) TL-B Instructions : This booklet

More information

Physics 280 Week 04 In-Class Problems Summer 2016

Physics 280 Week 04 In-Class Problems Summer 2016 Physics 80 Week 04 In-Class Problems Summer 016 1. Consider the interface of water with class (say at the bottom of a beaker filled with water). Given: The index of refraction for water is n w = 1.33 and

More information

Page 2. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size.

Page 2. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size. Which correctly compares the de Broglie wavelength λ e of the electrons with

More information

Double-slit Interference. Class 26: (ThT Q) Are both coherence and monochromaticity essential?

Double-slit Interference. Class 26: (ThT Q) Are both coherence and monochromaticity essential? Double-slit Interference Class 26: (ThT Q) Are both coherence and monochromaticity essential? Exam 2 Discussion #9. Consider an arbitrary engine whose work output is connected to a Carnot engine running

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #9: Diffraction Spectroscopy NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #9: Diffraction Spectroscopy Lab Writeup Due: Mon/Wed/Thu/Fri, April 30/ May 2/3/4, 2018 Background All

More information

Figure 1 shows white light passing through a triangular glass prism. The white light splits up into different colours. Two of the colours are shown.

Figure 1 shows white light passing through a triangular glass prism. The white light splits up into different colours. Two of the colours are shown. Name Q9.Visible white light consists of several different colours. Figure 1 shows white light passing through a triangular glass prism. The white light splits up into different colours. Two of the colours

More information

Lecture 28 March

Lecture 28 March Lecture 28 March 30. 2016. Standing waves Musical instruments, guitars, pianos, organs Doppler Effect Resonance 3/30/2016 Physics 214 Spring 2016 1 Waves on a string If we shake the end of a rope we can

More information

Last Name: First Name Network-ID

Last Name: First Name Network-ID Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared. This is a

More information

2. The figure shows the path of a portion of a ray of light as it passes through three different materials. Note: The figure is drawn to scale.

2. The figure shows the path of a portion of a ray of light as it passes through three different materials. Note: The figure is drawn to scale. 1. The bending of light as it moves from one medium to another with differing indices of refraction is due to a change in what property of the light? A) amplitude B) period C) frequency D) speed E) color

More information

Light demonstrates the characteristics of A. particles, only B. waves, only C. both particles and waves D. neither particles nor waves

Light demonstrates the characteristics of A. particles, only B. waves, only C. both particles and waves D. neither particles nor waves Which pair of terms best describes light waves traveling from the Sun to Earth? A. electromagnetic and transverse B. electromagnetic and longitudinal C. mechanical and transverse D. mechanical and longitudinal

More information

Light Waves: Problem Set

Light Waves: Problem Set Light Waves: Problem Set Unless told otherwise, use 2.998x10 8 m/s as the value of the speed of light. Problem 1: In 1957, the U.S. Naval Research Laboratory conducted the first ever radar measurements

More information

Chapter 35 Diffraction and Polarization

Chapter 35 Diffraction and Polarization Chapter 35 Diffraction and Polarization If light is a wave, it will diffract around a single slit or obstacle. The resulting pattern of light and dark stripes is called a diffraction pattern. This pattern

More information

Waves Part III Electromagnetic waves

Waves Part III Electromagnetic waves Waves Part III Electromagnetic waves Electromagnetic (light) waves Transverse waves Transport energy (and momentum) Can travel through vacuum (!) and certain solids, liquids and gases Do not transport

More information

Topic 4 &11 Review Waves & Oscillations

Topic 4 &11 Review Waves & Oscillations Name: Date: Topic 4 &11 Review Waves & Oscillations 1. A source produces water waves of frequency 10 Hz. The graph shows the variation with horizontal position of the vertical displacement of the surface

More information

Physics 214* Sample Final Exam Spring 2010

Physics 214* Sample Final Exam Spring 2010 Last Name: First Name ID Discussion Section: Discussion TA Name: Exam Room & Building Seat Number Instructions Turn off your cell phone and put it away. This is a closed book exam. You have two (2) hours

More information

Chapter 35 Diffraction and Polarization. Copyright 2009 Pearson Education, Inc.

Chapter 35 Diffraction and Polarization. Copyright 2009 Pearson Education, Inc. Chapter 35 Diffraction and Polarization 35-1 Diffraction by a Single Slit or Disk If light is a wave, it will diffract around a single slit or obstacle. 35-1 Diffraction by a Single Slit or Disk The resulting

More information

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA PHYSICS 1/14 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA The purpose of this laboratory is to study energy levels of the Hydrogen atom by observing the spectrum of emitted light when Hydrogen atoms make transitions

More information

The EYE. Physics 1502: Lecture 32 Today s Agenda. Lecture 4. Announcements: Optics. Midterm 2: graded after Thanks Giving

The EYE. Physics 1502: Lecture 32 Today s Agenda. Lecture 4. Announcements: Optics. Midterm 2: graded after Thanks Giving Physics 1502: Lecture 32 Today s Agenda Announcements: Midterm 2: graded after Thanks Giving Homework 09: Friday December 4 Optics Eye interference The EYE ~f o objective I 2 L I 1 ~f e eyepiece 1 2 Compound

More information

Final Exam Multiple Choice Practice Problems Physics 1251 TA: Clark

Final Exam Multiple Choice Practice Problems Physics 1251 TA: Clark Final Exam Multiple Choice Practice Problems Physics 1251 TA: Clark Disclaimer: I have ZERO intel about what will be covered on the final. This is a collection of problems that will force you to review

More information

EA Notes (Scen 101), Tillery Chapter 7. Light

EA Notes (Scen 101), Tillery Chapter 7. Light EA Notes (Scen 101), Tillery Chapter 7 Light Introduction Light is hard to study because you can't see it, you only see it's effects. Newton tried to explain the energy in a light beam as the KE of a particle

More information

Exam 2. Study Question. Conclusion. Question. Question. study question continued

Exam 2. Study Question. Conclusion. Question. Question. study question continued PS 110A-Hatch-Exam 2 Review - 1 Exam 2 Take exam in Grant Bldg. starting Friday, 13 th, through Monday, 16 th (by 4:00 pm). No late fee associated with Monday, before 4:00. Allow at least 1 hour for exam.

More information

Chemistry. Slide 1 / 72. Slide 2 / 72. Slide 3 / 72. Atomic Structures Practice Problems

Chemistry. Slide 1 / 72. Slide 2 / 72. Slide 3 / 72. Atomic Structures Practice Problems Slide 1 / 72 Slide 2 / 72 Chemistry Atomic Structures Practice Problems 2015-10-27 www.njctl.org 1 According to Einstein s view of matter and energy, what is the common link between light and matter? Slide

More information

Home Lab 15 Diffraction Gratings

Home Lab 15 Diffraction Gratings Home Lab Lab 15 Diffraction Gratings Home Lab 15 Diffraction Gratings Activity 15 1: Diffraction from a Transmission Grating Objective: To accurately measure the wavelength of light from a laser pointer

More information

The Final Exam (Exam 4) will be on FRIDAY MAY 11 From 3 5 PM in LR1 VAN

The Final Exam (Exam 4) will be on FRIDAY MAY 11 From 3 5 PM in LR1 VAN 1 --------------------------------------------------------------------------------------------------------------------- 29:006 SPRING 2012 PRACTICE EXAM 4 ---------------------------------------------------------------------------------------------------------------------

More information

Single Slit Diffraction and Resolving Power. Quantum Mechanics: Blackbody Radiation & Photoelectric Effect. Physics 102: Lecture 22

Single Slit Diffraction and Resolving Power. Quantum Mechanics: Blackbody Radiation & Photoelectric Effect. Physics 102: Lecture 22 Physics 102: Lecture 22 Single Slit Diffraction and Resolving Power Quantum Mechanics: Blackbody Radiation & Photoelectric Effect Physics 102: Lecture 22, Slide 1 Diffraction/Huygens principle Huygens:

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information

Engage Education Foundation

Engage Education Foundation B Free Exam for 2013-16 VCE study design Engage Education Foundation Units 3 and 4 Physics Practice Exam Solutions Stop! Don t look at these solutions until you have attempted the exam. Any questions?

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

Physics 102: Lecture 20 Interference. Physics 102: Lecture 20, Slide 1

Physics 102: Lecture 20 Interference. Physics 102: Lecture 20, Slide 1 Physics 102: Lecture 20 Interference Physics 102: Lecture 20, Slide 1 Phys 102 recent lectures Light as a wave Lecture 14 EM waves Lecture 15 Polarization Lecture 20 & 21 Interference & diffraction Light

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 FRAUNHOFER DIFFRACTION

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 FRAUNHOFER DIFFRACTION E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 FRAUNHOFER DIFFRACTION References for Fraunhofer Diffraction 1. Jenkins and White Fundamentals of Optics. Chapters on Fraunhofer diffraction and

More information