Let's first discuss the period and frequency for circular motion: period T: amount of time needed to complete one revolution (unit: s, min, h, etc.

Size: px
Start display at page:

Download "Let's first discuss the period and frequency for circular motion: period T: amount of time needed to complete one revolution (unit: s, min, h, etc."

Transcription

1 Chapter 5: Dynamics of Uniform Circular Motion Tuesday, September 17, :00 PM Rotational kinematics We'll discuss the basics of rotational kinematics in this chapter; the kinematics equations for constant angular acceleration are discussed in Chapter 8. The basic quantities of rotational kinematics are angular position, angular displacement, angular velocity, and angular acceleration; period and frequency. Let's first discuss the period and frequency for circular motion: period T: amount of time needed to complete one revolution (unit: s, min, h, etc.) frequency f: number of revolutions per unit time (unit: s -1 (i.e., "revolutions per second"), rpm, etc.) basic formula relating T and f: Remember that the basic formula relating period and frequency is only valid when T and f have compatible units. For example, if you would like T to be measured in minutes (which really means minutes per revolution), then f must be measured in revolutions per minute (rpm). Example: Your car's tachometer reads 2500 rpm. How many long does it take for the engine to make one cycle? Solution: Ch5Preliminary Page 1

2 Thus, the engine completes one cycle every 24 thousands of a second. Example: The earth rotates once on its axis every day. Determine the earth's frequency in rpm. Solution: Degrees and radians Angular position is measured in degrees or radians; here is a review of angle measure in degrees and radians; remember that the radian is a "unitless" unit: Ch5Preliminary Page 2

3 Remember that for a complete circle, the circumference is and therefore the angle of a complete circle is But we know that for a complete circle, = 360. Thus, Using these two conversion factors allows one to convert from degrees to radians, or vice versa. For example, Ch5Preliminary Page 3

4 Angular displacement and angular velocity Connecting linear and angular kinematic quantities Ch5Preliminary Page 4

5 Ch5Preliminary Page 5

6 Centripetal acceleration A confusing example: driving around a circular curve in a car. We previously discussed the fact that we viscerally feel that we are thrown outwards when we go around a curve in a car; however, the acceleration is actually inward. It's understandable why this is confusing; our bodies are telling us that something is pushing us outwards, yet the following arguments indicate that the acceleration is actually inwards. It's difficult for the brain to understand something when the body feels the opposite. (You can understand why it took a few millennia for the greatest minds in humanity to figure out what is going on here.) The vector diagrams below argue that the acceleration in uniform (that is, constant speed) circular motion is really towards the centre of the circle. (As we argued in a previous chapter, the acceleration is not exactly towards the centre if the speed is increasing or decreasing in circular motion.) Because the acceleration is exactly towards the centre in uniform circular motion, it is called centripetal acceleration ("centripetal" just means "towards the centre"). Ch5Preliminary Page 6

7 The following figure is relevant (and the conclusions are valid) for circular motion with CONSTANT speed only: Ch5Preliminary Page 7

8 formula for centripetal acceleration Ch5Preliminary Page 8

9 Let's derive a neat formula for the magnitude of the centripetal acceleration. In Part (a) of the figure, let s represent the length of the circular arc (dashed arc), which is nearly the same as the length of the vector labelled d. Then, From the first figure in Part (c), We can't be sure of this formula for centripetal acceleration because of the approximations used, and because some of the quantities were average values. Nevertheless, the formula is correct, although it will take calculus to prove that it is exact (calculus lovers are welcome to read the proof that is further below in the notes). Example: A flywheel with radius 30 cm rotates at a constant rate of 200 rpm. a. Determine the period of rotation. b. Determine the speed of a point on the rim of the flywheel. Ch5Preliminary Page 9

10 c. Determine the acceleration of a point on the rim of the flywheel. We can also simply say that the period is T = 0.3 s, because the "per revolution" is understood as part of the definition of the period. (b) The distance d covered by a point on the rim of the wheel in one revolution is Because the speed is constant, the speed of a point on the rim of the wheel is Ch5Preliminary Page 10

11 For calculus lovers only, here is a precise derivation of the formula for centripetal acceleration. For an object moving in a circle of radius r at a constant speed, the position function can be written as Now differentiate twice to obtain an expression for the acceleration, using the chain rule. Remember that theta is a function of time and the radius of the circle is constant. You'll also note that we've used a fact from vector calculus, that to differentiate a vector function you just differentiate each component separately. You might like to think about why this is true. (Further discussion to come in second-year calculus.) Note that the acceleration is in the direction opposite to the position vector. The position vector points from the centre of the circle to the location of the moving object; thus, the acceleration vector points towards the centre of the circle, which is why it's called a "centripetal" (centre-seeking) acceleration. The magnitude of the centripetal acceleration is Note that Thus Ch5Preliminary Page 11

12 Example: maximum speed for a car turning around a curve on a level road with friction A car of mass 1200 kg moves around a curve on level ground that has a a radius of 20 m. Determine the maximum speed for which the car can safely move around the curve. The coefficient of friction is 0.5. Ch5Preliminary Page 12

13 Thus, the maximum acceleration that friction between the tires and the road can produce is 4.9 m/s 2. Notice that the maximum safe speed through the curve is independent of the mass of the vehicle; thus, a speed limit sign can be used that is appropriate for all vehicles, whether they are light motorcycles or heavy transport trucks. Also note that static friction between the tires and the road is the origin of the force pushing the vehicle towards the centre of the circle (why is it not kinetic friction?). Because the static friction force points towards the centre of the circle, most textbooks call it a centripetal force. Note, however, that this is not a new kind of force, but is simply a reminder that the force acts towards the centre of the circle. In this example, it's a static friction force, nothing new. Ch5Preliminary Page 13

14 Example: banking angle for a highway curve Determine the ideal banking angle for a highway curve that has a (horizontal) radius of 20 m. Suppose that the typical driving speed around the curve is about equal to the speed determined in the previous example. Solution: There is no friction on the road; presumably it's very icy. Ch5Preliminary Page 14

15 Notice that the ideal banking angle is independent of the mass of the vehicle; this is nice. It means that one can design a banked highway that will be appropriate for all vehicles, no matter their mass, so it will be just as safe for light motorcycles and heavy transport trucks. Example: apparent weight for motion in a vertical circle Consider a car going around a vertical "loop-the-loop" of radius 3 m. Determine the minimum speed the car needs to make it through the loop. Alternatively: Consider a bucket of water spinning in a vertical circle and determine the minimum speed (or angular speed) so that the water does not fall out of the bucket. Solution: Draw a free-body diagram for the car when it is at the top of the loop: Ch5Preliminary Page 15

16 This means that if the car is to complete the circle, the force must be provided by the normal force from the loop and gravity. As the speed increases, the normal force has to increase to provide the necessary force. On the other hand, if the speed of the car decreases, then the normal force will also decrease, until at a critical speed, the weight of the car will be sufficient to provide the centripetal force. If the speed were to decrease below this critical minimum value, the car will leave the loop and crash down. Thus, the minimum speed for the car to make it through the loop corresponds to n = 0. Setting n = 0 and solving for the speed of the car, we obtain: This may not seem like a very high speed, but remember that the loop is not very big. I once saw a "cirque" stunt where motorcycles were flying around the inside of a spherical metal structure, and the radius might have been this big and the speeds seemed about this fast or a bit faster. For a much bigger loop, a larger speed is required. Now solve the problem of the water in the bucket yourself, using a string of reasonable length. How fast do you have to swing a bucket around so that the water doesn't fall out? Ch5Preliminary Page 16

17 centrifuges Read about centrifuges in the text book; they provide a nice practical example of circular motion. (Also, you'll think about physics the next time you use a lettuce spinner, which is a sort of centrifuge.) Newton's law of gravity Example: gravitational force between Earth and Moon Ch5Preliminary Page 17

18 The following diagram is meant to help us understand the "inverse-square" nature of the gravitational force law. The same inverse-square nature is present in the decrease in the intensity of light or sound from a point source, which is the inspiration for the diagram. Imagine "spraying" a substance, such as paint from a paint-sprayer. If the spray is uniform, the area covered by the spray increases by a factor of 4 if the distance from the sprayer doubles; similarly, the area covered by the spray increases by a factor of 9 if the distance from the sprayer triples. In general, the area covered increases by a factor of r 2 when the distance increases by a factor of r. But, if the area covered doubles, then the "intensity" of the spray decreases by a factor of 2, because the amount of spray doesn't change, it's just spread over a larger area. The gravitational force behaves similarly; as you get farther away from the source by a factor of r, the gravitational force decreases by a factor of r 2, because it is spread over an area that has increased by a factor of r 2. Newton's law of gravity is an inverse-square force law, and has the same structure as Coulomb's law for the force between two charged particles at rest, as we'll learn in second semester. The diagram above is intended to illustrate that the force decreases by a factor of 4 when the distance between the objects increases by a Ch5Preliminary Page 18

19 factor of 2. Surface gravity of a planet Example: gravitational force between Earth and a small object of mass m at the Earth's surface This provides insight into our assumption earlier in the course that the acceleration due to gravity g is constant; we can see by the previous equation that this is not exactly true. Close to the Earth's surface it is approximately true, but as you move away from the Earth's surface the value of the acceleration due to gravity decreases. The equation above also gives us a way to "weigh" the Earth. The acceleration due to gravity can be measured in a laboratory (in fact you did so in the pendulum experiment in this course), and so can the gravitational constant G (look up the famous Cavendish experiment for details). The radius of the Earth can be determined using an ingenious geometrical method first devised by Eratosthenes (you can also look this up); then the previous equation can be solved for the mass of the Earth. Ch5Preliminary Page 19

20 The same formula can be used to determine the acceleration due to gravity on other planets, moons, asteroids, etc. Just replace the mass and radius of Earth by the mass and radius of the other planet. Also note that some books call the acceleration due to gravity at the surface (i.e., "g") by the term "surface gravity." Example: Determine the Moon's surface gravity. Solution: Look up the following data in the textbook: Then the surface gravity of the Moon is Thus, the surface gravity of the Moon is about one-sixth the surface gravity of the Earth. What are the consequences of this? What would it be like to walk about on the Moon? Satellite motion orbital motion of a satellite around Earth direction of gravitational forces at various points of the orbit gravitational acceleration is approximately constant near surface, but the direction is clearly not constant over larger scales, nor is the magnitude constant over larger scales Ch5Preliminary Page 20

21 "Weightlessness" in space satellites in orbit are in free fall hence occupants are "weightless;" that is their apparent weight is zero, even though their real weight is not check the textbook for details Kepler's third law of planetary motion Using Newton's law of gravity and Newton's second law of motion, we can derive Kepler's third law of planetary motion. Ch5Preliminary Page 21

22 If the orbit of the planet is elliptical instead of circular, a more complex analysis shows that Kepler's third law is still valid provided that we use the "semi-major axis" of the orbit in place of r. The semi-major axis of the elliptical orbit is the distance from the centre of the ellipse to the most distant point on the orbit. Example: Use Kepler's third law of planetary motion to determine the distance between the Earth and Sun, given that the mass of the Sun is about kg. Solution: Make sure to convert the period of the Earth into seconds: Ch5Preliminary Page 22

23 Dark matter: One of today's unsolved puzzles about the universe As we discussed in class, if you are deep below the surface of the Earth, let's say in a very deep mine shaft, your weight is less than at the surface of the Earth. Only the mass "interior" to you (i.e., at radii smaller than yours) is effective in exerting a force on you; the force exerted on you by the mass of the Earth that is at larger radii cancels. This means that if you were anywhere inside a hollow spherical shell of mass, provided the shell has constant density, the gravitational force on you is zero. (If you wish to learn more about this, look up "Gauss's law" for gravity (there is a version of Gauss's law for electrostatic forces as well); to understand the mathematical argument, you'll need to have some integral calculus under your belt.) The same principle can be applied to the motions of stars in our galaxy. If you analyze the motion of stars at various positions in our galaxy, you can deduce the amount of mass in the galaxy that lies closer to the galactic centre than the given star (using Newton's law of gravity and Newton's laws of motion). Repeating this kind of analysis for many stars gives us a good idea for the distribution of mass in the galaxy. And this leads to a puzzle: The amount of mass that we detect by usual means (regular light telescopes, radio telescopes, etc.) is nowhere near enough to account for the mass that we know must be there by analyzing motions in the galaxy. That is, the "visual matter" does not account for all the matter that must be present; there must be some "dark matter." What on Earth can this dark matter be? Nobody knows. It is highly unlikely that it could be simply ordinary matter that can't be detected (such as "cold" dust particles or gas, abandoned TV sets, etc.), so scientists have turned to more speculative possibilities. Maybe dark matter is some exotic new form of matter. If so, such forms of matter have not been detected in laboratories, Ch5Preliminary Page 23

24 which leaves us no closer to resolving the puzzle. This is an example of the type of unresolved puzzle that is found at the frontier of every branch of science. There are always unsolved puzzles, which means there is always room for new ideas, and creative researchers have plenty of opportunities for making interesting new discoveries. Maybe one of you will devote the time and work necessary to reach one of the research frontiers; it will take a lot of time and work to reach the frontier, but for the right kind of person (i.e., one who is persistent and willing to put up with a certain amount of failure and frustration) the journey will be a lot of fun and very satisfying. Geostationary satellite orbits It's convenient to have communications satellites that orbit Earth above its equator with a period equal to Earth's rotational period; in this way, they "hover" over the same geographical point on Earth. Using Kepler's third law we can calculate the radius of the orbit of such "geostationary" satellites. This is the distance from the centre of the Earth, so the distance of such a satellite from the surface of the Earth is 6400 km less, which is 35,850 km above the Earth's surface. Ch5Preliminary Page 24

25 The International Space Station orbits Earth at an altitude of about 400 km, which is considered "low Earth orbit;" geosynchronous satellites are in "high Earth orbit." Additional exercises: Example: A turntable rotates counterclockwise at 78 rpm. A speck of dust on the turntable is at = 0.45 rad at t = 0 s. Determine the angle of the speck at t = 8.0 s. (The result should be between 0 and 2.) Solution: Ch5Preliminary Page 25

26 Example: A satellite orbiting the Moon very near the surface has a period of 110 min. Use this information, together with the radius of the Moon (which is m), and the mass of the Moon (which is kg), to calculate the free-fall acceleration on the Moon's surface. Solution: This means that the surface gravity (which is another word for the free-fall acceleration at the surface) on the Moon is about 1/6 as much as the surface gravity on the Earth. How would this change life for you if you lived on the Moon for a while? Example: A 500 g ball swings in a vertical circle at the end of a 1.5-mlong string. When the ball is at the bottom of the circle, the tension in the string is 15 N. Determine the speed of the ball at this point. Solution: Ch5Preliminary Page 26

27 Ch5Preliminary Page 27

Chapter 6: Circular Motion, Orbits, and Gravity Tuesday, September 17, :00 PM. Circular Motion. Rotational kinematics

Chapter 6: Circular Motion, Orbits, and Gravity Tuesday, September 17, :00 PM. Circular Motion. Rotational kinematics Ch6 Page 1 Chapter 6: Circular Motion, Orbits, and Gravity Tuesday, September 17, 2013 10:00 PM Circular Motion Rotational kinematics We'll discuss the basics of rotational kinematics in this chapter;

More information

Let's first discuss the period and frequency for circular motion: period T: amount of time needed to complete one revolution (unit: s, min, h, etc.

Let's first discuss the period and frequency for circular motion: period T: amount of time needed to complete one revolution (unit: s, min, h, etc. Chapter 5: Dynamics of Uniform Circular Motion Tuesday, September 17, 2013 10:00 PM Rotational Kinematics We'll discuss the basics of rotational kinematics in this chapter; the kinematics equations for

More information

review of angle measure in degrees and radians; remember that the radian is a "unitless" unit

review of angle measure in degrees and radians; remember that the radian is a unitless unit Ch6 Page 1 Chapter 6: Circular Motion, Orbits, and Gravity Tuesday, September 17, 2013 10:00 PM Circular Motion rotational kinematics angular position measured in degrees or radians review of angle measure

More information

Make sure that you are able to operate with vectors rapidly and accurately. Practice now will pay off in the rest of the course.

Make sure that you are able to operate with vectors rapidly and accurately. Practice now will pay off in the rest of the course. Ch3 Page 1 Chapter 3: Vectors and Motion in Two Dimensions Tuesday, September 17, 2013 10:00 PM Vectors are useful for describing physical quantities that have both magnitude and direction, such as position,

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the Unit 6. Circular Motion and Gravitation Name: I have not failed. I've just found 10,000 ways that won't work.-- Thomas Edison Big Idea 1: Objects and systems have properties such as mass and charge. Systems

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration 3. Going around a curve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac 2. Slowing down v velocity and acceleration

More information

Chapter 5 Circular Motion; Gravitation

Chapter 5 Circular Motion; Gravitation Chapter 5 Circular Motion; Gravitation Units of Chapter 5 Kinematics of Uniform Circular Motion Dynamics of Uniform Circular Motion Highway Curves, Banked and Unbanked Newton s Law of Universal Gravitation

More information

Honors Assignment - Circular and Periodic Motion

Honors Assignment - Circular and Periodic Motion Honors Assignment - Circular and Periodic Motion Reading: Chapter 5, and 11 1 through 11 5 Objectives/HW: Assignment #1 M: # 1 6 Assignment #2 M: # 7 15 Assignment #3 Text: Chap 5 # 6, 12 M: # 17 22 Assignment

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW:

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW: Assignment - Periodic Motion Reading: Giancoli, Chapter 5 Holt, Chapter 7 Objectives/HW: The student will be able to: 1 Define and calculate period and frequency. 2 Apply the concepts of position, distance,

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

Chapter 5 Circular Motion; Gravitation

Chapter 5 Circular Motion; Gravitation Chapter 5 Circular Motion; Gravitation Units of Chapter 5 Kinematics of Uniform Circular Motion Dynamics of Uniform Circular Motion Highway Curves, Banked and Unbanked Nonuniform Circular Motion Centrifugation

More information

AP Physics C - Problem Drill 18: Gravitation and Circular Motion

AP Physics C - Problem Drill 18: Gravitation and Circular Motion AP Physics C - Problem Drill 18: Gravitation and Circular Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. Two objects some

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

12/1/2014. Chapter 5 Circular Motion; Gravitation. Contents of Chapter 5. Contents of Chapter Kinematics of Uniform Circular Motion

12/1/2014. Chapter 5 Circular Motion; Gravitation. Contents of Chapter 5. Contents of Chapter Kinematics of Uniform Circular Motion Lecture PowerPoints Chapter 5 Physics: Principles with Applications, 7 th edition Giancoli Chapter 5 Circular Motion; Gravitation This work is protected by United States copyright laws and is provided

More information

Circular Motion & Gravitation FR Practice Problems

Circular Motion & Gravitation FR Practice Problems 1) A mass m is attached to a length L of string and hung straight strainght down from a pivot. Small vibrations at the pivot set the mass into circular motion, with the string making an angle θ with the

More information

Chapter 6: Uniform Circular Motion and Gravity

Chapter 6: Uniform Circular Motion and Gravity Chapter 6: Uniform Circular Motion and Gravity Brent Royuk Phys-111 Concordia University Angular Measure Angular distance: Δθ = θ - θ o Analogous to linear distance Rotation instead of translation How

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

Announcements 15 Oct 2013

Announcements 15 Oct 2013 Announcements 15 Oct 2013 1. While you re waiting for class to start, see how many of these blanks you can fill out. Tangential Accel.: Direction: Causes speed to Causes angular speed to Therefore, causes:

More information

Algebra Based Physics Uniform Circular Motion

Algebra Based Physics Uniform Circular Motion 1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

More information

Circular Motion PreTest

Circular Motion PreTest Circular Motion PreTest Date: 06/03/2008 Version #: 0 Name: 1. In a series of test runs, a car travels around the same circular track at different velocities. Which graph best shows the relationship between

More information

Centripetal force keeps an Rotation and Revolution

Centripetal force keeps an Rotation and Revolution Centripetal force keeps an object in circular motion. Which moves faster on a merry-go-round, a horse near the outside rail or one near the inside rail? While a hamster rotates its cage about an axis,

More information

An object moving in a circle with radius at speed is said to be undergoing.

An object moving in a circle with radius at speed is said to be undergoing. Circular Motion Study Guide North Allegheny High School Mr. Neff An object moving in a circle with radius at speed is said to be undergoing. In this case, the object is because it is constantly changing

More information

Circular Motion Test Review

Circular Motion Test Review Circular Motion Test Review Name: Date: 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration is equal to zero. B) No,

More information

Rotational Motion Examples:

Rotational Motion Examples: Rotational Motion Examples: 1. A 60. cm diameter wheel rotates through 50. rad. a. What distance will it move? b. How many times will the wheel rotate in this time? 2. A saw blade is spinning at 2000.

More information

S Notre Dame 1

S Notre Dame 1 Worksheet 1 Horizontal Circular Motion 1. Will the acceleration of a car be the same if it travels Around a sharp curve at 60 km/h as when it travels around a gentle curve at the same speed? Explain. 2.

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration! Δv! aavg t 3. Going around urve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac. Slowing down v velocity and

More information

Unit 2: Forces Chapter 6: Systems in Motion

Unit 2: Forces Chapter 6: Systems in Motion Forces Unit 2: Forces Chapter 6: Systems in Motion 6.1 Motion in Two Dimension 6.2 Circular Motion 6.3 Centripetal Force, Gravitation, and Satellites 6.4 Center of Mass 6.1 Investigation: Launch Angle

More information

Circular Motion & Gravitation MC Question Database

Circular Motion & Gravitation MC Question Database (Questions #4,5,6,27,37,38,42 and 58 each have TWO correct answers.) 1) A record player has four coins at different distances from the center of rotation. Coin A is 1 cm away, Coin B is 2 cm away. Coin

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 5 Dynamics of Uniform Circular Motion Interactive Lecture Questions 5.1.1. An airplane flying at 115 m/s due east makes a gradual turn

More information

Problem Solving Circular Motion Dynamics Challenge Problems

Problem Solving Circular Motion Dynamics Challenge Problems Problem 1: Double Star System Problem Solving Circular Motion Dynamics Challenge Problems Consider a double star system under the influence of gravitational force between the stars. Star 1 has mass m 1

More information

Chapter 5 Review : Circular Motion; Gravitation

Chapter 5 Review : Circular Motion; Gravitation Chapter 5 Review : Circular Motion; Gravitation Conceptual Questions 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

CIRCULAR MOTION AND GRAVITATION

CIRCULAR MOTION AND GRAVITATION CIRCULAR MOTION AND GRAVITATION An object moves in a straight line if the net force on it acts in the direction of motion, or is zero. If the net force acts at an angle to the direction of motion at any

More information

AP Unit 8: Uniform Circular Motion and Gravity HW

AP Unit 8: Uniform Circular Motion and Gravity HW Basics 1D Mot. 2D Mot. Forces Energy Moment. Rotation Circ/Grav SHM Waves Circuits AP Unit 8: Uniform Circular Motion and Gravity HW AP Exam Knowledge & Skills (What skills are needed to achieve the desired

More information

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 10:00 PM The fundamental idea of Newtonian dynamics is that "things happen for a reason;" to be more specific, there is no need to explain rest

More information

Chapter 4 Circular Motion and Gravitation Planetary Data Homework # 26

Chapter 4 Circular Motion and Gravitation Planetary Data Homework # 26 Planetary Data Homework # 26 PLANETARY DATA Mean Distance Mass from Sun Radius Period Planet (kg) (m) (m) (days) Sun 1.99 x 10 30 6.970 x 10 8 Mercury 3.30 x 10 23 5.791 x 10 10 2.439 x 10 6 87.97 Venus

More information

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

More information

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Physics 12. Unit 5 Circular Motion and Gravitation Part 2 Physics 12 Unit 5 Circular Motion and Gravitation Part 2 1. Newton s law of gravitation We have seen in Physics 11 that the force acting on an object due to gravity is given by a well known formula: F

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS MECHANICS: CIRCULAR MOTION QUESTIONS CIRCULAR MOTION (2016;1) Alice is in a car on a ride at a theme park. The car travels along a circular track that is banked, as shown in the diagram. On the diagram,

More information

Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Suggested Videos for Chapter 6 Prelecture Videos Forces and Apparent Forces Solving Circular Motion Problems Orbits and Gravity Class

More information

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

Physics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000

Physics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000 Spring 2000 HIGHER STILL Physics Student Materials Advanced Higher Tutorial Problems Mechanics TUTORIAL 1 You will find tutorials on each topic. The fully worked out answers are available. The idea is

More information

PHYSICS - CLUTCH CH 06: CENTRIPETAL FORCES & GRAVITATION.

PHYSICS - CLUTCH CH 06: CENTRIPETAL FORCES & GRAVITATION. !! www.clutchprep.com UNIFORM CIRCULAR MOTION In Uniform Circular Motion, an object moves with constant speed in a circular path. v,t = a,c = a,c = v,t 2 / r r = When an object completes one lap ( or ),

More information

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

More information

PH201 Chapter 6 Solutions

PH201 Chapter 6 Solutions PH201 Chapter 6 Solutions 6.2. Set Up: Since the stone travels in a circular path, its acceleration is directed toward the center of the circle. The only horizontal force on the stone is the tension of

More information

Lecture PowerPoints. Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition. Giancoli

Lecture PowerPoints. Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition. Giancoli Lecture PowerPoints Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely

More information

Chapter 6 Review Answer Key

Chapter 6 Review Answer Key Chapter 6 Review Answer Key Understanding Vocabulary 1. displacement 2. trajectory 3. projectile 4. parabola 5. range 6. revolves 7. rotates 8. angular speed 9. centripetal force 10. law of universal gravitation

More information

Blueberry Muffin Nov. 29/30, 2016 Period: Names:

Blueberry Muffin Nov. 29/30, 2016 Period: Names: Blueberry Muffin Nov. 9/30, 016 Period: Names: Congratulations! 1. To solve the problems, use your etextbook, physical textbooks, physics websites, your Sketchbooks.. Show your thinking through calculations,

More information

(b) The period T and the angular frequency ω of uniform rotation are related to the cyclic frequency f as. , ω = 2πf =

(b) The period T and the angular frequency ω of uniform rotation are related to the cyclic frequency f as. , ω = 2πf = PHY 302 K. Solutions for problem set #9. Non-textbook problem #1: (a) Rotation frequency of 1 Hz means one revolution per second, or 60 revolutions per minute (RPM). The pre-lp vinyl disks rotated at 78

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully.

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully. 1 A dragster maintains a speedometer reading of 100 km/h and passes through a curve with a constant radius. Which statement is true? 1. The dragster rounded the curve at a changing speed of 100 km/h. 2.

More information

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2 CFE Advanced Higher Physics Unit 1 Rotational Motion and Astrophysics Kinematic relationships 1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2 a) Find

More information

Lecture 3. Rotational motion and Oscillation 06 September 2018

Lecture 3. Rotational motion and Oscillation 06 September 2018 Lecture 3. Rotational motion and Oscillation 06 September 2018 Wannapong Triampo, Ph.D. Angular Position, Velocity and Acceleration: Life Science applications Recall last t ime. Rigid Body - An object

More information

AP Physics 1 Chapter 7 Circular Motion and Gravitation

AP Physics 1 Chapter 7 Circular Motion and Gravitation AP Physics 1 Chapter 7 Circular Motion and Gravitation Chapter 7: Circular Motion and Angular Measure Gravitation Angular Speed and Velocity Uniform Circular Motion and Centripetal Acceleration Angular

More information

Downloaded from

Downloaded from Chapter 8 (Gravitation) Multiple Choice Questions Single Correct Answer Type Q1. The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on

More information

Rotational Motion and the Law of Gravity 1

Rotational Motion and the Law of Gravity 1 Rotational Motion and the Law of Gravity 1 Linear motion is described by position, velocity, and acceleration. Circular motion repeats itself in circles around the axis of rotation Ex. Planets in orbit,

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

More information

Name St. Mary's HS AP Physics Circular Motion HW

Name St. Mary's HS AP Physics Circular Motion HW Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.

More information

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes 1. Use Law of Universal Gravitation to solve problems involving different masses. 2. Determine changes in gravitational and kinetic

More information

Physics General Physics. Lecture 8 Planetary Motion. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 8 Planetary Motion. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 8 Planetary Motion Fall 2016 Semester Prof. Matthew Jones 1 First Midterm Exam Tuesday, October 4 th, 8:00-9:30 pm Location: PHYS 112 and WTHR 200. Covering material

More information

1. In which situation is an object undergoing centripetal acceleration? (C) a car accelerating on a drag strip (D) a hockey puck gliding on ice

1. In which situation is an object undergoing centripetal acceleration? (C) a car accelerating on a drag strip (D) a hockey puck gliding on ice Physics 3204 Assignment 2.1 UCM DUE: Thursday Nov 24, 2017 Name: Part A. Multiple Choice: Select the best possible answer. Place the answer on the answer sheet. 1. In which situation is an object undergoing

More information

TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB

TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB 1. A car traveling at 20 m/s rounds a curve so that its centripetal acceleration

More information

A mass is suspended by a string from a fixed point. The mass moves with constant speed along a circular path in a [1 mark] horizontal plane.

A mass is suspended by a string from a fixed point. The mass moves with constant speed along a circular path in a [1 mark] horizontal plane. T6 [200 marks] 1. A mass is suspended by a string from a fixed point. The mass moves with constant speed along a circular path in a horizontal plane. The resultant force acting on the mass is A. zero.

More information

II. Universal Gravitation - Newton 4th Law

II. Universal Gravitation - Newton 4th Law Periodic Motion I. Circular Motion - kinematics & centripetal acceleration - dynamics & centripetal force - centrifugal force II. Universal Gravitation - Newton s 4 th Law - force fields & orbits III.

More information

CHAPTER 7 GRAVITATION

CHAPTER 7 GRAVITATION Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 7 GRAVITATION Day Plans for the day Assignments for the day 1 7.1 Planetary Motion & Gravitation Assignment

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

physics Chapter 8 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER8_LECTURE8.1 THIRD EDITION

physics Chapter 8 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER8_LECTURE8.1 THIRD EDITION Chapter 8 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight CHAPTER8_LECTURE8.1 2013 Pearson Education, Inc. 1 Chapter 8. Newton s Laws for Circular Motion

More information

Chapter 6 Circular Motion, Orbits and Gravity

Chapter 6 Circular Motion, Orbits and Gravity Chapter 6 Circular Motion, Orbits and Gravity Topics: The kinematics of uniform circular motion The dynamics of uniform circular motion Circular orbits of satellites Newton s law of gravity Sample question:

More information

Crash Course: Uniform Circular Motion. Our next test will be the week of Nov 27 Dec 1 and will cover projectiles and circular motion.

Crash Course: Uniform Circular Motion. Our next test will be the week of Nov 27 Dec 1 and will cover projectiles and circular motion. Curriculum Outcomes Circular Motion (8 hours) describe uniform circular motion using algebraic and vector analysis (325 12) explain quantitatively circular motion using Newton s laws (325 13) Crash Course:

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Chapter 6 UNIFORM CIRCULAR MOTION AND GRAVITATION

Chapter 6 UNIFORM CIRCULAR MOTION AND GRAVITATION Chapter 6 UNIFORM CIRCULAR MOTION AND GRAVITATION An object moving in a circle must have a force acting on it; otherwise it would move in a straight line. The direction of the force is towards the center

More information

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents Physics 121 for Majors Today s Class You will see how motion in a circle is mathematically similar to motion in a straight line. You will learn that there is a centripetal acceleration (and force) and

More information

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion Section 1 Circular Motion Preview Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System Section 1 Circular Motion Objectives Solve problems involving centripetal

More information

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, weather, comments Mark down bad weather attempts Today:

More information

Angle recap. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration:

Angle recap. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration: Angle recap Angular position: Angular displacement: s Angular velocity: Angular Acceleration: Every point on a rotating rigid object has the same angular, but not the same linear motion! Today s lecture

More information

Universal gravitation

Universal gravitation Universal gravitation Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman February 22, 2017 W. Freeman Universal gravitation February 22, 2017 1 / 14 Announcements Extra homework help

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Feeling of apparent weight: Caused your body's reaction to the push that the

More information

Physics 161 Lecture 10: Universal Gravitation. October 4, /6/20 15

Physics 161 Lecture 10: Universal Gravitation. October 4, /6/20 15 Physics 161 Lecture 10: Universal Gravitation October 4, 2018 1 Midterm announcements 1) The first midterm exam will be Thursday October 18 from 10:00 pm to 11:20 pm in ARC- 103. 2) The exam will be multiple

More information

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello!

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello! PHY131H1F - Class 13 Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy Under the Flower of Kent apple tree in the Woolsthorpe

More information

Circular Motion.

Circular Motion. 1 Circular Motion www.njctl.org 2 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and Rotational Velocity Dynamics of UCM Vertical

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

Gravity. James H Dann, Ph.D. Say Thanks to the Authors Click (No sign in required)

Gravity. James H Dann, Ph.D. Say Thanks to the Authors Click   (No sign in required) Gravity James H Dann, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit

More information

Unit 5 Circular Motion & Gravitation

Unit 5 Circular Motion & Gravitation Unit 5 Circular Motion & Gravitation Essential Fundamentals of Circular Motion & Gravitation 1. A radian is a ratio of an arc s circumference to its diameter. Early E. C.: / 1 Total HW Points Unit 5: /

More information

Multiple Choice Portion

Multiple Choice Portion Unit 5: Circular Motion and Gravitation Please Note that the gravitational potential energy questions are located in Unit 4 (Energy etc.) Multiple Choice Portion 1. What is the centripetal acceleration

More information

Chapter 13. Gravitation. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 13. Gravitation. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 13 Gravitation PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Next one week Today: Ch 13 Wed: Review of Ch 8-11, focusing

More information

Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics... 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon...

More information

Linear vs. Rotational Motion

Linear vs. Rotational Motion Linear vs. Rotational Motion Every term in a linear equation has a similar term in the analogous rotational equation. Displacements: s = r θ v t ω Speeds: v t = ω r Accelerations: a t = α r Every point

More information

Chapter 7: Circular Motion

Chapter 7: Circular Motion Chapter 7: Circular Motion Spin about an axis located within the body Example: Spin about an axis located outside the body. Example: Example: Explain why it feels like you are pulled to the right side

More information

SAPTARSHI CLASSES PVT. LTD.

SAPTARSHI CLASSES PVT. LTD. SAPTARSHI CLASSES PVT. LTD. NEET/JEE Date : 13/05/2017 TEST ID: 120517 Time : 02:00:00 Hrs. PHYSICS, Chem Marks : 360 Phy : Circular Motion, Gravitation, Che : Halogen Derivatives Of Alkanes Single Correct

More information

Topic 6 Circular Motion and Gravitation

Topic 6 Circular Motion and Gravitation Topic 6 Circular Motion and Gravitation Exam-Style Questions 1 a) Calculate the angular velocity of a person standing on the Earth s surface at sea level. b) The summit of Mount Everest is 8848m above

More information