LIGO and the Quest for Gravitational Waves

Size: px
Start display at page:

Download "LIGO and the Quest for Gravitational Waves"

Transcription

1 LIGO and the Quest for Gravitational Waves "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) LIGO-G M Barry C. Barish Caltech UT Austin 24-Sept-03 1

2 A Conceptual Problem is solved! Newton s Theory instantaneous action at a distance G µν = 8πΤ µν Einstein s Theory information carried by gravitational radiation at the speed of light 2

3 Einstein s Theory of Gravitation a necessary consequence of Special Relativity with its finite speed for information transfer gravitational waves come from the acceleration of masses and propagate away from their sources as a space-time warpage at the speed of light gravitational radiation binary inspiral of compact objects 3

4 Einstein s Theory of Gravitation gravitational waves Using Minkowski metric, the information about space-time curvature is contained in the metric as an added term, h µν. In the weak field limit, the equation can be described with linear equations. If the choice of gauge is the transverse traceless gauge the formulation becomes a familiar wave equation 1 c t 2 2 ( ) h 2 2 µν = 0 The strain h µν takes the form of a plane wave propagating at the speed of light (c). Since gravity is spin 2, the waves have two components, but rotated by 45 0 instead of 90 0 from each other. h h ( t z / c) + hx ( t z / c) µν = + 4

5 The evidence for gravitational waves Hulse & Taylor 17 / sec Neutron binary system separation = 10 6 miles m 1 = 1.4m m 2 = 1.36m e = period ~ 8 hr Prediction from general relativity PSR Timing of pulsars spiral in by 3 mm/orbit rate of change orbital period 5

6 Indirect detection of gravitational waves PSR

7 Detection of Gravitational Waves Gravitational Wave Astrophysical Source Detectors in space LISA Terrestrial detectors Virgo, LIGO, TAMA, GEO AIGO 7

8 Frequency range for EM astronomy Electromagnetic waves over ~16 orders of magnitude Ultra Low Frequency radio waves to high energy gamma rays 8

9 Frequency range for GW Astronomy Audio band Gravitational waves over ~8 orders of magnitude Terrestrial and space detectors Space Terrestrial 9

10 International Network on Earth simultaneously detect signal LIGO GEO Virgo TAMA decompose detection locate the confidence polarization sources of gravitational waves AIGO 10

11 The effect Leonardo da Vinci s Vitruvian man Stretch and squash in perpendicular directions at the frequency of the gravitational waves 11

12 Detecting a passing wave. Free masses 12

13 Detecting a passing wave. Interferometer 13

14 The challenge. I have greatly exaggerated the effect!! If the Vitruvian man was 4.5 light years high, he would grow by only a hairs width Interferometer Concept 14

15 Interferometer Concept Laser used to measure relative lengths of two orthogonal arms causing the interference pattern to change at the photodiode Arms in LIGO are 4km Measure difference in length to one part in or meters As a wave passes, the arm Masses lengths change in different ways. Suspended 15

16 How Small is Meter? One meter ~ 40 inches 10,000 Human hair ~ 100 microns , ,000 1,000 Wavelength of light ~ 1 micron Atomic diameter m Nuclear diameter m LIGO sensitivity m 16

17 Simultaneous Detection LIGO Hanford Observatory MIT Caltech Livingston Observatory 17

18 LIGO Livingston Observatory 18

19 LIGO Hanford Observatory 19

20 LIGO Facilities beam tube enclosure minimal enclosure reinforced concrete no services 20

21 LIGO beam tube 1.2 m diameter - 3mm stainless 50 km of weld LIGO beam tube under construction in January ft spiral welded sections girth welded in portable clean room in the field 21

22 Vacuum Chambers vibration isolation systems» Reduce in-band seismic motion by 4-6 orders of magnitude» Compensate for microseism at 0.15 Hz by a factor of ten» Compensate (partially) for Earth tides 22

23 Seismic Isolation springs and masses Constrained Layer damped spring 23

24 LIGO vacuum equipment 24

25 Seismic Isolation suspension system suspension assembly for a core optic support structure is welded tubular stainless steel suspension wire is 0.31 mm diameter steel music wire fundamental violin mode frequency of 340 Hz 25

26 LIGO Optics fused silica Surface uniformity < 1 nm rms Scatter < 50 ppm Absorption < 2 ppm ROC matched < 3% Internal mode Q s > 2 x 10 6 Caltech data CSIRO data 26

27 Core Optics installation and alignment 27

28 Locking the Interferometers 28

29 Lock Acquisition 29

30 Making LIGO Work 30

31 Detecting Earthquakes From electronic logbook 2-Jan-02 An earthquake occurred, starting at UTC 17:38. 31

32 Detecting the Earth Tides Sun and Moon Eric Morgenson Caltech Sophomore 32

33 Tidal evaluation 21-hour locked section of S1 data Tidal Compensation Data Predicted tides Feedforward Feedback Residual signal on voice coils Residual signal on laser 33

34 Controlling angular degrees of freedom 34

35 What Limits LIGO Sensitivity? Seismic noise limits low frequencies Thermal Noise limits middle frequencies Quantum nature of light (Shot Noise) limits high frequencies Technical issues - alignment, electronics, acoustics, etc limit us before we reach these design goals 35

36 LIGO Sensitivity Livingston 4km Interferometer First Science Run 17 days - Sept 02 May 01 Jan 03 Second Science Run 59 days - April 03 36

37 Astrophysical Sources signatures Compact binary inspiral: chirps» NS-NS waveforms are well described» BH-BH need better waveforms» search technique: matched templates Supernovae / GRBs: bursts» burst signals in coincidence with signals in electromagnetic radiation» prompt alarm (~ one hour) with neutrino detectors Pulsars in our galaxy: periodic» search for observed neutron stars (frequency, doppler shift)» all sky search (computing challenge)» r-modes Cosmological Signal stochastic background 37

38 Compact binary collisions» Neutron Star Neutron Star waveforms are well described» Black Hole Black Hole need better waveforms» Search: matched templates chirps 38

39 Template Bank Covers desired region of mass param space Calculated based on L1 noise curve Templates placed for max mismatch of δ = templates Second-order post-newtonian 39

40 Optimal Filtering Transform data to frequency domain : Generate template in frequency domain : ~ h ( f ) ~ s ( f ) Correlate, weighting by power spectral density of noise: ~ s ( f ) h S ( f ~ * h z( t) = 4 0 z( t) ( f ) ) Then inverse Fourier transform gives you the filter output at all times: frequency domain ~ ~ s ( f ) h S ( f h ( f ) ) Find maxima of over arrival time and phase Characterize these by signal-to-noise ratio (SNR) and effective distance * e 2πi f t df 40

41 Matched Filtering 41

42 Loudest Surviving Candidate Not NS/NS inspiral event 1 Sep 2002, 00:38:33 UTC S/N = 15.9, χ 2 /dof = 2.2 (m1,m2) = (1.3, 1.1) Msun What caused this? Appears to be due to saturation of a photodiode 42

43 Sensitivity neutron binary inspirals Star Population in our Galaxy Population includes Milky Way, LMC and SMC Neutron star masses in range 1-3 Msun LMC and SMC contribute ~12% of Milky Way Reach for S1 Data Inspiral sensitivity Livingston: <D> = 176 kpc Hanford: <D> = 36 kpc Sensitive to inspirals in Milky Way, LMC & SMC 43

44 Results of Inspiral Search Upper limit binary neutron star coalescence rate LIGO S1 Data R < 160 / yr / MWEG Previous observational limits» Japanese TAMA R < 30,000 / yr / MWEG» Caltech 40m R < 4,000 / yr / MWEG Theoretical prediction R < 2 x 10-5 / yr / MWEG Detectable Range of S2 data will reach Andromeda! 44

45 Astrophysical Sources signatures Compact binary inspiral: chirps» NS-NS waveforms are well described» BH-BH need better waveforms» search technique: matched templates Supernovae / GRBs: bursts» burst signals in coincidence with signals in electromagnetic radiation» prompt alarm (~ one hour) with neutrino detectors Pulsars in our galaxy: periodic» search for observed neutron stars (frequency, doppler shift)» all sky search (computing challenge)» r-modes Cosmological Signal stochastic background 45

46 Detection of Burst Sources Known sources -- Supernovae & GRBs» Coincidence with observed electromagnetic observations.» No close supernovae occurred during the first science run» Second science run We are analyzing the recent very bright and close GRB NO RESULT YET Unknown phenomena» Emission of short transients of gravitational radiation of unknown waveform (e.g. black hole mergers). 46

47 Unmodeled Bursts GOAL search for waveforms from sources for which we cannot currently make an accurate prediction of the waveform shape. METHODS Raw Data Time-domain high pass filter Time-Frequency Plane Search TFCLUSTERS Pure Time-Domain Search SLOPE frequency 8Hz 0.125s time 47

48 Determination of Efficiency Efficiency measured for tfclusters algorithm To measure our efficiency, we must pick a waveform. h amplitude time (ms) 1ms Gaussian burst 48

49 Burst Upper Limit from S1 1ms gaussian bursts Result is derived using TFCLUSTERS algorithm 90% confidence Upper limit in strain compared to earlier (cryogenic bar) results: IGEC 2001 combined bar upper limit: < 2 events per day having h=1x10-20 per Hz of burst bandwidth. For a 1kHz bandwidth, limit is < 2 events/day at h=1x10-17 Astone et al. (2002), report a 2.2 σ excess of one event per day at strain level of h ~ 2x

50 Astrophysical Sources signatures Compact binary inspiral: chirps» NS-NS waveforms are well described» BH-BH need better waveforms» search technique: matched templates Supernovae / GRBs: bursts» burst signals in coincidence with signals in electromagnetic radiation» prompt alarm (~ one hour) with neutrino detectors Pulsars in our galaxy: periodic» search for observed neutron stars (frequency, doppler shift)» all sky search (computing challenge)» r-modes Cosmological Signal stochastic background 50

51 Detection of Periodic Sources Pulsars in our galaxy: periodic» search for observed neutron stars» all sky search (computing challenge)» r-modes Frequency modulation of signal due to Earth s motion relative to the Solar System Barycenter, intrinsic frequency changes. Amplitude modulation due to the detector s antenna pattern. 51

52 Directed searches NO DETECTION EXPECTED Crab Pulsar h =11.4 at present sensitivities ( f ) GW OBS 0 Sh /T Limits of detectability for rotating NS with equatorial ellipticity ε = δi/i zz : 10-3, 10-4, 8.5 kpc. PSR J Hz 52

53 Two Search Methods Frequency domain Time domain Best suited for large parameter space searches Maximum likelihood detection method + Frequentist approach Best suited to target known objects, even if phase evolution is complicated Bayesian approach First science run --- use both pipelines for the same search for cross-checking and validation 53

54 The Data time behavior < S h > < S h > days days < h S > S > < h days days 54

55 The Data frequency behavior S h S h Hz Hz S h S h Hz Hz 55

56 PSR J Frequency domain Fourier Transforms of time series Detection statistic: F, maximum likelihood ratio wrt unknown parameters use signal injections to measure F s pdf use frequentist s approach to derive upper limit Injected signal in LLO: h = 2.83 x Measured F statistic 56

57 PSR J Time domain time series is heterodyned noise is estimated Bayesian approach in parameter estimation: express result in terms of posterior pdf for parameters of interest Data 95% Injected signals in GEO: h=1.5, 2.0, 2.5, 3.0 x h = 2.1 x

58 Results: Periodic Sources No evidence of continuous wave emission from PSR J Summary of 95% upper limits on h: IFO Frequentist FDS Bayesian TDS GEO (1.94±0.12)x10-21 (2.1 ±0.1)x10-21 LLO (2.83±0.31)x10-22 (1.4 ±0.1)x10-22 LHO-2K (4.71±0.50)x10-22 (2.2 ±0.2)x10-22 LHO-4K (6.42±0.72)x10-22 (2.7 ±0.3)x10-22 Best previous results for PSR J : h o < (Glasgow, Hough et al., 1983) 58

59 Upper limit on pulsar ellipticity J h 0 = moment of inertia tensor 2 8π G 4 c I zz f R 2 0 ε gravitational ellipticity of pulsar h 0 < ε < R (M=1.4M sun, r=10km, R=3.6kpc) Assumes emission is due to deviation from axisymmetry:.. 59

60 Astrophysical Sources signatures Compact binary inspiral: chirps» NS-NS waveforms are well described» BH-BH need better waveforms» search technique: matched templates Supernovae / GRBs: bursts» burst signals in coincidence with signals in electromagnetic radiation» prompt alarm (~ one hour) with neutrino detectors Pulsars in our galaxy: periodic» search for observed neutron stars (frequency, doppler shift)» all sky search (computing challenge)» r-modes Cosmological Signal stochastic background 60

61 Signals from the Early Universe stochastic background Cosmic Microwave background WMAP

62 Signals from the Early Universe Strength specified by ratio of energy density in GWs to total energy density needed to close the universe: Ω (f) GW = dρgw d(lnf) Detect by cross-correlating output of two GW detectors: ρ First LIGO Science Data 1 critical Hanford - Livingston 62

63 Limits: Stochastic Search Interferometer Pair 90% CL Upper Limit T obs LHO 4km-LLO 4km LHO 2km-LLO 4km Ω GW (40Hz Hz) < 72.4 Ω GW (40Hz Hz) < hrs 61.0 hrs Non-negligible LHO 4km-2km (H1-H2) instrumental crosscorrelation; currently being investigated. Previous best upper limits:» Garching-Glasgow interferometers : Ω 5 GW (f) < 3 10» EXPLORER-NAUTILUS (cryogenic bars): ΩGW (907Hz) < 60 63

64 Gravitational Waves from the Early Universe E7 results projected S1 S2 LIGO Adv LIGO 64

65 Active Seismic Advanced LIGO improved subsystems Multiple Suspensions Sapphire Optics Higher Power Laser 65

66 Advanced LIGO Cubic Law for Window on the Universe Improve amplitude sensitivity by a factor of 10x number of sources goes up 1000x! Virgo cluster Initial LIGO Advanced LIGO 66

67 Advanced LIGO Enhanced Systems laser suspension seismic isolation test mass Rate Improvement ~ narrow band optical configuration 67

68 LIGO Construction is complete & commissioning is well underway New upper limits for neutron binary inspirals, a fast pulsar and stochastic backgrounds have been achieved from the first short science run Sensitivity improvements are rapid -- second data run was 10x more sensitive and 4x duration and results will be reported soon. Enhanced detectors will be installed in ~ 5 years, further increasing sensitivity Direct detection should be achieved and gravitational-wave astronomy begun within the next decade! 68

69 Gravitational Wave Astronomy LIGO will provide a new way to view the dynamics of the Universe 69

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) Barry C. Barish Caltech Argonne National Laboratory 16-Jan-04 LIGO-G030523-00-M

More information

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04 LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04 Science Goals Physics» Direct verification of the most relativistic prediction of general relativity» Detailed tests of properties of gravitational

More information

Long-term strategy on gravitational wave detection from European groups

Long-term strategy on gravitational wave detection from European groups Longterm strategy on gravitational wave detection from European groups Barry Barish APPEC Meeting London, UK 29Jan04 International Interferometer Network Simultaneously detect signal (within msec) LIGO

More information

Gravity -- Studying the Fabric of the Universe

Gravity -- Studying the Fabric of the Universe Gravity -- Studying the Fabric of the Universe Barry C. Barish Caltech "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) AAAS Annual Meeting Denver, Colorado 17-Feb-03

More information

Status and Prospects for LIGO

Status and Prospects for LIGO Status and Prospects for LIGO Crab Pulsar St Thomas, Virgin Islands Barry C. Barish Caltech 17-March-06 LIGO Livingston, Louisiana 4 km 17-March-06 Confronting Gravity - St Thomas 2 LIGO Hanford Washington

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves Barry C. Barish Caltech Crab Pulsar Georgia Tech 26-April-06 General Relativity the essential idea G μν = 8πΤ μν Gravity is not a force, but a property of space

More information

Probing for Gravitational Waves

Probing for Gravitational Waves Probing for Gravitational Waves LIGO Reach with LIGO AdLIGO Initial LIGO Barry C. Barish Caltech YKIS2005 Kyoto University 1-July-05 Einstein s Theory of Gravitation a necessary consequence of Special

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves Barry C. Barish Caltech Crab Pulsar University of Illinois 16-Feb-06 General Relativity the essential idea G μν = 8πΤ μν Gravity is not a force, but a property

More information

The LIGO Project: a Status Report

The LIGO Project: a Status Report The LIGO Project: a Status Report LIGO Hanford Observatory LIGO Livingston Observatory Laura Cadonati LIGO Laboratory, MIT for the LIGO Scientific Collaboration Conference on Gravitational Wave Sources

More information

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M Laser Interferometer Gravitationalwave Observatory LIGO 2000 Industrial Physics Forum Barry Barish 7 November 2000 Sir Isaac Newton Perhaps the most important scientist of all time! Invented the scientific

More information

+56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish

+56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish +56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish .$'46 +056'+0 +45##%'9610 Perhaps the most important scientist of all time! Invented the scientific method in Principia Greatest

More information

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

The Search for Gravitational Waves

The Search for Gravitational Waves The Search for Gravitational Waves Barry Barish Caltech University of Iowa 16-Sept-02 Newton Universal Gravitation! Three laws of motion and law of gravitation (centripetal force) disparate phenomena»

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Ray Frey, University of Oregon 1. GW Physics and Astrophysics 2. How to detect GWs The experimental challenge 3. Prospects June 16, 2004 R. Frey QNet 1 General Relativity Some

More information

The LIGO Experiment Present and Future

The LIGO Experiment Present and Future The LIGO Experiment Present and Future Keith Riles University of Michigan For the LIGO Scientific Collaboration APS Meeting Denver May 1 4, 2004 LIGO-G040239-00-Z What are Gravitational Waves? Gravitational

More information

LIGO and the Search for Gravitational Waves

LIGO and the Search for Gravitational Waves LIGO and the Search for Gravitational Waves Barry Barish Caltech Princeton University 2-May-02 Einstein s Theory of Gravitation Newton s Theory instantaneous action at a distance Einstein s Theory information

More information

LIGO Present and Future. Barry Barish Directory of the LIGO Laboratory

LIGO Present and Future. Barry Barish Directory of the LIGO Laboratory LIGO Present and Future Barry Barish Directory of the LIGO Laboratory LIGO I Schedule and Plan LIGO I has been built by LIGO Lab (Caltech & MIT) 1996 Construction Underway (mostly civil) 1997 Facility

More information

Discovery of Gravita/onal Waves

Discovery of Gravita/onal Waves Discovery of Gravita/onal Waves Avto Kharchilava QuarkNet Workshop, August 2016 https://www.ligo.caltech.edu/news/ligo20160211 Gravity Einstein s General theory of relativity: Gravity is a manifestation

More information

The Laser Interferometer Gravitational-Wave Observatory In Operation

The Laser Interferometer Gravitational-Wave Observatory In Operation The Laser Interferometer Gravitational-Wave Observatory In Operation "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) Reported on behalf of LIGO colleagues by Fred

More information

LIGO and the Search for Gravitational Waves

LIGO and the Search for Gravitational Waves LIGO and the Search for Gravitational Waves Barry Barish University of Toronto 26-March-02 Sir Isaac Newton Universal Gravitation! Three laws of motion and law of gravitation (centripetal force) disparate

More information

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05 Overview Ground-based Interferometers Barry Barish Caltech Amaldi-6 20-June-05 TAMA Japan 300m Interferometer Detectors LIGO Louisiana 4000m Virgo Italy 3000m AIGO Australia future GEO Germany 600m LIGO

More information

LIGO: The Laser Interferometer Gravitational Wave Observatory

LIGO: The Laser Interferometer Gravitational Wave Observatory LIGO: The Laser Interferometer Gravitational Wave Observatory Credit: Werner Benger/ZIB/AEI/CCT-LSU Michael Landry LIGO Hanford Observatory/Caltech for the LIGO Scientific Collaboration (LSC) http://www.ligo.org

More information

LIGO Update

LIGO Update LIGO Update ------------ The Search for Gravitational Waves Barry Barish Caltech Trustees 10-Sept-02 ! Goals Laser Interferometer Gravitational-wave Observatory» First direct detection of gravitational

More information

State of LIGO. Barry Barish. S1 sensitivities. LSC Meeting LLO Hanford, WA 10-Nov GEO -- L 2km -- H 4km -- L 4km LIGO-G M

State of LIGO. Barry Barish. S1 sensitivities. LSC Meeting LLO Hanford, WA 10-Nov GEO -- L 2km -- H 4km -- L 4km LIGO-G M S1 sensitivities -- GEO -- L 2km -- H 4km -- L 4km State of h 0 LIGO Barry Barish LSC Meeting LLO Hanford, WA 10-Nov-03 Goals and Priorities LSC -Aug 02 Interferometer performance» Integrate commissioning

More information

LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000

LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000 LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000 Einstein s Theory of Gravitation Newton s Theory instantaneous action at a distance Einstein s Theory information carried by gravitational

More information

LIGO Detection of Gravitational Waves. Dr. Stephen Ng

LIGO Detection of Gravitational Waves. Dr. Stephen Ng LIGO Detection of Gravitational Waves Dr. Stephen Ng Gravitational Waves Predicted by Einstein s general relativity in 1916 Indirect confirmation with binary pulsar PSR B1913+16 (1993 Nobel prize in physics)

More information

Gravitational Wave Detection from the Ground Up

Gravitational Wave Detection from the Ground Up Gravitational Wave Detection from the Ground Up Peter Shawhan (University of Maryland) for the LIGO Scientific Collaboration LIGO-G080393-00-Z From Simple Beginnings Joe Weber circa 1969 AIP Emilio Segre

More information

Searching for gravitational waves. with LIGO detectors

Searching for gravitational waves. with LIGO detectors Werner Berger, ZIB, AEI, CCT Searching for gravitational waves LIGO Hanford with LIGO detectors Gabriela González Louisiana State University On behalf of the LIGO Scientific Collaboration KITP Colloquium,

More information

The Quest to Detect Gravitational Waves

The Quest to Detect Gravitational Waves The Quest to Detect Gravitational Waves Peter Shawhan California Institute of Technology / LIGO Laboratory What Physicists Do lecture Sonoma State University March 8, 2004 LIGO-G040055-00-E Outline Different

More information

Gravity. Newtonian gravity: F = G M1 M2/r 2

Gravity. Newtonian gravity: F = G M1 M2/r 2 Gravity Einstein s General theory of relativity : Gravity is a manifestation of curvature of 4- dimensional (3 space + 1 time) space-time produced by matter (metric equation? g μν = η μν ) If the curvature

More information

LIGO Observational Results

LIGO Observational Results LIGO Observational Results Patrick Brady University of Wisconsin Milwaukee on behalf of LIGO Scientific Collaboration LIGO Science Goals Direct verification of two dramatic predictions of Einstein s general

More information

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics Gravitational Wave Astronomy the sound of spacetime Marc Favata Kavli Institute for Theoretical Physics What are gravitational waves? Oscillations in the gravitational field ripples in the curvature of

More information

Results from LIGO Searches for Binary Inspiral Gravitational Waves

Results from LIGO Searches for Binary Inspiral Gravitational Waves Results from LIGO Searches for Binary Inspiral Gravitational Waves Peter Shawhan (LIGO Laboratory / Caltech) For the LIGO Scientific Collaboration American Physical Society April Meeting May 4, 2004 Denver,

More information

Overview of Gravitational Wave Physics [PHYS879]

Overview of Gravitational Wave Physics [PHYS879] Overview of Gravitational Wave Physics [PHYS879] Alessandra Buonanno Maryland Center for Fundamental Physics Joint Space-Science Institute Department of Physics University of Maryland Content: What are

More information

The Present Gravitational Wave Detection Effort

The Present Gravitational Wave Detection Effort The Present Gravitational Wave Detection Effort Keith Riles University of Michigan LIGO Scientific Collaboration International Conference on Topics in Astroparticle and Underground Physics Rome July 1,

More information

LIGO Status and Plans. Barry Barish / Gary Sanders 13-May-02

LIGO Status and Plans. Barry Barish / Gary Sanders 13-May-02 LIGO Status and Plans Barry Barish / Gary Sanders 13-May-02 LIGO overall strategy! Strategy presented to NSB by Thorne / Barish in 1994! Search with a first generation interferometer where detection of

More information

Scientific Results from the first LIGO Science Runs

Scientific Results from the first LIGO Science Runs Scientific Results from the first LIGO Science Runs Introduction to GW s and LIGO The LIGO Science runs Physics, astrophysics, and S1 analysis results:» Binary inspirals» Pulsars and CW Sources» Bursts

More information

LIGO I status and advanced LIGO proposal

LIGO I status and advanced LIGO proposal LIGO I status and advanced LIGO proposal Hiro Yamamoto LIGO Lab / Caltech LIGO I» basic design» current status advanced LIGO» outline of the proposal» technical issues GW signals and data analysis ICRR

More information

Present and Future. Nergis Mavalvala October 09, 2002

Present and Future. Nergis Mavalvala October 09, 2002 Gravitational-wave Detection with Interferometers Present and Future Nergis Mavalvala October 09, 2002 1 Interferometric Detectors Worldwide LIGO TAMA LISA LIGO VIRGO GEO 2 Global network of detectors

More information

Gravitational Wave Astronomy

Gravitational Wave Astronomy Gravitational Wave Astronomy Giles Hammond SUPA, University of Glasgow, UK on behalf of the LIGO Scientific Collaboration and the Virgo Collaboration 14 th Lomonosov conference on Elementary Particle Physics

More information

Gravitational Waves: From Einstein to a New Science

Gravitational Waves: From Einstein to a New Science Gravitational Waves: From Einstein to a New Science LIGO-G1602199 Barry C Barish Caltech - LIGO 1.3 Billion Years Ago 2 Black Holes Regions of space created by super dense matter from where nothing can

More information

LIGO s continuing search for gravitational waves

LIGO s continuing search for gravitational waves LIGO s continuing search for gravitational waves Patrick Brady University of Wisconsin-Milwaukee LIGO Scientific Collaboration LIGO Interferometers LIGO is an interferometric detector» A laser is used

More information

Development of ground based laser interferometers for the detection of gravitational waves

Development of ground based laser interferometers for the detection of gravitational waves Development of ground based laser interferometers for the detection of gravitational waves Rahul Kumar ICRR, The University of Tokyo, 7 th March 2014 1 Outline 1. Gravitational waves, nature & their sources

More information

LIGO: On the Threshold of Gravitational-wave Astronomy

LIGO: On the Threshold of Gravitational-wave Astronomy LIGO: On the Threshold of Gravitational-wave Astronomy Stan Whitcomb LIGO/Caltech IIT, Kanpur 18 December 2011 Outline of Talk Quick Review of GW Physics and Astrophysics LIGO Overview» Initial Detectors»

More information

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves July 25, 2017 Bonn Seoul National University Outline What are the gravitational waves? Generation of

More information

Searching for Gravitational Waves from Coalescing Binary Systems

Searching for Gravitational Waves from Coalescing Binary Systems Searching for Gravitational Waves from Coalescing Binary Systems Stephen Fairhurst Cardiff University and LIGO Scientific Collaboration 1 Outline Motivation Searching for Coalescing Binaries Latest Results

More information

AJW, CERN, Aug 11, 2006 NASA / GSFC

AJW, CERN, Aug 11, 2006 NASA / GSFC NASA / GSFC Gravitational Waves and LIGO Gravitational waves Detection of GW s The LIGO project and its sister projects Astrophysical sources Conclusions "Colliding Black Holes" National Center for Supercomputing

More information

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA/GSFC Summer School on Nuclear and Particle Astrophysics: Connecting

More information

Searching for Gravitational Waves from Binary Inspirals with LIGO

Searching for Gravitational Waves from Binary Inspirals with LIGO Searching for Gravitational Waves from Binary Inspirals with LIGO Duncan Brown University of Wisconsin-Milwaukee for the LIGO Scientific Collaboration Inspiral Working Group LIGO-G030671-00-Z S1 Binary

More information

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral Lazzaro Claudia for the LIGO Scientific Collaboration and the Virgo Collaboration 25 October 2017 GW170817 PhysRevLett.119.161101

More information

Exploring the Warped Side of the Universe

Exploring the Warped Side of the Universe Exploring the Warped Side of the Universe Nergis Mavalvala Department of Physics Massachusetts Institute of Technology MIT Alumni Club, Washington DC October 2014 Einstein s legacies A story about our

More information

Synergy with Gravitational Waves

Synergy with Gravitational Waves Synergy with Gravitational Waves Alexandre Le Tiec and Jérôme Novak Laboratoire Univers et Théories Observatoire de Paris / CNRS LIGO, Virgo, ( elisa, ET,... ( What is a gravitational wave? A gravitational

More information

Searching for gravitational waves with LIGO

Searching for gravitational waves with LIGO Searching for gravitational waves with LIGO An introduction to LIGO and a few things gravity wave Michael Landry LIGO Hanford Observatory California Institute of Technology Spokane Astronomical Society

More information

Search for Gravitational Wave Transients. Florent Robinet On behalf of the LSC and Virgo Collaborations

Search for Gravitational Wave Transients. Florent Robinet On behalf of the LSC and Virgo Collaborations Search for Gravitational Wave Transients On behalf of the LSC and Virgo Collaborations 1 Gravitational Waves Gravitational waves = "ripples" in space time Weak field approximation : g = h h 1 Wave equation,

More information

6WDWXVRI/,*2. Laser Interferometer Gravitational-wave Observatory. Nergis Mavalvala MIT IAU214, August 2002 LIGO-G D

6WDWXVRI/,*2. Laser Interferometer Gravitational-wave Observatory. Nergis Mavalvala MIT IAU214, August 2002 LIGO-G D 6WDWXVRI/,*2 Laser Interferometer Gravitational-wave Observatory Hanford, WA Livingston, LA Nergis Mavalvala MIT IAU214, August 2002 *UDYLWDWLRQDOZDYH,QWHUIHURPHWHUVWKHSULQ LSOH General Relativity (Einstein

More information

Gravitational-Wave Data Analysis

Gravitational-Wave Data Analysis Gravitational-Wave Data Analysis Peter Shawhan Physics 798G April 12, 2007 Outline Gravitational-wave data General data analysis principles Specific data analysis methods Classification of signals Methods

More information

The Detection of Gravitational Waves with LIGO. Barry C. Barish. California Institute of Technology, Pasadena, CA 91125

The Detection of Gravitational Waves with LIGO. Barry C. Barish. California Institute of Technology, Pasadena, CA 91125 The Detection of Gravitational Waves with LIGO Barry C. Barish California Institute of Technology, Pasadena, CA 91125 Gravitational wave emission is expected to arise from a variety of astrophysical phenomena.

More information

What can LIGO detect? Abstract

What can LIGO detect? Abstract What can LIGO detect? Adam Getchell Physics Department, University of California, Davis, 95616 Abstract This briey reviews the literature on gravitational wave astronomy, including theoretical basis, experimental

More information

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago Gravitational wave cosmology Lecture 2 Daniel Holz The University of Chicago Thunder and lightning Thus far we ve only seen the Universe (and 95% of it is dark: dark matter and dark energy). In the the

More information

Searching for Stochastic Gravitational Wave Background with LIGO

Searching for Stochastic Gravitational Wave Background with LIGO Searching for Stochastic Gravitational Wave Background with LIGO Vuk Mandic University of Minnesota 09/21/07 Outline LIGO Experiment:» Overview» Status» Future upgrades Stochastic background of gravitational

More information

The Advanced LIGO detectors at the beginning of the new gravitational wave era

The Advanced LIGO detectors at the beginning of the new gravitational wave era The Advanced LIGO detectors at the beginning of the new gravitational wave era Lisa Barsotti MIT Kavli Institute LIGO Laboratory on behalf of the LIGO Scientific Collaboration LIGO Document G1600324 LIGO

More information

The gravitational wave detector VIRGO

The gravitational wave detector VIRGO The gravitational wave detector VIRGO for the VIRGO collaboration Raffaele Flaminio Laboratoire d Annecy-le-Vieux de Physique des Particules (LAPP) IN2P3 - CNRS Summary I. A bit of gravitational wave physics

More information

Newtonian instantaneous action at a distance General Relativity information carried by gravitational radiation at the speed of light

Newtonian instantaneous action at a distance General Relativity information carried by gravitational radiation at the speed of light Modern View of Gravitation Newtonian instantaneous action at a distance G µ = 8 µ # General Relativity information carried by gravitational radiation at the speed of light Gravitational Waves GR predicts

More information

Searching for gravitational waves

Searching for gravitational waves Searching for gravitational waves Matteo Barsuglia (barsuglia@apc.univ-paris7.fr) CNRS - Laboratoire Astroparticule et Cosmologie 1 The gravitational waves (GW) Perturbations of the space-time metrics

More information

Scientific Results from the first LIGO Science Run

Scientific Results from the first LIGO Science Run Scientific Results from the first LIGO Science Run Introduction to GW s,ligo, and the science runs The LIGO S1 run Analysis Organization Physics goals and S1 analysis results:» Burst (Unmodeled transient)

More information

The search for continuous gravitational waves: analyses from LIGO s second science run

The search for continuous gravitational waves: analyses from LIGO s second science run The search for continuous gravitational waves: analyses from LIGO s second science run Michael Landry LIGO Hanford Observatory on behalf of the LIGO Scientific Collaboration http://www.ligo.org April APS

More information

Gravitational Waves & Precision Measurements

Gravitational Waves & Precision Measurements Gravitational Waves & Precision Measurements Mike Smith 1 -20 2 HOW SMALL IS THAT? Einstein 1 meter 1/1,000,000 3 1,000,000 smaller Wavelength of light 10-6 meters 1/10,000 4 10,000 smaller Atom 10-10

More information

Gravity s Standard Sirens. B.S. Sathyaprakash School of Physics and Astronomy

Gravity s Standard Sirens. B.S. Sathyaprakash School of Physics and Astronomy Gravity s Standard Sirens B.S. Sathyaprakash School of Physics and Astronomy What this talk is about Introduction to Gravitational Waves What are gravitational waves Gravitational wave detectors: Current

More information

GRAVITATIONAL WAVES. Eanna E. Flanagan Cornell University. Presentation to CAA, 30 April 2003 [Some slides provided by Kip Thorne]

GRAVITATIONAL WAVES. Eanna E. Flanagan Cornell University. Presentation to CAA, 30 April 2003 [Some slides provided by Kip Thorne] GRAVITATIONAL WAVES Eanna E. Flanagan Cornell University Presentation to CAA, 30 April 2003 [Some slides provided by Kip Thorne] Summary of talk Review of observational upper limits and current and planned

More information

Gravitational Wave Astronomy. Lee Lindblom California Institute of Technology

Gravitational Wave Astronomy. Lee Lindblom California Institute of Technology Gravitational Wave Astronomy Lee Lindblom California Institute of Technology Los Angeles Valley College Astronomy Group 20 May 2007 What is Einstein s picture of gravity? What are gravitational waves?

More information

Advanced LIGO, LIGO-Australia and the International Network

Advanced LIGO, LIGO-Australia and the International Network Advanced LIGO, LIGO-Australia and the International Network Stan Whitcomb LIGO/Caltech IndIGO - ACIGA meeting on LIGO-Australia 8 February 2011 Gravitational Waves Einstein in 1916 and 1918 recognized

More information

Gearing up for Gravitational Waves: the Status of Building LIGO

Gearing up for Gravitational Waves: the Status of Building LIGO Gearing up for Gravitational Waves: the Status of Building LIGO Frederick J. Raab, LIGO Hanford Observatory LIGO s Mission is to Open a New Portal on the Universe In 1609 Galileo viewed the sky through

More information

Gravitational wave detection. K.A. Strain

Gravitational wave detection. K.A. Strain Gravitational wave detection K.A. Strain Contents gravitational waves: introduction sources of waves, amplitudes and rates basics of GW detection current projects future plans and hopes Gravitational Waves:

More information

The direct detection of gravitational waves: The first discovery, and what the future might bring

The direct detection of gravitational waves: The first discovery, and what the future might bring The direct detection of gravitational waves: The first discovery, and what the future might bring Chris Van Den Broeck Nikhef - National Institute for Subatomic Physics Amsterdam, The Netherlands Physics

More information

Gravitational Waves Theory - Sources - Detection

Gravitational Waves Theory - Sources - Detection Gravitational Waves Theory - Sources - Detection Kostas Glampedakis Contents Part I: Theory of gravitational waves. Properties. Wave generation/the quadrupole formula. Basic estimates. Part II: Gravitational

More information

GRAVITATIONAL WAVE ASTRONOMY

GRAVITATIONAL WAVE ASTRONOMY GRAVITATIONAL WAVE ASTRONOMY A. Melatos (Melbourne) 1. GW: physics & astronomy 2. Current- & next-gen detectors & searches 3. Burst sources: CBC, SN GR, cosmology 4. Periodic sources: NS subatomic physics

More information

Searching for Ripples in Space-Time with Your Home Computer"

Searching for Ripples in Space-Time with Your Home Computer Einstein@Home: Searching for Ripples in Space-Time with Your Home Computer Eric Myers LIGO Hanford Observatory! Hanford, Washington! Amateur Astronomers Association of New York 11 April 2008 Overview q

More information

Searching for gravitational waves from neutron stars

Searching for gravitational waves from neutron stars Searching for gravitational waves from neutron stars Ian Jones D.I.Jones@soton.ac.uk General Relativity Group, Southampton University Ian Jones Searching for gravitational waves from neutron stars 1/23

More information

The Search for Gravitational Waves

The Search for Gravitational Waves The Search for Gravitational Waves Fred Raab, LIGO Hanford Observatory, on behalf of the LIGO Scientific Collaboration 21 October 2008 Outline What are gravitational waves? What do generic detectors look

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Gravitational waves Detection of GW s The LIGO project and its sister projects Astrophysical sources LIGO search for GWs Conclusions "Colliding Black Holes" National Center

More information

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL. Laser Interferometer Space Antenna LISA

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL.  Laser Interferometer Space Antenna LISA : Probing the Universe with Gravitational Waves Tom Caltech/JPL Laser Interferometer Space Antenna http://lisa.nasa.gov Gravitational Wave Astronomy is Being Born LIGO, VIRGO, GEO, TAMA 4000m, 3000m, 2000m,

More information

Gravitational Wave Astronomy using 0.1Hz space laser interferometer. Takashi Nakamura GWDAW-8 Milwaukee 2003/12/17 1

Gravitational Wave Astronomy using 0.1Hz space laser interferometer. Takashi Nakamura GWDAW-8 Milwaukee 2003/12/17 1 Gravitational Wave Astronomy using 0.1Hz space laser interferometer Takashi Nakamura GWDAW-8 Milwaukee 2003/12/17 1 In 2001 we considered what we can do using 0.1 hertz laser interferometer ( Seto, Kawamura

More information

Confronting Theory with Gravitational Wave Observations

Confronting Theory with Gravitational Wave Observations Gravitation: A Decennial Perspective Confronting Theory with Gravitational Wave Observations B F Schutz Max Planck Institute for Gravitational Physics () Golm/Potsdam Germany The AEI congratulates The

More information

Savvas Nesseris. IFT/UAM-CSIC, Madrid, Spain

Savvas Nesseris. IFT/UAM-CSIC, Madrid, Spain Savvas Nesseris IFT/UAM-CSIC, Madrid, Spain What are the GWs (history, description) Formalism in GR (linearization, gauges, emission) Detection techniques (interferometry, LIGO) Recent observations (BH-BH,

More information

Search for compact binary systems in LIGO data

Search for compact binary systems in LIGO data Search for compact binary systems in LIGO data Thomas Cokelaer On behalf of the LIGO Scientific Collaboration Cardiff University, U.K. LIGO-G060630-00-Z Plan 1) Overview What kind of gravitational waves

More information

First Scientific Results: Analysis of LIGO Data from the S1 Science Run

First Scientific Results: Analysis of LIGO Data from the S1 Science Run First Scientific Results: Analysis of LIGO Data from the S1 Science Run Albert Lazzarini LIGO Laboratory Annual NSF Review of LIGO Laboratory 17-19 November 2003 LIGO Livingston Observatory, LA Outline

More information

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics Gravitational Waves & Intermediate Mass Black Holes Lee Samuel Finn Center for Gravitational Wave Physics Outline What are gravitational waves? How are they produced? How are they detected? Gravitational

More information

Gravitational Waves. Barry C Barish Caltech. Pontrecorvo Summer School Prague 22-Aug-2017 LIGO-G

Gravitational Waves. Barry C Barish Caltech. Pontrecorvo Summer School Prague 22-Aug-2017 LIGO-G Gravitational Waves Barry C Barish Caltech LIGO-G1700695 Pontrecorvo Summer School Prague 22-Aug-2017 1.3 Billion Years Ago August 2017 Pontecorvo Summer School 2 Black Holes Regions of space created by

More information

Gravitational Wave Astronomy Suggested readings: Camp and Cornish, Ann Rev Nucl Part Sci 2004 Schutz, gr-qc/ Kip Thorne WEB course

Gravitational Wave Astronomy Suggested readings: Camp and Cornish, Ann Rev Nucl Part Sci 2004 Schutz, gr-qc/ Kip Thorne WEB course Gravitational Wave Astronomy Suggested readings: Camp and Cornish, Ann Rev Nucl Part Sci 2004 Schutz, gr-qc/0003069 Kip Thorne WEB course http://elmer.caltech.edu/ph237/week1/week1.html L. Bergstrom and

More information

Gravitational Waves. Masaru Shibata U. Tokyo

Gravitational Waves. Masaru Shibata U. Tokyo Gravitational Waves Masaru Shibata U. Tokyo 1. Gravitational wave theory briefly 2. Sources of gravitational waves 2A: High frequency (f > 10 Hz) 2B: Low frequency (f < 10 Hz) (talk 2B only in the case

More information

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA W. Z. Korth, PHZ6607, Fall 2008 Outline Introduction What is LISA? Gravitational waves Characteristics Detection (LISA design) Sources Stochastic Monochromatic

More information

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G1201293 Outline Introduction: What are Gravitational Waves? The brief

More information

Takaaki Kajita, JGRG 22(2012) Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22. November

Takaaki Kajita, JGRG 22(2012) Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22. November Takaaki Kajita, JGRG 22(2012)111402 Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22 November 12-16 2012 Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan RESCEU

More information

Nonequilibrium issues in macroscopic experiments

Nonequilibrium issues in macroscopic experiments Nonequilibrium issues in macroscopic experiments L. Conti, M. Bonaldi, L. Rondoni www.rarenoise.lnl.infn.it European Research Council Gravitational Wave detector Motivation: GWs will provide new and unique

More information

Overview of Gravitational Wave Observations by LIGO and Virgo

Overview of Gravitational Wave Observations by LIGO and Virgo Overview of Gravitational Wave Observations by LIGO and Virgo Giovanni Andrea Prodi Virgo Group at Padova-Trento, LIGO Scientific Collaboration and Virgo Collaboration Vulcano Workshop 2016, May 23 Published

More information

Outline. 1. Basics of gravitational wave transient signal searches. 2. Reconstruction of signal properties

Outline. 1. Basics of gravitational wave transient signal searches. 2. Reconstruction of signal properties Gravitational Wave Transients state-of-the-arts: detection confidence and signal reconstruction G.A.Prodi, University of Trento and INFN, for the LIGO Scientific Collaboration and the Virgo Collaboration

More information

Gravitational wave data analysis

Gravitational wave data analysis Max Planck Institut für Gravitationsphysik Albert Einstein Institut, Germany Pasadena, June 2011 1 Introduction to gravitational waves 2 3 4 5 6 Gravitational Waves GR can be formulated in terms of a spacetime

More information

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 31 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

Preparation of the data analysis of the gravitational wave space antenna.

Preparation of the data analysis of the gravitational wave space antenna. Preparation of the data analysis of the gravitational wave space antenna. 1) LISA (Laser Interferometer Space Antenna) Why? 2)How? 1 Frequency Limitation Seismic noise cannot be cancelled at low-frequency

More information

Gravitational waves from the early Universe

Gravitational waves from the early Universe Gravitational waves from the early Universe Part 1 Sachiko Kuroyanagi (Nagoya University) 26 Aug 2017 Summer Institute 2017 What is a Gravitational Wave? What is a Gravitational Wave? 11 Feb 2016 We have

More information