LRO/CRaTER. Technical Interchange Meeting. LRO Mechanical Systems. Giulio Rosanova / /

Size: px
Start display at page:

Download "LRO/CRaTER. Technical Interchange Meeting. LRO Mechanical Systems. Giulio Rosanova / /"

Transcription

1 LRO/CRaTER Technical Interchange Meeting LRO Mechanical Systems Giulio Rosanova / / Giulio.G.Rosanova@nasa.gov 1

2 LRO Baseline (Deployed 0n Orbit) High Gain Antenna IM Optical Bench /Radiator Avionics Module Propulsion Module X (Thrust) Solar Array Y Z (NADIR) 2

3 LRO Baseline (Deployed on Orbit) Optical Bench / Radiator Instrument Module Solar Array Avionics Module Propulsion Module High Gain Antenna X (Thrust) Z (NADIR) Y 3

4 LRO Baseline (Stowed) High Gain Antenna Instrument Module Avionics Module Propulsion Module Solar Array 4

5 LRO Nomenclature ORBITER SPACECRAFT INSTRUMENTS CRaTER Diviner SPACECRAFT BUS LAMP PROPULSION MODULE AVIONICS MODULE INSTRUMENT MODULE Propulsion Electrical Mechanical Thermal Electrical Mechanical Thermal Electrical Mechanical Thermal SOLAR ARRAY SYSTEM Solar Cells Substrate Deployables Gimbals HIGH GAIN LEND ANTENNA SYST LOLA HGA Dish LROC Deployables Gimbals Boom Boom 5

6 LRO Coordinate System Definition Coordinate Axis Origin Located at center of L/V Separation Plane ZENITH (-Z) RHR (+Y) THRUST DIRECTION (+X) NADIR (+Z) Velocity Vector +/- X axis 6

7 Mechanical Baseline Design 82 in. 79 in. (2.1 m) (2.0 m) 110 in. (2.8 m) 7

8 LRO Launch Vehicle Interface DELTA-II 3-Stage 9.5 ft. P/L Envelope 100 DIA. (2.54m) 8

9 Mechanical System Requirements Mechanically Accommodate LRO Instrument Suite Provide Mechanically Stable Instrument Bench for Pointing Requirements Meet Instrument FOV Requirements Provide Thermal Radiator Area for Instruments Provide Orbiter Purge System for Instruments Compatibility with DELTA-II Class Launch Vehicle Instruments shall comply with LRO Structural Loads and Mechanical Environments Specification (430-SPEC ) Fairing Doors for Instrument Access on Launch Pad T-0 Purge Available 9

10 Mechanical System Requirements Comply with LRO Alignment, Pointing Jitter Budget Instrument Pointing/Alignment Errors Thermal Distortion after Off-Pointing and/or Eclipse, G-Sag High Frequency Jitter Deployed Structures First deployed Frequency: 1 Hz Verify all Mechanical / Structural Designs and Functionality Qualification by Test Use Simulators to Verify Interfaces Provide Orbiter Wiring Mock-Up Instrumenters to provide Hi-Fi Mass simulators for complex Designs Used for LRO Orbiter Structural Qualification Testing 10

11 LRO Instruments INSTRUMENT MASS FOV(R) CRaTER 5.60 kg 60º Full Angle Nadir & Zenith Diviner 9.98 kg 160º Full Angle Nadir Centered LAMP 5.00 kg 40º Full Angle Nadir Centered LEND kg 20º Full Angle Nadir Centered (4) LOLA kg <<1º Nadir Centered (2) LROC kg NAC (2)- 60º Full Angle WAC- 120º ct X 30º dt 11

12 LRO Fields of View 12

13 CRaTER Fields of View 13

14 CRaTER Fields of View 14

15 CRaTER Fields of View 15

16 CRaTER 30ºZ-80ºN Fields of View 16

17 CRaTER 30ºZ-80ºN Fields of View 17

18 CRaTER 30ºZ-80ºN Fields of View 18

19 Instrument Design Requirements Design Limit Load: 12 g s any axis Minimum Factors of Safety Type of Hardware Tested Flight Structure metallic Tested Flight Structure beryllium Tested Flight Structure composite* Pressure Loaded Structure Pressure Lines and Fittin gs Untested Flight Structure metallic only Ground Support Equipment Transportation Dolly/Shipping Container Design Factor of Safety Yield Ultimate N/A Minimum Frequency Requirement: 35 Hz (50 Hz Recommended) Overall acoustic environment: db qual, db acceptance Random Vibration Environment for Instruments and Components Frequency (Hz) Over All Protoflight/Qual Level g2/hz g2/hz g2/hz g2/hz 14.1 grms Acceptance Level g2/hz g2/hz g2/hz g2/hz 10.0 grms 19

20 LRO FEM: Configuration F **Total Mass: 2490 lbm (1129 kg) **CG (Origin at center of clampband IF) X Y Z in m **Mass Moments of Inertia Inertias about I/F (lbm*in2) Inertias about I/F (kg*m2) Ixx Ixy Ixx Ixy Iyy Iyz Iyy Iyz Izz Izx Izz Izx Inertias about C.G. (lbm*in2) Inertias about C.G. (kg*m2) Ixx Ixy Ixx Ixy Iyy Iyz Iyy Iyz Izz Izx Izz Izx

21 Fundamental Mode: Lateral Direction **Mass scaled to launch vehicle capability (1480 kg) fn = 19.6 Hz fn = 19.9 Hz 21

22 Fundamental Mode: IM fn = 46 Hz 22

23 Mechanical Topics for TIM CAD Models: (PRO-Engineer), (SOLID-WORKS), (IDEAS) Identify CRaTER Orientation wrt LRO Coordinate System Identify Access zones to support testing do you Require? (i.e., sources required for calibration, etc) Identify Connector Locations and Access/Stay-Out Zones Required? Identify Optical Reference Surfaces (as required)? Alignment cube/reference mirror surfaces: size, and location? Identify GSE Handling Points Will Aperture Doors or Shutter be Considered? FEA Models: (FEMAP), (NASTRAN) 23

24 Mechanical Topics for TIM Identify your Design Heritage? (have some MLA info) What were the design limit loads? What factors of safety were used? What was the random vibration environment? What was the instrument s first frequency? What Analysis Documentation Exists? What Verification Test Reports Exist? Is the instrument sensitive to shock or acoustics? Do you require Access while on the Launch Pad? Do you require T-0 Purge at Launch? Mechanical Mass Simulator Required Simple Designs over 50 Hertz (i.e. LAMP, CRaTER) mass and CG only. Mass Simulator must be Qualified before Orbiter Structural Testing. 24

25 LRO Mechanical System Development Flow MECHANICAL Design & Analysis INSTRUMENT MASS SIMS. PROP. Module (PTyp) Build 12/06 S/C Bus (PFlt) Build 9/06 4/06 CDR Inst. Module (PFlt) Build 12/06 Mechanical System Assy. Functional 1/07 Mechanical Qualification Testing Deployables (PFlt) Build & Test INSTRUMENTS 7/07 MECHANICAL Fabrication 10/07 9/06 PROP. Module (FLT) Build & Proof 10/06 PM Pluming Assy. 4/07 Spacecraft I&T 10/07 Orbiter I&T 2/08 1/07 LRO S/C Subsystems / Components Orbiter Environmental Testing 7/08 Launch Activities LRD 10/08 25

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter 431-ICD Date: September 15, 2005

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter 431-ICD Date: September 15, 2005 DRAFT Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter Lunar Reconnaissance Orbiter to Comic Ray Telescope for the Effects of Radiation Mechanical Interface Control Document Date: September

More information

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter (LRO)

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter (LRO) DRAFT Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter (LRO) Comic Ray Telescope for the Effects of Radiation (CRaTER) to Spacecraft Mechanical Interface Control Document Date: July 13, 2005

More information

Lunar Reconnaissance Orbiter Project. Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface Control Document

Lunar Reconnaissance Orbiter Project. Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface Control Document Revision B DraftA Effective Date: July 17, 2006 Expiration Date: July 17, 2011 Lunar Reconnaissance Orbiter Project Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface

More information

Mechanical Design, CRaTER Assembly and Electronics Assembly Preliminary Design Review

Mechanical Design, CRaTER Assembly and Electronics Assembly Preliminary Design Review , CRaTER Assembly and Electronics Assembly Preliminary Design Review Matthew Smith Mechanical Engineer (617)-252-176 matt@space.mit.edu Overview Instrument and Assembly Description Mechanical Environments

More information

Space mission environments: sources for loading and structural requirements

Space mission environments: sources for loading and structural requirements Space structures Space mission environments: sources for loading and structural requirements Prof. P. Gaudenzi Università di Roma La Sapienza, Rome Italy paolo.gaudenzi@uniroma1.it 1 THE STRUCTURAL SYSTEM

More information

May 15, Lunar Reconnaissance Orbiter (LRO) Instrument Thermal Balance and Thermal Vacuum Direction. Rev. (Initial) j Mission

May 15, Lunar Reconnaissance Orbiter (LRO) Instrument Thermal Balance and Thermal Vacuum Direction. Rev. (Initial) j Mission j Mission Lunar Reconnaissance Orbiter (LRO) Report Title Instrument Thermal Balance and Thermal Vacuum Direction Date May 15, 2006 Revision Rev. (Initial) Prepared By: Charles Baker LRO Thermal Lead Scope/Purpose:

More information

New Worlds Observer Final Report Appendix E. Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo

New Worlds Observer Final Report Appendix E. Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo Introduction Starshade Spacecraft Functional Requirements The main function of the starshade spacecraft is to: 1) support

More information

Telescope Mechanical Design

Telescope Mechanical Design Telescope Mechanical Design Albert Lin The Aerospace Corporation (310) 336-1023 albert.y.lin@aero.org 6/27/06 6/27/06 Telescope Mechanical Design 1 Overview Design Overview Instrument Requirements Mechanical

More information

DRAFT. Lunar Reconnaissance Orbiter (LRO) General Thermal Subsystem Specification. Date: May 5, Document No. 431-SPEC

DRAFT. Lunar Reconnaissance Orbiter (LRO) General Thermal Subsystem Specification. Date: May 5, Document No. 431-SPEC Document No. 431-SPEC-000091 DRAFT Lunar Reconnaissance Orbiter (LRO) General Thermal Subsystem Specification Date: May 5, 2005 NASA GODDARD SPACE FLIGHT CENTER Greenbelt Road Greenbelt, MD 20771 Rev.

More information

The Design and Testing of the NEAR Spacecraft Structure and Mechanisms

The Design and Testing of the NEAR Spacecraft Structure and Mechanisms The Design and Testing of the NEAR Spacecraft Structure and Mechanisms Theodore J. Hartka and David F. Persons This article describes the primary structure and mechanisms of the Near Earth Asteroid Rendezvous

More information

Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document

Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document Effective Date: February 14, 2006 Expiration Date: February 14, 2011 Lunar Reconnaissance Orbiter Project Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document

More information

Communication. Provides the interface between ground and the spacecraft Functions:

Communication. Provides the interface between ground and the spacecraft Functions: Telecomm Communication Provides the interface between ground and the spacecraft Functions: Lock onto the ground station signal (carrier tracking) Receive uplink and process it (command reception and detection)

More information

Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document

Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document Effective Date: 01/11/2007 Expiration Date: 01/11/2012 Lunar Reconnaissance Orbiter Project Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Thermal Interface Control Document December 19,

More information

Spacecraft Structures

Spacecraft Structures Tom Sarafin Instar Engineering and Consulting, Inc. 6901 S. Pierce St., Suite 384, Littleton, CO 80128 303-973-2316 tom.sarafin@instarengineering.com Functions Being Compatible with the Launch Vehicle

More information

BepiColombo. Project and MPO Status. Comprehensive Explora1on of Planet Mercury

BepiColombo. Project and MPO Status. Comprehensive Explora1on of Planet Mercury BepiColombo Project and MPO Status Comprehensive Explora1on of Planet Mercury Joe Zender BepiColombo Deputy PS, ESA/ESTEC BepiColombo Previously: Ø Proba2 Science Coordinator, until 12/2013 Ø ProbaV, Project

More information

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F By Tom Irvine Email: tomirvine@aol.com May 19, 2011 Introduction Consider a launch vehicle with a payload. Intuitively, a realistic payload

More information

Lunar Reconnaissance Orbiter Project. Thermal System Specification

Lunar Reconnaissance Orbiter Project. Thermal System Specification 431-SPEC-000091 Revision C Effective Date: April 3, 2007 Expiration Date: April 3, 2012 Lunar Reconnaissance Orbiter Project Thermal System Specification LRO GSFC CMO April 3, 2007 RELEASED Goddard Space

More information

Integrated Test Facility for Nanosat Assessment and Verification

Integrated Test Facility for Nanosat Assessment and Verification Integrated Test Facility for Nanosat Assessment and Verification Steve Wassom, Quinn Young, Bryan Bingham, Rees Fullmer, Mitch Whiteley, Robert Burt, Mike Watson, Tom Ortiz, Joe Richards, Sam Wilcox Utah

More information

Tracker Tower 01 Prototype Test & Analysis Overview

Tracker Tower 01 Prototype Test & Analysis Overview Tracker Tower 01 Prototype Test & Analysis Overview Erik Swensen June 19, 2002 HPS-102070-0002 Test Background Design Philosophy: Tracker Tower 01 Prototype was used as an engineering evaluation model

More information

NASA Lunar Science Activities. Lunar Science and Exploration

NASA Lunar Science Activities. Lunar Science and Exploration NASA Lunar Science Activities Lunar Science and Exploration James L. Green Director, Planetary Sciences Division Science Directorate Mission Directorate NASA In NASA s James Science L. Green Mission Presented

More information

INTERNATIONAL SPACE STATION, A DEPLOYMENT AND MODAL TEST FACILITY

INTERNATIONAL SPACE STATION, A DEPLOYMENT AND MODAL TEST FACILITY IAC-02-1.2.06 INTERNATIONAL SPACE STATION, A DEPLOYMENT AND MODAL TEST FACILITY Sherry Draisey President, Good Vibrations Engineering Ltd. Toronto, Canada sherry@gve.on.ca ABSTRACT The International Space

More information

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003 LAUNCH SYSTEMS Col. John Keesee 5 September 2003 Outline Launch systems characteristics Launch systems selection process Spacecraft design envelope & environments. Each student will Lesson Objectives Understand

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

Launch Environment. Phase C. Date : 06/03/2008 Issue : 1 Rev : 6 Page : 1 of 23. Prepared by: Guillaume Roethlisberger. Checked by: Approved by:

Launch Environment. Phase C. Date : 06/03/2008 Issue : 1 Rev : 6 Page : 1 of 23. Prepared by: Guillaume Roethlisberger. Checked by: Approved by: Page : 1 of 23 Phase C Launch Environment Prepared by: Guillaume Roethlisberger Checked by: Approved by: EPFL Lausanne Switzerland 06/03/2008 Page : 2 of 23 RECORD OF REVISIONS ISS/REV Date Modifications

More information

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil)

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil) BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN Jose Sergio Almeida INPE (Brazil) 1 st International Academy of Astronautics Latin American Symposium on Small

More information

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000 Generation X Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San July 27, 2000 ACS Overview Requirements Assumptions Disturbance Torque Assessment Component and Control Mode Recommendations

More information

Mechanical and Thermal Design of XMM

Mechanical and Thermal Design of XMM r bulletin 100 december 1999 Mechanical and Thermal Design of XMM K. van Katwijk, T. van der Laan & D. Stramaccioni XMM Project, ESA Directorate for Scientific Programmes, ESTEC, Noordwijk, The Netherlands

More information

The Einstein Polarization Interferometer for Cosmology (EPIC)

The Einstein Polarization Interferometer for Cosmology (EPIC) The Einstein Polarization Interferometer for Cosmology (EPIC) Peter Timbie UW-Madison for the EPIC collaboration Brown, Cardiff, Illinois, Ireland-Maynooth, LLNL, Manchester, Richmond, UCSD, Wisconsin,

More information

Creating Large Space Platforms From Small Satellites

Creating Large Space Platforms From Small Satellites SSC99-VI-6 Creating Large Space Platforms From Small Satellites Andrew W. Lewin Principal Systems Engineer Orbital Sciences Corporation Dulles, VA 20166 (703) 406-5000 lewin.andy@orbital.com Abstract.

More information

The time period while the spacecraft is in transit to lunar orbit shall be used to verify the functionality of the spacecraft.

The time period while the spacecraft is in transit to lunar orbit shall be used to verify the functionality of the spacecraft. ASE 379L Group #2: Homework #4 James Carlson Due: Feb. 15, 2008 Henri Kjellberg Leah Olson Emily Svrcek Requirements The spacecraft shall be launched to Earth orbit using a launch vehicle selected by the

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference

GOES-R Instrument Status and Accommodations. Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference GOES-R Instrument Status and Accommodations Barbara Pfarr GOES-R Program Systems Engineering January 2010 AMS Conference Agenda Instrument Developmental Status Significant Changes in the Last Year Introducing

More information

Novel Design Elements of the Space Technology 5 Mechanical Subsystem

Novel Design Elements of the Space Technology 5 Mechanical Subsystem Novel Design Elements of the Space Technology 5 Mechanical Subsystem Peter Rossoni NASA Goddard Space Flight Center, Greenbelt, MD, 301-286-5854, Peter.Rossoni-1@NASA.gov William McGill Swales Aerospace,

More information

GLAST Large Area Telescope. LAT Systems Engineering. LAT Systems Engineering LAT Test Plan Update. Tom Leisgang. Gamma-ray Large Area Space Telescope

GLAST Large Area Telescope. LAT Systems Engineering. LAT Systems Engineering LAT Test Plan Update. Tom Leisgang. Gamma-ray Large Area Space Telescope Gamma-ray Large Area Space Telescope GLAST Large Area Telescope Systems Engineering Test Plan Update Tom Leisgang Systems Engineering T. Leisgang 1 Systems Engineering Test Plan Update Additions Deletions

More information

Mechanical Verification of the STEREO Observatories

Mechanical Verification of the STEREO Observatories T. M. ETENAUGH J. R. TANZMAN Mechanical Verification of the STEREO Observatories Teresa M. etenbaugh Jennifer R. Tanzman The Solar TErrestrial RElations Observatory (STEREO) mission requirements presented

More information

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands

The Quantum Sensor Challenge Designing a System for a Space Mission. Astrid Heske European Space Agency The Netherlands The Quantum Sensor Challenge Designing a System for a Space Mission Astrid Heske European Space Agency The Netherlands Rencontres de Moriond - Gravitation, La Thuile, 2017 Quantum Sensors in Lab Experiments

More information

STRUCTURAL MODELS AND MECHANICAL TESTS IN THE DEVELOPMENT OF A COMMUNICATIONS SPACECRAFT

STRUCTURAL MODELS AND MECHANICAL TESTS IN THE DEVELOPMENT OF A COMMUNICATIONS SPACECRAFT First Pan American Congress on Computational Mechanics PANACM 2015 April 27-29, 2015, Buenos Aires, Argentina STRUCTURAL MODELS AND MECHANICAL TESTS IN THE DEVELOPMENT OF A COMMUNICATIONS SPACECRAFT Santiago

More information

Appendix A Satellite Mechanical Loads

Appendix A Satellite Mechanical Loads Appendix A Satellite Mechanical Loads Mechanical loads can be static or dynamic. Static loads are constant or unchanging, and dynamic loads vary with time. Mechanical loads can also be external or self-contained.

More information

Canadian Advanced Nanospace experiment 2 Orbit Operations:

Canadian Advanced Nanospace experiment 2 Orbit Operations: Canadian Advanced Nanospace experiment 2 Orbit Operations: One Year of Pushing the Nanosat Performance Envelope Karan Sarda Cordell Grant, Stuart Eagleson Daniel D. Kekez, Amee Shah Robert E. Zee Space

More information

Orbiter Element Brian Cooke

Orbiter Element Brian Cooke Orbiter Element Brian Cooke 47 from orbit Payload focused primarily to address Ocean objective: Radio Subsystem (RS) Laser Altimeter (LA) Magnetometer (MAG) Langmuir Probe (LP) Mapping Camera (MC) Have

More information

Gamma-ray Large Area Space Telescope (GLAST) Science Instrument - Spacecraft Interface Requirements Document

Gamma-ray Large Area Space Telescope (GLAST) Science Instrument - Spacecraft Interface Requirements Document Gamma-ray Large Area Space Telescope (GLAST) Science Instrument - Spacecraft Interface Requirements Document August 3, 1999 Revision History Version Description Date 0.1 Initial draft released with draft

More information

CRaTER Thermal Analysis

CRaTER Thermal Analysis CRaTER Thermal Analysis Huade Tan Contents System Overview Design & Requirements Inputs and Assumptions Power Dissipations Environment and Orbit Current Model Results Instrument temperatures Orbital temperature

More information

Space Flight Considerations for Precision Optical Instruments

Space Flight Considerations for Precision Optical Instruments Space Flight Considerations for Precision Optical Instruments M. Shao KISS workshop on Optical Freq Combs in Space Nov 2, 2015 2015 California Institute of Technology. Government sponsorship acknowledged

More information

Development of Microwave Engine

Development of Microwave Engine Development of Microwave Engine IEPC-01-224 Shin SATORI*, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI #, Atsushi NAGATA #, Yasumasa ITO** and Takayoshi KIZAKI # * Hokkaido Institute of Technology

More information

Exploration Carriers UPC-Orion Launch Opportunities for Lunar Missions. presented to The Joint Annual Meeting of LEAG-ICEUM-SRR

Exploration Carriers UPC-Orion Launch Opportunities for Lunar Missions. presented to The Joint Annual Meeting of LEAG-ICEUM-SRR Exploration Carriers UPC-Orion Launch Opportunities for Lunar Missions presented to The Joint Annual Meeting of LEAG-ICEUM-SRR Bruce Milam and Ruthan Lewis, Ph.D. NASA Goddard Space Flight Center October

More information

An Astrophysics Mission of Opportunity on the International Space Station

An Astrophysics Mission of Opportunity on the International Space Station GSFC 1 An Astrophysics Mission of Opportunity on the International Space Station Science: Understanding ultra-dense matter through observations of neutron stars in the soft X-ray band Launch: October 2016,

More information

Lunar Reconnaissance Orbiter Mission Objectives

Lunar Reconnaissance Orbiter Mission Objectives Lunar Reconnaissance Orbiter (LRO) Overview The Instrument Suite and Mission Status Gordon Chin LRO Project Scientist NASA Goddard Space Flight Center 9th ILEWG International Conference on Exploration

More information

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Shin SATORI*, Hiroyuki MAE**, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI # and Atsushi NAGATA # * Hokkaido Institute of

More information

High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning

High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning Objectives of this presentation are: To provide primes with: ESA preliminary

More information

Lunar Precursor Robotics Program

Lunar Precursor Robotics Program National Aeronautics and Space Administration SCIENCE & MISSION SYSTEMS Lunar Precursor Robotics Program Michael J. Wargo, Sc.D. Chief Lunar Scientist for Exploration Systems Larry Hill LRO Mission Manager

More information

LRO Mission Concept of Operations Summary. Version 1.0 (Preliminary) April

LRO Mission Concept of Operations Summary. Version 1.0 (Preliminary) April LRO Mission Concept of Operations Summary Version 1.0 (Preliminary) April - 2005 Goals for ConOps Package Capture operation concepts for both orbiter and ground systems Concepts are documented in the LRO

More information

Rocketplane Kistler, Inc.

Rocketplane Kistler, Inc. Rocketplane Kistler, Inc. MODEL NO: K-1 REPORT NO: K1M-002 Rev. A DATE: March 30, 2007 K-1 Vehicle Users Guide Volume 2 Satellite Payload Modules and Active Dispenser REVISION HISTORY REV DATE CHANGE CHANGE

More information

Optimized PSD Envelope for Nonstationary Vibration Revision A

Optimized PSD Envelope for Nonstationary Vibration Revision A ACCEL (G) Optimized PSD Envelope for Nonstationary Vibration Revision A By Tom Irvine Email: tom@vibrationdata.com July, 014 10 FLIGHT ACCELEROMETER DATA - SUBORBITAL LAUNCH VEHICLE 5 0-5 -10-5 0 5 10

More information

Make Your Cubesat Overnight and Put it in Any Orbit (Well almost)

Make Your Cubesat Overnight and Put it in Any Orbit (Well almost) Make Your Cubesat Overnight and Put it in Any Orbit (Well almost) Jim White, Walter Holemans, Planetary Systems Inc. Dr. Adam Huang, University of Arkansas RAMPART Summary Main Components The Promise of

More information

483 Lecture. Space Mission Requirements. February11, Definition Examples Dos/ Don ts Traceability

483 Lecture. Space Mission Requirements. February11, Definition Examples Dos/ Don ts Traceability 483 Lecture Space Mission February11, 2012 Photo Credit:: http://www.spacewallpapers.info/cool-space-wallpaper What s a Requirement? ification? Requirement A concept independent statement of a mix of needs,

More information

FORCE LIMITED VIBRATION TESTING OF CASSINI SPACECRAFT COSMIC DUST ANALYSER

FORCE LIMITED VIBRATION TESTING OF CASSINI SPACECRAFT COSMIC DUST ANALYSER FORCE LIMITED VIBRATION TESTING OF CASSINI SPACECRAFT COSMIC DUST ANALYSER Heiko Jahn*, Swen Ritzmann*, Kurng Chang**, Terry Scharton** * German Aerospace Research Establishment, Institute for Space Sensor

More information

CAS-ESA Call for small mission proposals - Technical annex

CAS-ESA Call for small mission proposals - Technical annex CAS-ESA Call for small mission proposals - Technical annex Copenhagen workshop 23/09/2014 Table of contents 1. General considerations Mass & power Schedule Work breakdown and share Technology readiness

More information

What is Systems Engineering? & What Does a Systems Engineer Do??? Guest Lecture for Senior Design class Howard University Jeffrey Volosin NASA

What is Systems Engineering? & What Does a Systems Engineer Do??? Guest Lecture for Senior Design class Howard University Jeffrey Volosin NASA What is Systems Engineering? & What Does a Systems Engineer Do??? Guest Lecture for Senior Design class Howard University by Jeffrey Volosin NASA Engineering System Control Center Defining System Launch/Servicing

More information

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA Manipulator Dynamics 2 Forward Dynamics Problem Given: Joint torques and links geometry, mass, inertia, friction Compute: Angular acceleration of the links (solve differential equations) Solution Dynamic

More information

LAT-SS Mar 2003 Author(s)

LAT-SS Mar 2003 Author(s) LAT-SS-00778 LAT Environmental Specification Page 1 of 40 GLAST LAT Specification Document Title LAT Environmental Specification Document # Date Effective LAT-SS-00778-01 20 Mar 2003 Author(s) Martin Nordby

More information

Minimum Energy Trajectories for Techsat 21 Earth Orbiting Clusters

Minimum Energy Trajectories for Techsat 21 Earth Orbiting Clusters Minimum Energy Trajectories for Techsat 1 Earth Orbiting Clusters Edmund M. C. Kong SSL Graduate Research Assistant Prof David W. Miller Director, MIT Space Systems Lab Space 1 Conference & Exposition

More information

AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES. Raffaele Savino University of Naples Federico II

AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES. Raffaele Savino University of Naples Federico II AEROTHERMODYNAMIC ANALYSIS OF INNOVATIVE HYPERSONIC DEPLOYABLE REENTRY CAPSULES Raffaele Savino University of Naples Federico II Objectives Show the main capabilities of deployable aero-brakes for Earth

More information

PRACTICE NO. PD-ED-1259 PREFERRED May 1996 RELIABILITY PAGE 1 OF 6 PRACTICES ACOUSTIC NOISE REQUIREMENT

PRACTICE NO. PD-ED-1259 PREFERRED May 1996 RELIABILITY PAGE 1 OF 6 PRACTICES ACOUSTIC NOISE REQUIREMENT PREFERRED May 1996 RELIABILITY PAGE 1 OF 6 PRACTICES Practice: Impose an acoustic noise requirement on spacecraft hardware design to ensure the structural integrity of the vehicle and its components in

More information

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team Team X Study Summary for ASMCS Theia Jet Propulsion Laboratory, California Institute of Technology with contributions from the Theia Team P. Douglas Lisman, NASA Jet Propulsion Laboratory David Spergel,

More information

Thermal and structural design constraints for radiometers operating in geostationary orbits. G. E. Zurmehly, R. A. Hookman

Thermal and structural design constraints for radiometers operating in geostationary orbits. G. E. Zurmehly, R. A. Hookman Thermal and structural design constraints for radiometers operating in geostationary orbits G. E. Zurmehly, R. A. Hookman ITT Aerospace/Communications Division Fort Wayne, Indiana ABSTRACT For a radiometer

More information

AN OVERVIEW OF THE E.C.S.S. HANDBOOK FOR SPACECRAFT LOADS ANALYSIS

AN OVERVIEW OF THE E.C.S.S. HANDBOOK FOR SPACECRAFT LOADS ANALYSIS COMPDYN 2011 III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 25 28 May 2011

More information

The Atsa Suborbital Observatory. Luke Sollitt and Faith Vilas

The Atsa Suborbital Observatory. Luke Sollitt and Faith Vilas The Atsa Suborbital Observatory Click Using to crewed edit Master suborbital subtitle style spacecraft for a lowcost space-borne telescope Luke Sollitt and Faith Vilas Introduction Why take an IR telescope

More information

HYPER Industrial Feasibility Study Final Presentation Optical Bench Activity 3, WP 3200

HYPER Industrial Feasibility Study Final Presentation Optical Bench Activity 3, WP 3200 HYPER Industrial Feasibility Study Final Presentation Optical Bench Activity 3, WP 3200 ESTEC, Noordwijk The Netherlands 6 -th March 2003 Introduction 1 - Payload overall Architecture 2 - PST and OB design,

More information

ISIS Impactor for Surface and Interior Science

ISIS Impactor for Surface and Interior Science ISIS Impactor for Surface and Interior Science ISIS Mission Concept!! Send an independent, autonomous impactor spacecraft to the target of the OSIRIS-REx mission!! Launch as secondary payload with InSight!!

More information

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 ANUSAT (ANna University SATellite) During the year 2002, Indian Space Research Organization (ISRO) threw an open challenge to the educational institutions in India to take

More information

COMBINED LOADS, VIBRATION, AND MODAL TESTING. Terry Scharton, Jet Propulsion Laboratory California Institute of Technology Pasadena, CA

COMBINED LOADS, VIBRATION, AND MODAL TESTING. Terry Scharton, Jet Propulsion Laboratory California Institute of Technology Pasadena, CA COMBINED LOADS, VIBRATION, AND MODAL TESTING OF THE QUIKSCAT SPACECRAFT Terry Scharton, Jet Propulsion Laboratory California Institute of Technology Pasadena, CA terry.d.scharton@jpl.nasa.gov and Michael

More information

BepiColombo Mission to Mercury - コロンボ. October Jan van Casteren, Mauro Novara.

BepiColombo Mission to Mercury - コロンボ. October Jan van Casteren, Mauro Novara. ベピ - コロンボ BepiColombo Mission to Mercury October 2010 Jan van Casteren, Mauro Novara http://www.esa.int/science/bepicolombo June 2010 1 BepiColombo Scientific Objectives Origin and evolution of a planet

More information

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key 1. Which of these Electromagnetic radiation bands has the longest wavelength (λ)? [Section 12.1] a. X-Ray b. Visible Light c. Infrared d. Radio 2. How is energy in Electromagnetic (EM) radiation related

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

Modular Thermal Design Concepts: Thermal Design of a Spacecraft on a Module Level for LEO Missions

Modular Thermal Design Concepts: Thermal Design of a Spacecraft on a Module Level for LEO Missions Modular Thermal Design Concepts: Thermal Design of a Spacecraft on a Module Level for LEO Missions Mark Barton AeroAstro mark.barton@aeroastro.com 703.723.9800 x 131 2005 AIAA/USU Conference on Small Satellites

More information

Overview of the Current Baseline of the Solar-C Spacecraft System

Overview of the Current Baseline of the Solar-C Spacecraft System Overview of the Current Baseline of the Solar-C Spacecraft System Keisuke YOSHIHARA (JAXA) 11 November, 2013 Solar-C Science Meeting Hida Earth Wisdom Center, Takayama, Japan Solar-C Spacecraft System

More information

Comparative study between random vibration and linear static analysis using Miles method for thruster brackets in space structures

Comparative study between random vibration and linear static analysis using Miles method for thruster brackets in space structures Comparative study between random vibration and linear static analysis using Miles method for thruster brackets in space structures Ion DIMA*,1, Cristian-Gheorghe MOISEI 1, Calin-Dumitru COMAN 1, Mihaela

More information

High-impulse SPT-100D thruster with discharge power of kw

High-impulse SPT-100D thruster with discharge power of kw High-impulse SPT-D thruster with discharge power of 1.0 3.0 kw IEPC-2017-40 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology Atlanta, Georgia USA R. Gnizdor

More information

ROBOTIC LUNAR EXPLORATION PROGRAM CONFIGURATION CHANGE REQUEST

ROBOTIC LUNAR EXPLORATION PROGRAM CONFIGURATION CHANGE REQUEST Page 1 of 2_ ROBOTIC LUNAR EXPLORATION PROGRAM CONFIGURATION CHANGE REQUEST 431-CCR-000029 DATE INITIATED: 8/12/2005 CCR REV.: CCR REV DATE: CCB SECRETARY: Deb Yoder PROPRIETARY? Yes No ITAR SENSTIVE?

More information

A Case Study of Modal Mass Acceleration Curve Loads vs. Sine Loads

A Case Study of Modal Mass Acceleration Curve Loads vs. Sine Loads A Case Study of Modal Mass Acceleration Curve Loads vs. Sine Loads Ramses Mourhatch Bing-Chung Chen Walter Tsuha Peyman Mohasseb Chia-Yen Peng Jet Propulsion Laboratory California Institute of Technology

More information

GAIA M2M POINTING MECHANISM QUALIFICATION

GAIA M2M POINTING MECHANISM QUALIFICATION GAIA M2M POINTING MECHANISM QUALIFICATION Carlos Compostizo (1), Ricardo López (1), Laura Rivera (1) (1) SENER-Structures & Mechanisms Section, Av. Zugazarte 56, 4893 Las Arenas (Vizcaya) Spain Tel: 34944817578

More information

A little more about costing Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis

A little more about costing Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis A little more about costing Review of iterative design approach (MERs) Sample vehicle design analysis 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Internal Rate of Return Discount

More information

DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission

DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission Geoffrey A. Landis NASA Glenn Research Center COMPASS Team at NASA Glenn: Steve Oleson, Melissa McGuire, Aloysius Hepp, James

More information

GOSAT MISSION and SPACECRAFT PARTS REQUIRMENTS

GOSAT MISSION and SPACECRAFT PARTS REQUIRMENTS MISSION and SPACECRAFT PARTS REQUIRMENTS OCT. 22, 2004 GOSAT PROJECT TEAM Japan Aerospace Exploration Agency (JAXA) GOSAT Objectives (1) Kyoto Protocol (1997): Mandatory for Developed Nations to Reduce

More information

Optimized PSD Envelope for Nonstationary Vibration

Optimized PSD Envelope for Nonstationary Vibration Optimized PSD Envelope for Nonstationary Vibration Tom Irvine Dynamic Concepts, Inc NASA Engineering & Safety Center (NESC) 3-5 June 2014 The Aerospace Corporation 2010 The Aerospace Corporation 2012 Vibrationdata

More information

REVISED COORDINATES FOR APOLLO HARDWARE

REVISED COORDINATES FOR APOLLO HARDWARE REVISED COORDINATES FOR APOLLO HARDWARE R. V. Wagner *, E. J. Speyerer, K. N. Burns, J. Danton, M.S. Robinson Lunar Reconnaissance Orbiter Camera, School of Earth and Space Exploration, Arizona State University,

More information

Overview of the Jovian Exploration Technology Reference Studies

Overview of the Jovian Exploration Technology Reference Studies Overview of the Jovian Exploration Technology Reference Studies The Challenge of Jovian System Exploration Peter Falkner & Alessandro Atzei Solar System Exploration Studies Section ESA/ESTEC Peter.Falkner@esa.int,

More information

ESA activities towards the Gravitation Waves Space Observatory

ESA activities towards the Gravitation Waves Space Observatory ESA activities towards the Gravitation Waves Space Observatory Frédéric Safa ESA Science Directorate, Future Missions LISA Symposium, Zurich 2016 The Gravitation Wave Observatory in ESA Science Programme

More information

2.4m Space Telescopes

2.4m Space Telescopes 2.4m Space Telescopes Hardware Summary September 4, 2012 This document is not subject to the controls of the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR).

More information

OHB System AG, Universitätsallee 27-29, Bremen, Germany, (2)

OHB System AG, Universitätsallee 27-29, Bremen, Germany, (2) DESIGN AND DEVELOPMENT PLAN OF A TENTACLES BASED CLAMPING MECHANISM FOR ACTIVE DEBRIS REMOVAL 13 TH SYMPOSIUM ON ADVANCED SPACE TECHNOLOGIES IN ROBOTICS AND AUTOMATION Jan-Christian Meyer (1), Marc Scheper

More information

STENTOR PLASMA PROPULSION SYSTEM EXPERIENCE

STENTOR PLASMA PROPULSION SYSTEM EXPERIENCE STENTOR PLASMA PROPULSION SYSTEM EXPERIENCE Pascal GARNERO, Thierry GRASSIN ALCATEL SPACE, 100 Bd du Midi, 06159 Cannes, France Contact: pascal.garnero@space.alcatel.fr, thierry.grassin@space.alcatel.fr

More information

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis Mass Estimating Relationships Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis 2006 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Capturing Asteroidal Material. Brian Wilcox 7 Feb 2012

Capturing Asteroidal Material. Brian Wilcox 7 Feb 2012 Capturing Asteroidal Material Brian Wilcox 7 Feb 2012 Spin Periods of Near-Earth Asteroids Many small NEAs are spinning too fast to be Rubble Piles; no regolith? For few-m radius, we need to plan for spin

More information

NATURAL FREQUENCIES OF A HONEYCOMB SANDWICH PLATE Revision F. A diagram of a honeycomb plate cross-section is shown in Figure 1.

NATURAL FREQUENCIES OF A HONEYCOMB SANDWICH PLATE Revision F. A diagram of a honeycomb plate cross-section is shown in Figure 1. NATURAL FREQUENCIES OF A HONEYCOMB SANDWICH PLATE Revision F By Tom Irvine Email: tomirvine@aol.com August 5, 008 Bending Stiffness of a Honeycomb Sandwich Plate A diagram of a honeycomb plate cross-section

More information

Challenges in Realizing Large Structures in Space

Challenges in Realizing Large Structures in Space Challenges in Realizing Large Structures in Space Gunnar Tibert KTH Space Center Space Rendezvous, 13 Oct 2016 Large Structures in Space My experience on large space structures: Centrifugally deployed

More information

Louise Prockter Applied Physics Laboratory, Johns Hopkins University Barry Goldstein Jet Propulsion Laboratory, California Institute of Technology

Louise Prockter Applied Physics Laboratory, Johns Hopkins University Barry Goldstein Jet Propulsion Laboratory, California Institute of Technology EUROPA Louise Prockter Applied Physics Laboratory, Johns Hopkins University Barry Goldstein Jet Propulsion Laboratory, California Institute of Technology Copyright 2016 California Institute of Technology.

More information

Particle Environment Package (PEP) for Laplace JGO

Particle Environment Package (PEP) for Laplace JGO Particle Environment Package (PEP) for Laplace JGO Assessment study status report Stas Barabash 1 and the PEP Team 1 Swedish Inst. of Space Physics, Kiruna, Sweden 1 Outline PEP overview Assessment study

More information

STRUCTURAL DESIGN OF THE TITAN AEROCAPTURE MISSION

STRUCTURAL DESIGN OF THE TITAN AEROCAPTURE MISSION 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 20-23 July 2003, Huntsville, Alabama AIAA 2003-4955 AIAA-2003-4955 39 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Huntsville,

More information