# Announcements. HW #3 is Due on Thursday (September 22) as usual. Chris will be in RH111 on that day.

Size: px
Start display at page:

Download "Announcements. HW #3 is Due on Thursday (September 22) as usual. Chris will be in RH111 on that day."

Transcription

1 Announcements The Albuquerque Astronomical Society (TAAS) is hosting a public lecture SATURDAY, SEPTEMBER 17TH - 7:00pm SCIENCE AND MATH LEARNING CENTER, UNM CAMPUS Free and open to the public USA Total Solar Eclipse of August 21, 2017 by Mike Molitor HW #3 is Due on Thursday (September 22) as usual. Chris will be in RH111 on that day.

2 Exam 1 test results Grades posted online in Learn F D C B A

3 Clicker Question: According to Newton's Law of Gravity, if the distance between two masses is doubled, the gravitational force between them is A: half as strong B: twice as strong C: one fourth as strong D: four times as strong

4 Clicker Question: One arcsecond is equal to A: 1/3600 degrees B: 1/60 degrees C: 60 arcminutes D: 60 degrees

5 Clicker Question: If the temperature of the Sun suddenly doubled from 6000 to K, but the size stayed the same, the luminosity would: A: decrease by a factor of 4 B: increase by a factor of 2 C: increase by a factor of 4 D: increase by a factor of 16

6 The Solar System Ingredients? The Sun Planets Dust Moons and Rings Comets Asteroids (size > 100 m) Meteoroids (size < 100 m) Kuiper Belt Oort Cloud A lot of nearly empty space

7 Zodiacal Dust Looking outwards (away from the sun) Looking inwards (in infrared)

8 Zodiacal dust Dust particles on the plane of the orbits of the planets. (size: 1 to 300 x 10-6 m)

9 Solar System Perspective

10 Orbits of Planets All orbit in same direction. Most orbit in same plane. Elliptical orbits, but low eccentricity for most, so nearly circular.

11 Exceptions: Mercury Pluto (no longer a planet) orbital tilt 7 o orbital tilt 17.2 o eccentricity 0.21 eccentricity 0.25

12 Sun, Planets,our Moon and Pluto to scale (mostly) Mistakes: Jupiter should have rings Pluto should be smaller than Moon

13 DEMO: Bag of Planets

14 Two Kinds of Classical Planets "Terrestrial" Mercury, Venus, Earth, Mars "Jovian" Jupiter, Saturn, Uranus, Neptune Close to the Sun Small Mostly Rocky High Density ( g/cm 3 ) Slow Rotation (1-243 days) Few Moons No Rings Main Elements Fe, Si, C, O, N Far from the Sun Large Mostly Gaseous Low Density ( g/cm 3 ) Fast Rotation ( days) Many Moons Rings Main Elements H, He

15 Dwarf Planets compared to Terrestrial Planets "Terrestrial" Mercury, Venus, Earth, Mars Dwarf Planets Pluto, Eris, many others Close to the Sun Small Mostly Rocky High Density ( g/cm 3 ) Slow Rotation (1-243 days) Few Moons No Rings Main Elements Fe, Si, C, O, N Far from the Sun Very small Rock and Ice Moderate Density (2-3 g/cm 3 ) Rotation? Few Moons No Rings Main Elements Fe, Si, C, O, N And an icy surface

16 Dwarf planets continued Sequence of discovery images Eris

17 How did the Solar System Form? We weren't there. We need a good theory. We can try to check it against other forming solar systems. What must it explain? - Solar system is very flat. - Almost all moons and planets (and Sun) rotate and revolve in the same direction. - Planets are isolated in space. - Terrestrial - Jovian planet distinction. - Leftover junk (comets and asteroids). Not the details and oddities such as Venus and Uranus retrograde spin.

18 Early Ideas René Descartes ( ) nebular theory: Solar system formed out of a "whirlpool" in a "universal fluid". Planets formed out of eddies in the fluid. Sun formed at center. Planets in cooler regions. Cloud called "Solar Nebula". This is pre-newton and modern science. But basic idea correct, and the theory evolved as science advanced, as we'll see.

19 A cloud of interstellar gas a few light-years, or about 1000 times bigger than Solar System The associated dust blocks starlight. Composition mostly H, He. Too cold for optical emission but some radio spectral lines from molecules. Doppler shifts of lines indicate clouds rotate at a few km/s. Clumps within such clouds collapse to form stars or clusters of stars. They are spinning at about 1 km/s.

20 Solar System Formation Video

21 Clicker Question: Which of the following is a Terrestrial planet: A: Jupiter B: Saturn C: Mercury D: Pluto E: Neptune

22 Clicker Question: In the leading theory of solar system formation, the planets: A: were ejected from the Sun following a close encounter with another star. B: formed from the same flattened, swirling gas cloud that formed the sun. C: were formed before the Sun. D: were captured by the Sun as it traveled through the galaxy.

23 But why is Solar System flat? Pierre Laplace ( ): an important factor is "conservation of angular momentum": When a rotating object contracts, it speeds up. "linear momentum" "angular momentum" (a property of a spinning or orbiting object) mass x velocity mass x velocity x "size" of spin or orbit of spinning object or orbit Well demonstrated by ice skaters...

24 DEMO - Conservation of Angular momentum

25 So, as nebula contracted it rotated faster. Could not remain spherical! Faster rotation tended to fling stuff outwards, so it could only collapse along rotation axis => it became a flattened disk, like a pizza crust. Hubble is seeing these now!

26 Early planet formation (age < 1 million years) in HL Tau ALMA image

27 Now to make the planets... Solar Nebula: Condensation theory: 98% of mass is gas (H, He) 2% in dust grains (Fe, C, Si...) 1) Dust grains act as "condensation nuclei": gas atoms stick to them => growth of first clumps of matter. 2) Accretion: Clumps collide and stick => larger clumps. Eventually, small-moon sized objects: "planetesimals". 3) Gravity-enhanced accretion: objects now have significant gravity. Mutual attraction accelerates accretion. Bigger objects grow faster => a few planet-sized objects.

28 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. initial gas and dust nebula dust grains grow by accreting gas, colliding and sticking continued growth of clumps of matter, producing planetesimals planetesimals collide and stick, enhanced by their gravity result is a few large planets Hubble observation of disk and planet around the bright star Fomalhault

29 Terrestrial - Jovian Distinction Inner parts of disk hotter (due to forming Sun): mostly gas. Accretion of gas atoms onto dust grains relatively inefficient. Outer parts cooler: ices form (but still much gas), also ice "mantles" on dust grains => much more solid material for accretion => larger planetesimals => more gravity => even more material. Jovian solid cores ~ M Earth. Strong gravity => swept up and retained large gas envelopes. Composition of Terrestrial planets reflects that of initial dust it is not representative of Solar System, or Milky Way, or Universe.

30 Asteroid Belt Perhaps a planet was going to form there. But Jupiter's strong gravity disrupted the planetesimals' orbits, ejecting them out of Solar System. The Belt is the few left behind. And Finally... Remaining gas swept out by Solar Wind.

31 Dinosaur Killer Impact 65 million years ago High levels of iridium in Raton Pass (I25)

32 The Fossil Record is Marked by Mass Extinction Events Extinction Genus loss End Ordovician 60% End Devonian 57% End Permian 82% End Triassic 53% End Cretaceous 47% From Solé & Newman 2002

33

34 Clicker Question: We can tell something of the overall composition of the planets by looking at their: A: spectra B: temperature C: mass and radius D: magnetic fields

35 Clicker Question: An asteroid impact like the one that killed off the dinosaurs is expected once every: A: year B: hundred years C: thousand years D: hundred thousand years E: hundred million years

36 Result from computer simulation of planet growth Shows growth of terrestrial planets. If Jupiter's gravity not included, fifth terrestrial planet forms in Asteroid Belt. If Jupiter's gravity included, orbits of planetesimals there are disrupted. Almost all ejected from Solar System. Simulations also suggest that a few Mars-size objects formed in Asteroid Belt. Their gravity modified orbits of other planetesimals, before they too were ejected by Jupiter's gravity. Asteroid Ida

37 The Structure of the Solar System L3 L5 L4 ~ 5 AU ~ 45 AU

38 Lagrange Points

### Clicker Question: Clicker Question: Clicker Question:

Test results Last day to drop without a grade is Feb 29 Grades posted in cabinet and online F D C B A In which direction would the Earth move if the Sun s gravitational force were suddenly removed from

### Two Kinds of Planets. "Terrestrial" "Jovian" Mercury, Venus, Earth, Mars. Jupiter, Saturn, Uranus, Neptune

Two Kinds of Planets "Terrestrial" Mercury, Venus, Earth, Mars Close to the Sun Small (D=5000-13000 km) Mostly Rocky High Density (3.9-5.5 g/cm 3 ) Slow Rotation (1-243 days) Few Moons No Rings Main Elements

### 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet

### Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines Chapter 6 Astronomy Today 7th Edition Chaisson/McMillan Chapter 6 The Solar System Units of Chapter 6 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout

### Gravity: Motivation An initial theory describing the nature of the gravitational force by Newton is a product of the resolution of the

Gravity: Motivation An initial theory describing the nature of the gravitational force by Newton is a product of the resolution of the Geocentric-Heliocentric debate (Brahe s data and Kepler s analysis)

### 9. Formation of the Solar System

9. Formation of the Solar System The evolution of the world may be compared to a display of fireworks that has just ended: some few red wisps, ashes, and smoke. Standing on a cool cinder, we see the slow

### The Formation of the Solar System

The Formation of the Solar System Basic Facts to be explained : 1. Each planet is relatively isolated in space. 2. Orbits nearly circular. 3. All roughly orbit in the same plane. 4. Planets are all orbiting

### Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

### Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

### Origin of the Solar System

Origin of the Solar System and Solar System Debris 1 Debris comets meteoroids asteroids gas dust 2 Asteroids irregular, rocky hunks small in mass and size Ceres - largest, 1000 km in diameter (1/3 Moon)

### What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

### Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

### Today. Solar System Formation. a few more bits and pieces. Homework due

Today Solar System Formation a few more bits and pieces Homework due Pluto Charon 3000 km Asteroids small irregular rocky bodies Comets icy bodies Formation of the Solar System How did these things come

### 9.2 - Our Solar System

9.2 - Our Solar System Scientists describe our solar system as the Sun and all the planets and other celestial objects, such as moons, comets, and asteroids, that are held by the Sun s gravity and orbit

### Formation of the Solar System. What We Know. What We Know

Formation of the Solar System Many of the characteristics of the planets we discussed last week are a direct result of how the Solar System formed Until recently, theories for solar system formation were

### The Coriolis effect. Why does the cloud spin? The Solar Nebula. Origin of the Solar System. Gravitational Collapse

Origin of the Solar System Our theory must explain the data 1. Large bodies in the Solar System have orderly motions. 2. There are two types of planets. small, rocky terrestrial planets large, hydrogen-rich

### Making a Solar System

Making a Solar System Learning Objectives! What are our Solar System s broad features? Where are asteroids, comets and each type of planet? Where is most of the mass? In what direction do planets orbit

### Astronomy 241: Foundations of Astrophysics I. The Solar System

Astronomy 241: Foundations of Astrophysics I. The Solar System Astronomy 241 is the first part of a year-long introduction to astrophysics. It uses basic classical mechanics and thermodynamics to analyze

### The Solar Nebula Theory. This lecture will help you understand: Conceptual Integrated Science. Chapter 28 THE SOLAR SYSTEM

This lecture will help you understand: Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 28 THE SOLAR SYSTEM Overview of the Solar System The Nebular Theory The Sun Asteroids, Comets, and

### Our Planetary System & the Formation of the Solar System

Our Planetary System & the Formation of the Solar System Chapters 7 & 8 Comparative Planetology We learn about the planets by comparing them and assessing their similarities and differences Similarities

### on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei

The Sun, with all the planets revolving around it, and depending on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei What We Will Learn Today Where

### Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th

Moon Obs #1 Due! Moon visible: early morning through afternoon 6 more due June 13 th 15 total due June 25 th Final Report Due June 28th Our Solar System Objectives Overview of what is in our solar system

### 9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like?

9/22/17 Lecture Outline 6.1 A Brief Tour of the Solar System Chapter 6: Formation of the Solar System What does the solar system look like? Our goals for learning: What does the solar system look like?

### Why are Saturn s rings confined to a thin plane? 1. Tidal forces 2. Newton s 1st law 3. Conservation of energy 4. Conservation of angular momentum

Announcements Astro 101, 12/2/08 Formation of the Solar System (text unit 33) Last OWL homework: late this week or early next week Final exam: Monday, Dec. 15, 10:30 AM, Hasbrouck 20 Saturn Moons Rings

### Test 2 Result: Sec 1. To see the scantron & problem set, contact the TA: Mr. He Gao

Test 2 Result: Sec 1 Column Statistics for: Test2 Count: 103 Average: 31.4 Median: 32.0 Maximum: 46.0 Minimum: 10.0 Standard Deviation: 7.94 To see the scantron & problem set, contact the TA: Mr. He Gao

### -Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher Formation Overview All explanations as to how the solar system was formed are only

### Chapter 15: The Origin of the Solar System

Chapter 15: The Origin of the Solar System The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites

### Solar System Formation

Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

### A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars.

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. They radiate energy (electromagnetic radiation) from a

### Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 4 The Solar System Lecture Presentation 4.0 What can be seen with the naked eye? Early astronomers knew about the Sun, Moon, stars, Mercury,

### Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

### Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way

Celestial bodies are all of the natural objects in space ex. stars moons, planets, comets etc. Star: celestial body of hot gas that gives off light and heat the closest star to earth is the sun Planet:

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 4 - Group Homework Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Density is defined as A) mass times weight. B) mass per unit volume.

### The Solar Nebula Theory

Reading: Chap. 21, Sect.21.1, 21.3 Final Exam: Tuesday, December 12; 4:30-6:30PM Homework 10: Due in recitation Dec. 1,4 Astro 120 Fall 2017: Lecture 25 page 1 Astro 120 Fall 2017: Lecture 25 page 2 The

### The Big Bang Theory (page 854)

Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called

### Chapter 4 The Solar System

Chapter 4 The Solar System Comet Tempel Chapter overview Solar system inhabitants Solar system formation Extrasolar planets Solar system inhabitants Sun Planets Moons Asteroids Comets Meteoroids Kuiper

### LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system

Unit 2 Lesson 1 LESSON topic: formation of the solar system - Solar system formation - Star formation - Models of the solar system - Planets in our solar system Big bang theory Origin of the universe According

### Notes: The Solar System

Notes: The Solar System The Formation of the Solar System 1. A gas cloud collapses under the influence of gravity. 2. Solids condense at the center, forming a protostar. 3. A falttened disk of matter surrounds

### Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years

U238>Pb206 Halflife: 4.5 billion years Oldest earth rocks 3.96 billion years Meteors and Moon rocks 4.6 billion years This is the time they solidified The solar system is older than this. Radioactive Dating

### Cosmology Vocabulary

Cosmology Vocabulary Vocabulary Words Terrestrial Planets The Sun Gravity Galaxy Lightyear Axis Comets Kuiper Belt Oort Cloud Meteors AU Nebula Solar System Cosmology Universe Coalescence Jovian Planets

### CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration

CHAPTER 11 We continue to Learn a lot about the Solar System by using Space Exploration Section 11.1 The Sun page 390 -Average sized star -Millions of km away -300,000 more massive then Earth, 99% of all

### Unit 1: The Earth in the Universe

Unit 1: The Earth in the Universe 1. The Universe 1.1. First ideas about the Universe 1.2. Components and origin 1.3. Sizes and distances 2. The Solar System 3. The planet Earth 3.1. Movements of the Earth

### What does the solar system look like?

What does the solar system look like? The solar system exhibits clear patterns of composition and motion. These patterns are far more important and interesting than numbers, names, and other trivia. Relative

### The History of the Solar System. From cloud to Sun, planets, and smaller bodies

The History of the Solar System From cloud to Sun, planets, and smaller bodies The Birth of a Star Twenty years ago, we knew of only one star with planets the Sun and our understanding of the birth of

### Solar System Formation

Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

### The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects.

The Solar System Sun Center of the solar system About 150,000,000 km from the Earth An averaged sized, yellow star Spherical in shape due to gravity Made of about ¾ hydrogen and ¼ helium, both of which

### Solar System Formation

Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

### Formation of the Solar System

Formation of the Solar System What theory best explains the features of our solar system? The nebular theory states that our solar system formed from the gravitational collapse of a giant interstellar

### Earth Science 11 Learning Guide Unit Complete the following table with information about the sun:

Earth Science 11 Learning Guide Unit 2 Name: 2-1 The sun 1. Complete the following table with information about the sun: a. Mass compare to the Earth: b. Temperature of the gases: c. The light and heat

### 1 Solar System Debris and Formation

1 Solar System Debris and Formation Chapters 14 and 15 of your textbook Exercises: Do all Review and Discussion and all Conceptual Self-Test 1.1 Solar System Debris Asteroids small rocky bodies Most under

### Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary

### Other worlds. Innumerable suns exist;

Innumerable suns exist; Other worlds innumerable earths revolve around these suns in a manner similar to the way the seven planets revolve around our Sun. Living beings inhabit these worlds. Giordano Bruno

### Chapter 15 The Formation of Planetary Systems

Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar

### Astro 1: Introductory Astronomy

Astro 1: Introductory Astronomy David Cohen Class 16: Thursday, March 20 Spring 2014 large cloud of interstellar gas and dust - giving birth to millions of stars Hubble Space Telescope: Carina Nebula

### Chapter 8 Formation of the Solar System

Chapter 8 Formation of the Solar System SUMMARY OF STAGES IN FORMATION OF SOLAR SYSTEM STARTING POINT: A ROTATING SPHERICAL NEBULA with atoms made by Galactic recycling 1-GRAVITATIONAL CONTRACTION AND

### Stellar Astronomy Sample Questions for Exam 3

Stellar Astronomy Sample Questions for Exam 3 Chapter 7 1. A protostar is formed by a) the rapid expansion of gas from an exploding star. b) the gravitational collapse of a rotating interstellar cloud.

### Introduction to the Solar System

Introduction to the Solar System Sep. 11, 2002 1) Introduction 2) Angular Momentum 3) Formation of the Solar System 4) Cowboy Astronomer Review Kepler s Laws empirical description of planetary motion Newton

### Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Lecture 17 Planetary System Formation and Evolution February 22, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

### Which of the following correctly describes the meaning of albedo?

Which of the following correctly describes the meaning of albedo? A) The lower the albedo, the more light the surface reflects, and the less it absorbs. B) The higher the albedo, the more light the surface

### Astronomy Wed. Oct. 6

Astronomy 301 - Wed. Oct. 6 Guest lectures, Monday and today: Prof. Harriet Dinerstein Monday: The outer planets & their moons Today: asteroids, comets, & the Kuiper Belt; formation of the Solar System

### Outline. Question of Scale. Planets Dance. Homework #2 was due today at 11:50am! It s too late now.

Outline Homework #2 was due today at 11:50am! It s too late now. Planetarium observing is over. Switch Gears Solar System Introduction The Planets, the Asteroid belt, the Kupier objects, and the Oort cloud

### 1 A Solar System Is Born

CHAPTER 16 1 A Solar System Is Born SECTION Our Solar System California Science Standards 8.2.g, 8.4.b, 8.4.c, 8.4.d BEFORE YOU READ After you read this section, you should be able to answer these questions:

### Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System

Chapter Outline Earth and Other Planets The Formation of the Solar System Exploring the Solar System Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from

### Planetarium observing is over. Nighttime observing starts next week.

Homework #2 was due today at 11:50am! It s too late now. Planetarium observing is over. Solar observing is over. Nighttime observing starts next week. Outline Switch Gears Solar System Introduction The

### HW #2. Solar Nebular Theory. Predictions: Young stars have disks. Disks contain gas & dust. Solar System should contain disk remnants

Astronomy 330: Extraterrestrial Life This class (Lecture 9): Next Class: Planet Formation Zachary Brewer Quinn Calvert Exoplanets Itamar Allali Brian Campbell-Deem HW #3 due Sunday night. Music: Another

### Where did the solar system come from?

Chapter 06 Part 2 Making the Planetary Donuts Where did the solar system come from? Galactic Recycling Elements that formed planets were made in stars and then recycled through interstellar space. Evidence

### Formation of the Solar System

Formation of the Solar System Most of our knowledge of the formation of the Solar System has emerged from: studies of interstellar gas clouds, fallen meteorites, the Earth s Moon, the various planets observed

### Overview of the Solar System. Solar system contents one star, several planets, lots of debris.

Overview of the Solar System Solar system contents one star, several planets, lots of debris. Most of it is the Sun! 99.8% of the mass of the Solar System resides in the Sun. A hot ball of mostly hydrogen

### Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System

Chapter 8 Lecture The Cosmic Perspective Seventh Edition Formation of the Solar System Formation of the Solar System 8.1 The Search for Origins Our goals for learning: Develop a theory of solar system

### Starting from closest to the Sun, name the orbiting planets in order.

Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

### Astronomy 103: First Exam

Name: Astronomy 103: First Exam Stephen Lepp October 27, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

### The Solar System consists of

The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar

### 1. Solar System Overview

Astronomy 241: Foundations of Astrophysics I 1. Solar System Overview 0. Units and Precision 1. Constituents of the Solar System 2. Motions: Rotation and Revolution 3. Formation Scenario Units Text uses

### Brooks Observatory telescope observing this week

Brooks Observatory telescope observing this week Mon. - Thurs., 7:30 9:15 PM MW, 7:30 8:45 PM TR See the class web page for weather updates. This evening s session is cancelled. Present your blue ticket

### Dating the Universe. But first... Lecture 6: Formation of the Solar System. Observational Constraints. How did the Solar System Form?

Dating the Universe Lecture 6: Formation of the Solar System Astro 202 Prof. Jim Bell (jfb8@cornell.edu) Spring 2008 But first... Graded Paper 1 returned today... Paper 2 is due at beginning of class on

### Lesson 3 THE SOLAR SYSTEM

Lesson 3 THE SOLAR SYSTEM THE NATURE OF THE SUN At the center of our solar system is the Sun which is a typical medium sized star. Composed mainly of Hydrogen (73% by mass), 23% helium and the rest is

### Which of the following statements best describes the general pattern of composition among the four jovian

Part A Which of the following statements best describes the general pattern of composition among the four jovian planets? Hint A.1 Major categories of ingredients in planetary composition The following

### Unit 12 Lesson 1 What Objects Are Part of the Solar System?

Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other

### Exploring Our Solar System

Exploring Our Solar System Our Solar System What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement

### Chapter 06 Let s Make a Solar System

like? Big picture. Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? The solar system exhibits clear patterns of

### Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

When a planets orbit around the Sun looks like an oval, it s called a(n) - ellipse - circle - axis - rotation Which of the following planets are all made up of gas? - Venus, Mars, Saturn and Pluto - Jupiter,

### Bell Work. Why are solar eclipses so rare? What are scale models?

Daily Routine Sit in your appropriate seat quietly All back packs on the floor All cell phones away All IPods off and headphones out of your ears Have all necessary materials out No food or drink except

### Class 15 Formation of the Solar System

Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

### How did it come to be this way? Will I stop sounding like the

Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? What does the solar system look like? Big picture. The solar system

### ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy

Chariho Regional School District - Science Curriculum September, 2016 ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy OVERVIEW Summary Students will be introduced to the overarching concept of astronomy.

### 1 of 5 5/2/2015 5:50 PM

1 of 5 5/2/2015 5:50 PM 1. A comet that has a semi-major axis of 100 AU must have a period of about 10 years. 20 years. 100 years. 1000 years. 2. Astronomers believe chondrite meteorites are about 4.6

### Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Instructor: L. M. Khandro 1. Relatively speaking, objects with high temperatures emit their peak radiation in short wavelengths

### ! Group project! a)! 65% b)! 70% c)! 75% d)! 80% e)! 85%

This Class (Lecture 6): More Asteroids Next Class: Dino-Killers HW1 due on Sun. Last day to go to the Nat History Building before deadline. Music: The Day Lassie Went to the Moon Camper van Beethoven!

### WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If

### Comparative Planetology I: Our Solar System

Comparative Planetology I: Our Solar System Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon? 3. How do astronomers

### ASTR 150. Homework 2 due Monday. Planetarium shows this week Next Monday/ Wednesday no lectures

ASTR 150 Homework 2 due Monday Office hour today Planetarium shows this week Next Monday/ Wednesday no lectures Time for asteroid lab Last time: Asteroids and Comets Today: Solar System Formation Music:

### ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics Instructions This exam is closed book and closed notes, although you may

### Astronomy 1001/1005 Midterm (200 points) Name:

Astronomy 1001/1005 Midterm (00 points) Name: Instructions: Mark your answers on this test AND your bubble sheet You will NOT get your bubble sheet back One page of notes and calculators are allowed Use

### Vagabonds of the Solar System

Vagabonds of the Solar System Guiding Questions 1. How and why were the asteroids first discovered? 2. Why didn t the asteroids coalesce to form a single planet? 3. What do asteroids look like? 4. How

### 12/3/14. Guiding Questions. Vagabonds of the Solar System. A search for a planet between Mars and Jupiter led to the discovery of asteroids

Guiding Questions Vagabonds of the Solar System 1. How and why were the asteroids first discovered? 2. Why didn t the asteroids coalesce to form a single planet? 3. What do asteroids look like? 4. How

### Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.

If a material is highly opaque, then it reflects most light. absorbs most light. transmits most light. scatters most light. emits most light. When light reflects off an object, what is the relation between

### Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 07 Oct. 15, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

### Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents

Regents Earth Science Unit 5: Astronomy Models of the Universe Earliest models of the universe were based on the idea that the Sun, Moon, and planets all orbit the Earth models needed to explain how the