MAPPING THE DISTRIBUTION OF ACETALDEHYDE TOWARDS ORION KL

Size: px
Start display at page:

Download "MAPPING THE DISTRIBUTION OF ACETALDEHYDE TOWARDS ORION KL"

Transcription

1 MAPPING THE DISTRIBUTION OF ACETALDEHYDE TOWARDS ORION KL Ryan A. Loomis 1, Anthony J. Remijan 2, and Joanna Corby 1 1 Department of Astronomy, University of Virginia, McCormick Rd, Charlottesville, VA National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville, VA Abstract With the advent of new broadband spectral line interferometric observations, we can now begin to fully characterize the spectra and distribution of complex organic molecules that have been largely ignored since their original detections using single dish telescopes. First detected in 1973, acetaldehyde (CH3CHO) has been detected in numerous sources including TMC-1, Sgr B2, Orion KL, and OMC-1; yet its distribution within these sources is still not well known. Unlike a number of other molecules, acetaldehyde is not observed to be concentrated in hot core regions toward Sgr B2(N), but to have an extended distribution, a trait shared by other aldehydes (Chengalur and Kanekar, 2003). An extended distribution may indicate formation through gas phase ion molecule reactions, or that the distribution is a result of non-thermal processes liberating the molecule off grain surfaces, while a compact distribution may indicate warm grain surface chemistry with subsequent desorption by thermal processes. In this paper we present multiple transition maps of acetaldehyde toward Orion KL as evidence of an extended distribution of acetaldehyde, suggesting a formation chemistry similar to that of Sgr B2(N). In addition, spatial correlations to other molecules in the region are shown, suggesting common formation chemistry for some aldehydes. 1

2 1. Introduction First detected in 1973, acetaldehyde (CH3CHO) has been detected in numerous sources including TMC-1, Sgr B2, Orion KL, and OMC-1 (Gottlieb et al., 1973; Matthews et al., 1984; Johansson et al., 1984; Turner, 1989; Turner, 1991); yet its distribution within these sources is still not well known. As with many other organic species, the detections and distribution of acetaldehyde has been investigated to determine the nature of the physical environments of astronomical regions and possible formation mechanisms of complex molecules. However, unlike a number of these other molecules, acetaldehyde is not observed to be concentrated in hot core regions, but to have an extended distribution toward Sgr B2N (Chengalur and Kanekar, 2003). The extended distribution is also inferred for other aldehydes toward Sgr B2 including glycolaldehyde (Hollis et al., ApJ, 2001) and propynal. This lends credence to a common formation mechanism for aldehydes that would occur in cold environments. Although these results have been inferred by multiple observations of alydehydes toward Sgr B2, similar observations for aldehydes have not been as clear in other well observed sources such as Orion KL. Although acetaldehyde is detected in multiple single dish observations toward Orion KL (Turner 1989, 1991, see also the PRIMOS survey at interferometric observations of Orion have conflicting and incomplete data, resulting in inconclusive evidence for the distribution of acetaldehyde toward Orion. Using the BIMA array, Liu (2005) reported a distribution of acetaldehyde spatially coincident with the compact emission of formic acid (HCOOH), suggesting that acetaldehyde was released into the gas phase by grain mantle evaporation, similar to formic acid. Conflicting with these observations, Friedel (2008) reports no detection of acetaldehyde or formic acid in a λ=1mm survey of Orion KL using CARMA, and suggests that the distributions are very extended and as such resolved out. Furthermore, there is no apparent explanation for the discrepancies between the Friedel (2008) and Liu (2005) observations; the compact emission of both formic acid and acetaldehyde should have been detected by Friedel (2008) based on the Liu (2005) observations. It is also important to note that in both cases, a single transition was used for mapping. Recent broadband mapping projects using the ALMA Orion KL Band 6 Science Verification data suggest that single transition maps may not be indicative of true molecular distributions due to a number of effects including, but not limited to, density, excitation, temperature and chemistry (B. Harris, private communication). Furthermore, HIFI observations of the Orion KL region show no acetaldehyde emission from the HEXOS key science program, suggesting that acetaldehyde is concentrated in the hot core regions or rotationally cold (Neill, private communication). These disparate observations call into question the accuracy of the existing results for the detections of transitions and the interferometric mapping of acetaldehyde toward the Orion KL region. In addition to the discrepancies in interferometric mapping data for acetaldehyde, a 3mm survey of Orion KL and Sgr B2, Turner (1989,1981), observed much higher than predicted intensities for several relatively weak b-type transitions compared to the corresponding a-type transitions for a number of species, with acetaldehyde being a particularly clear example. These two types of transitions 2

3 differ in their selection rules for the Ka and Kc quantum numbers, and the strength of the transitions corresponds to the a and b dipole moments for the molecule respectively. The a dipole moment for acetaldehyde is 2.5 times larger than b, leading to stronger a-type transitions and weaker b-type transitions. Nummelin et al. (2000) observed the same phenomena as Turner (1989, 1991) in a 1mm survey of Sgr B2. Both authors suggest that this may be due to acetaldehyde having two distinct components; a well behaved cool, extended component and a compact component towards hot core regions that undergoes radiative pumping. A population inversion from this pumping would explain the much stronger than expected b-type emission. We have undertaken a dedicated campaign to image the distribution of multiple a- and b-type transitions of acetaldehyde at both high and low spatial resolution toward the Orion KL region in the λ=3mm frequency range to attempt to settle the discrepancies between these sets of data. In addition to resolving the discrepancies between previous observations, an accurate determination of the distribution of acetaldehyde in Orion will help determine the formation route of acetaldehyde. In this paper we present evidence of an extended distribution of acetaldehyde, as well as various distributions of other molecules in the region. Evidence is shown for compact b-type emission as well, supporting Nummelin and Turner s theory of multiple emission components. November and December 2012, and taken in the B array configuration during January and February Five tracks of ~4 hours each were taken in each array configuration, with a total time of ~20 hours for each array configuration. 16 antennas were used with a phase center pointing position of α(j2000) = 05 h 35 m 14 s.5 and δ(j2000) = , although there were several tracks where one antenna was out of the array for maintenance. In the E array configuration, projected baselines ranged from kλ ( m), while in B array configuration, projected baselines ranged from kλ ( m). As such, B array provides a smaller synthesized beam of approximately 2 x 1, while E array provides a synthesized beam of 7.3 x 6.1. The correlator was configured for both B and E array in the lower sideband to have 7 narrow band 62 MHz windows in 3 bit mode for spectral measurements, and one wideband 500 MHz window for continuum measurements. 7 narrow band and one wideband window were also configured in the upper sideband. The correlator configuration can be seen in table 1. For B array, Uranus was used as a flux calibrator, was used as a bandpass calibrator, and was used for gain calibrations. For E array, 3c84 was used as a flux and bandpass calibrator, and was used for gain calibrations. After the data were calibrated, they were continuum subtracted and imaged using the CLEAN routine of the CASA software package (CITATION). 2. Observations Observations were taken using the Combined Array for Research in Millimeter- Wave Astronomy (CARMA). Data were taken in the E array configuration during Window LSB Freq (MHz) USB Freq (MHz) BW (MHz)

4 Table 1. Correlator Setup 3. Results Although observations were taken with both E and B array configurations, only E array configurations have been fully reduced and imaged at this time. Due to maintenance issues with the CARMA data archive, the arrival of B array data was delayed significantly, and they are still being reduced and imaged. These images will be finished and published in the near future. 3.1 Continuum One wideband 500 MHz window in the upper sideband was used to map the continuum emission at 108 GHz from the Orion KL region. No molecular lines were detected within the passband, and the whole passband was imaged without continuum subtraction. The final image is shown in figure 1, with known sources labeled on the figure. As seen in the image, the Hot Core, IRc5, and IRc6 regions are all observed, although not resolved due to the spatial resolution of E array. B array observations, once reduced, will be able to resolve these sources, and possibly provide new information about their structure, or confirm previous observations of the structure of the region. Figure 1. Continuum emission towards Orion KL 3.2 Acetaldehyde (CH 3 CHO) Acetaldehyde was searched for in 6 narrow band spectral windows, with all but one transition observed. Figures 2-9 depict these transitions at their respective velocity peaks. Some velocity structure was seen, with a slight velocity gradient extending from the south-west to the north-east, but is not shown in this paper due to length restrictions. Notable is that there appear to be two acetaldehyde peaks, one toward the Compact Ridge, and another to the southwest of this. Emission extends up towards IRc5. These observations are in qualitative agreement with those of Liu (2005), showing an extended distribution of acetaldehyde with two peaks, although the south-west peak is seen more prominently. In addition, the single transition not observed was the weaker b-type transition, possibly indicating that it was too compact and weak to be detected by the E-array configuration. If this is the case, we may still expect to observe it in B-array data. It is important to note that the b-type transition observed does not follow the same distribution pattern as all the a-type transitions, with a single peak toward the Hot Core. 4

5 Figure , ,13 b-type transition of CH 3 CHO Figure ,2-4 3,1 A a-type transition of CH 3 CHO Figure ,5-4 0,4 A a-type transition of CH 3 CHO Figure ,5-4 0,4 E a-type transition of CH 3 CHO Figure ,6-5 1,5 A a-type transition of CH 3 CHO Figure ,6-5 1,5 E a-type transition of CH 3 CHO 5

6 Figure ,2-4 3,1 E a-type transition of CH 3 CHO Figure ,4-4 2,3 a-type transition of t-hcooh 3.4 Methyl Formate (HCOOCH 3 ) Figure ,3-4 3,2 A a-type transition of CH 3 CHO Four transitions of methyl formate were observed in one narrow band spectral window. These transitions mapped identically, so due to space constraints, only the transition is shown in figure 11. No velocity structure was observed in these images, and emission is clearly compact around IRc5. This is in qualitative agreement with the measurements of both Friedel (2008) and Liu (2005). 3.3 Formic Acid (t-hcooh) Three transitions of formic acid were observed in 2 narrow band spectral windows. These transitions mapped fairly similarly, so due to space constraints, only the transition is shown in figure 10. Prominent velocity structure was observed for these transitions, with the same velocity gradient extending from the south-west to the north-east. Once again, these observations are in agreement with those of Liu (2005). It is important to note, however, that formic acid does not appear to be cospatial with the south-western peak of acetaldehyde. Figure ,6-8 4,5 A a-type transition of HCOOCH Formamide (NH 2 CHO) Two transitions of formamide were observed in one narrow band spectral 6

7 window. These transitions mapped identically, so due to space constraints, only the transition is shown in figure 12. No velocity structure was observed in these images, and emission is clearly compact around the Hot Core. Although not observed in Friedel (2008) or Liu (2005), it is important to note that in both of those studies, all nitrogen bearing species were observed to mainly peak around the Hot Core, possibly explaining why formamide peaks here, rather than toward the Compact Ridge or IRc5 with other oxygen bearing species. extremely strong (> 5Jy/beam), and are most likely masing. This may explain why they map differently than the non-masing transitions measured in Friedel (2008) and Liu (2005). Figure ,2-1 0,1 a-type transition of CH 3 OH 4. Discussion 4.1 Distribution of CH 3 CHO Figure ,3-4 3,2 a-type transition of NH 2 CHO 3.6 Methanol (CH 3 OH) Three transitions of methanol were observed in one narrow band spectral window. These transitions mapped identically, so due to space constraints, only the transition is shown in figure 13. Slight velocity structure was evident, with the southwestern tail of emission being more prominent at lower velocities. The emission appears to peak around IRc5, extending to the south-west in a similar manner to acetaldehyde. Methanol was observed by both Friedel (2008) and Liu (2005), but they mapped it to be much more prominent toward the Hot Core. The observed transitions in this study, however, were From figures 2-9, it is clear that there are two peaks in acetaldehyde emission; one toward the Compact Ridge, and another to the south-west, with emission extending at lower levels up toward IRc5 and wrapping around to south of the Hot Core. These observations are similar to those of Liu (2005), but now provide multiple transition evidence of this distribution. As seen in figures 2-9, each transition has a slightly different distribution, possibly indicating multiple temperature components within the region. When B-array data is reduced, line profiles will be fit to all transitions and rotational temperature/column density calculations will be performed. Although the distribution of all a-type transitions is clearly extended, it is not yet clear as to whether there are additional compact components. If acetaldehyde emission is not observed in the B-array data, 7

8 it will be clear that there are no compact emission components. In agreement with Nummelin and Turner s predictions, however, is the distribution of the single observed b-type transition. It appears compact toward the Hot Core, with a different characteristic velocity (one more appropriate to the Hot Core rather than the Compact Ridge or IRc5). If this distribution is observed again in B-array data, it will provide strong evidence for two distinct components of acetaldehyde emission, with non-lte emission possibly caused by radiative pumping towards the Hot Core. 4.2 Other Molecular Distributions Observations of the distribution of formic acid are in qualitative agreement with those of Liu (2005). It is unclear why Friedel (2008) did not observe any formic acid emission, although B-array data may shed light on this, as the spatial resolution will but more similar to the Friedel observations. The compact distribution observed for methyl formate is in exact agreement with both the Friedel and Liu observations, and although neither previous study had observed formamide, it is reasonable to expect a compact distribution toward the Hot Core, where Liu (2005) had observed all nitrile emission. It is very interesting that the observed distribution of methanol emission is quite different from that seen in Liu (2005) or Friedel (2008). In particular, the distribution shown in figure 13 is clearly seen for multiple transitions in this study, but is not in agreement with the single transition maps of Liu and Friedel, which corroborate each other. As noted in section 3.6, this may be due to masing effects, as the methanol transitions we observed were extremely strong (>5 Jy/beam). B-array data will allow us to see if there are compact components to this emission, or if it is all extended. 4.3 Implications for Formation Routes Liu (2005) suggested a grain warm-up model for the formation of acetaldehyde, based on its spatial coincidence with the compact emission of formaldehyde. It is clear from the images in this study, however, that the southwestern peak of acetaldehyde is not spatially coincident with the compact formic acid emission, and that the acetaldehyde emission is much more extended. This may indicate formation through gas phase ion molecule reactions, or that the distribution is a result of nonthermal processes liberating the molecule off grain surfaces. For example, passing shocks through the region or external irradiation from UV or cosmic rays may be responsible. The presence of acetaldehyde b-type emission toward the Hot Core, however, suggests that acetaldehyde may be formed in compact regions, albeit at much lower column densities. If B-array data provides clear evidence for both b-type transitions toward the Hot Core, it may be possible to use a radiative pumping model to determine the column density in the region. 5. Conclusions We have observed 8 transitions of acetaldehyde towards Orion KL, and presented evidence for a widespread extended distribution in the region. These observations are in qualitative agreement with those of Liu (2005). However, a single b-type weak transition of acetaldehyde was observed to be compact toward the Hot Core region, suggesting possible masing due to 8

9 radiative pumping. Additional B-array data when reduced will either provide evidence of smaller compact components of emission, or additional evidence for only a widespread extended distribution. From this observed distribution, we conclude that a grain warm-up model is not sufficient to explain the abundance of acetaldehyde in the region, and that additional mechanisms, such as ionmolecule reactions or non-thermal grain liberation must be responsible for some of the observed emission. 6. Acknowledgements The authors gratefully acknowledge support from the Virginia Space Grant Consortium, the College Science Scholars program at the University of Virginia, and the Summer Student Research program at the National Radio Astronomy Observatory. We also thank B. McGuire for helpful comments on preparing observing scripts and using CARMA. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. CARMA operations and development are supported by the National Science Foundation and CARMA partner universities 3. Gottlieb et al., Molecules in the Galactic Environment. Wiley, New York, Hollis et al., ApJ, 554,L81-L85, Johansson et al., Astron.Astrophys., 130, , Liu, Astrochemistry Proceedings IAU Symposium, Matthews et al., ApJ, 290, , Nummelin et al., ApJSS, 128, , Turner, ApJSS, 76, , Turner, ApJSS, 70, , References 1. Chengalur and Kanekar, Astron. Astrophys., 404, L43-L46, Friedel et al., ApJ, 672, 962,

Aminoethanol. Chapter Introduction. Aminoalcohols are central to the gas phase formation of glycine in current hot

Aminoethanol. Chapter Introduction. Aminoalcohols are central to the gas phase formation of glycine in current hot 75 Chapter 7 Aminoethanol 7.1 Introduction Aminoalcohols are central to the gas phase formation of glycine in current hot core chemical models. The protonated forms of aminomethanol (NH 2 CH 2 OH) and

More information

Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA)

Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA) Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA) Anthony J. Remijan, ALMA Program Scientist Joint ALMA Observatory National

More information

Methyl Formate as a probe of temperature and structure of Orion-KL

Methyl Formate as a probe of temperature and structure of Orion-KL Methyl Formate as a probe of temperature and structure of Orion-KL Cécile Favre Århus University - Institut for Fysik og Astronomy (IFA) N. Brouillet (LAB), D. Despois (LAB), A. Baudry (LAB), A. Wootten

More information

THE NITRILES PROJECT: MOLECULE FORMATION IN THE GALACTIC CENTER

THE NITRILES PROJECT: MOLECULE FORMATION IN THE GALACTIC CENTER THE NITRILES PROJECT: MOLECULE FORMATION IN THE GALACTIC CENTER JOANNA CORBY (www.astro.virginia.edu/~jfc9va) University of Virginia, Department of Astronomy Advised by Anthony Remijan, National Radio

More information

Astrochemistry In the Era of Broadband single dish and Interferometric observations

Astrochemistry In the Era of Broadband single dish and Interferometric observations Astrochemistry In the Era of Broadband single dish and Interferometric observations Anthony J. Remijan NA ARC Manager 1 2014 ANASAC Meeting National Radio Astronomy Observatory Overview Why imaging? What

More information

DETECTION AND CONFIRMATION OF INTERSTELLAR ACETIC ACID

DETECTION AND CONFIRMATION OF INTERSTELLAR ACETIC ACID THE ASTROPHYSICAL JOURNAL, 480 : L71 L74, 1997 May 1 1997. The American Astronomical Society. All rights reserved. Printed in U.S.A. DETECTION AND CONFIRMATION OF INTERSTELLAR ACETIC ACID DAVID M. MEHRINGER,

More information

Dihydroxyacetone is. Chapter Introduction. One of the sugars detected in carbonaceous chondrites is 1,3-dihydroxyacetone, or CO(CH 2 OH) 2.

Dihydroxyacetone is. Chapter Introduction. One of the sugars detected in carbonaceous chondrites is 1,3-dihydroxyacetone, or CO(CH 2 OH) 2. 21 Chapter 4 1,3-Dihydroxyacetone 4.1 Introduction One of the sugars detected in carbonaceous chondrites is 1,3-dihydroxyacetone, or CO(CH 2 OH) 2. Dihydroxyacetone is a monosaccharide commonly used as

More information

The influence of cosmic rays on the chemistry in Sagittarius B2(N)

The influence of cosmic rays on the chemistry in Sagittarius B2(N) The influence of cosmic rays on the chemistry in Sagittarius B2(N) Mélisse Bonfand A. Belloche, K. M. Menten, R. Garrod Sagittarius B2 APEX Telescope Large Area Survey of the Galaxy Sgr B2 Sgr B2(N) Galactic

More information

A GBT Legacy Survey of Prebiotic Molecules Toward SgrB2(N LMH) and TMC 1

A GBT Legacy Survey of Prebiotic Molecules Toward SgrB2(N LMH) and TMC 1 A GBT Legacy Survey of Prebiotic Molecules Toward SgrB2(N LMH) and TMC 1 Jan M. Hollis NASA s Goddard Space Flight Center, Computational and Information Sciences and Technology Office, Greenbelt, MD, 20771

More information

atoms H. * Infrared **Optical l - linear c-cyclic

atoms H. * Infrared **Optical l - linear c-cyclic 2 3 4 5 6 7 atoms H *,* 2 C 3 * c-c 3 H C 5 * C 5 H C 6 H AlF C 2 H l-c 3 H C 4 H l-h 2 C 4 CH 2 CHCN AlCl C 2 O C 3 N C 4 Si C 2 H 4 CH 3 C 2 H C 2 ** C 2 S C 3 O l-c 3 H 2 CH 3 CN HC 5 N CH CH 2 C 3

More information

ACETIC ACID IN THE HOT CORES OF SAGITARRIUS B2(N) AND W51 A. Remijan, 1 L. E. Snyder, 1 S.-Y. Liu, 2 D. Mehringer, 1,3 and Y.-J.

ACETIC ACID IN THE HOT CORES OF SAGITARRIUS B2(N) AND W51 A. Remijan, 1 L. E. Snyder, 1 S.-Y. Liu, 2 D. Mehringer, 1,3 and Y.-J. The Astrophysical Journal, 576:264 273, 2002 September 1 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. ACETIC ACID IN THE HOT CORES OF SAGITARRIUS B2(N) AND W51 A. Remijan,

More information

C+ and Methylidyne CH+ Mapping with HIFI

C+ and Methylidyne CH+ Mapping with HIFI C and H Reactives in Orion KL C+ and Methylidyne CH+ Mapping with HIFI Pat Morris, NHSC (IPAC/Caltech) J. Pearson, D. Lis, T. Phillips and the HEXOS team and HIFI Calibration team Outline Orion KL nebula

More information

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Preparing for ALMA http://science.nrao.edu/alma National Radio Astronomy

More information

A MULTI-TRANSITION SEARCH FOR CLASS I METHANOL MASERS

A MULTI-TRANSITION SEARCH FOR CLASS I METHANOL MASERS A MULTI-TRANSITION SEARCH FOR CLASS I METHANOL MASERS Cara Denise Battersby MIT Haystack Observatory REU Summer 2004 Mentors: Preethi Pratap and Phil Shute ABSTRACT Class I methanol masers have been detected

More information

The Robert C. Byrd Green Bank Telescope

The Robert C. Byrd Green Bank Telescope The Robert C. Byrd Green Bank Telescope Phil Jewell National Radio Astronomy Observatory 520 Edgemont Road Charlottesville, VA 22903-2475 USA pjewell@nrao.edu NAIC-NRAO School on Single Dish Radio Astronomy

More information

Opportunities for Spectroscopic Analysis with ALMA (and EVLA)

Opportunities for Spectroscopic Analysis with ALMA (and EVLA) Opportunities for Spectroscopic Analysis with ALMA (and EVLA) Brooks Pate Department of Chemistry University of Virginia Tony Remijan (NRAO), Phil Jewel (NRAO), Mike McCarthy (CfA), Susanna Widicus Weaver

More information

Dimethyl Carbonate & Methyl Glycolate

Dimethyl Carbonate & Methyl Glycolate 46 Chapter 5 Dimethyl Carbonate & Methyl Glycolate 5.1 Introduction Structural isomerism is widespread in the ISM. The abundances of the 2C structural isomers methyl formate, acetic acid, and glycolaldehyde

More information

Transition Observing and Science

Transition Observing and Science Transition Observing and Science EVLA Advisory Committee Meeting, March 19-20, 2009 Claire Chandler Deputy AD for Science, NM Ops Transition Observing A primary requirement of the EVLA Project is to continue

More information

Astrochemical Models. Eric Herbst Departments of Chemistry and Astronomy University of Virginia

Astrochemical Models. Eric Herbst Departments of Chemistry and Astronomy University of Virginia Astrochemical Models Eric Herbst Departments of Chemistry and Astronomy University of Virginia Chemical Models Gas-phase reactions 1000 s of reactions Grain-surface reactions Abundances, columns, spectra

More information

ESO in the 2020s: Astrobiology

ESO in the 2020s: Astrobiology ESO in the 2020s: Astrobiology Izaskun Jimenez-Serra (IIF Marie Curie Fellow, ESO) Leonardo Testi (ESO), Paola Caselli (MPE) & Serena Viti (UCL) 1 From the ISM to the Origin of Life Molecular clouds (Pre-stellar

More information

Laboratory Data, Line Confusion and Other Unique Opportunities and Challenges for ALMA Line Surveys. John Pearson JPL

Laboratory Data, Line Confusion and Other Unique Opportunities and Challenges for ALMA Line Surveys. John Pearson JPL Laboratory Data, Line Confusion and Other Unique Opportunities and Challenges for ALMA Line Surveys John Pearson JPL Science with ALMA 1 Introduction ALMA will revolutionize the way molecular astrophysics

More information

Methanol masers and their environment at high resolution

Methanol masers and their environment at high resolution Mon. Not. R. Astron. Soc. 300, 1131 1157 (1998) Methanol masers and their environment at high resolution C. J. Phillips, 1 R. P. Norris, 2 S. P. Ellingsen 1 and P. M. McCulloch 1 1 Department of Physics,

More information

A SURVEY OF LARGE MOLECULES TOWARD THE PROTO PLANETARY NEBULA CRL 618

A SURVEY OF LARGE MOLECULES TOWARD THE PROTO PLANETARY NEBULA CRL 618 The Astrophysical Journal, 626:233 244, 2005 June 10 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. A SURVEY OF LARGE MOLECULES TOWARD THE PROTO PLANETARY NEBULA CRL

More information

Radio Observations of the Supermassive Black Hole at the Galactic Center and its Orbiting Magnetar

Radio Observations of the Supermassive Black Hole at the Galactic Center and its Orbiting Magnetar Radio Observations of the Supermassive Black Hole at the Galactic Center and its Orbiting Magnetar Rebecca Rimai Diesing Honors Thesis Department of Physics and Astronomy Northwestern University Spring

More information

arxiv: v1 [astro-ph.ga] 7 Sep 2012

arxiv: v1 [astro-ph.ga] 7 Sep 2012 Interstellar Carbodiimide (HNCNH) - A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features Brett A. McGuire arxiv:1209.1590v1 [astro-ph.ga] 7 Sep 2012 Division of Chemistry

More information

MM/SubMM Spectroscopy: Experiments, Quantum Mechanics, Simulations, and Astronomical Comparisons

MM/SubMM Spectroscopy: Experiments, Quantum Mechanics, Simulations, and Astronomical Comparisons MM/SubMM Spectroscopy: Experiments, Quantum Mechanics, Simulations, and Astronomical Comparisons Frank C. De Lucia Department of Physics Ohio State University Catalogs serve as the interface between the

More information

Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al.

Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al. Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al. ApJ, 561:218-237, 2001 Nov 1 1 Fun With Acronyms BIMA Berkely

More information

arxiv: v1 [astro-ph.ga] 17 Apr 2013

arxiv: v1 [astro-ph.ga] 17 Apr 2013 Astronomy & Astrophysics manuscript no. Orion-acetone-arXiv c ESO 2018 April 26, 2018 Acetone in Orion BN/KL High-resolution maps of a special oxygen-bearing molecule T.-C. Peng 1, 2, 3, D. Despois 1,

More information

Spectral survey analysis: the WEEDS package

Spectral survey analysis: the WEEDS package Spectral survey analysis: the WEEDS package P. Hily-Blant & S. Maret Institute for Panetary science and Astrophysics of Grenoble (IPAG) University Joseph Fourier Collaborators: J. Pety, S. Bardeau, E.

More information

The Unbearable Lightness of Chemistry

The Unbearable Lightness of Chemistry Z H IG C G N I OM H T A P U The Unbearable Lightness of Chemistry The Unbearable Lightness of Chemistry ~ 0.5 % Molecular (H 2 ) ~ 0.002 % CO ~ 0.000002 % any other molecule A total of 46 molecular species

More information

Cosmic Rays in the Interstellar Medium. Nick Indriolo University of Illinois at Urbana- Champaign

Cosmic Rays in the Interstellar Medium. Nick Indriolo University of Illinois at Urbana- Champaign Cosmic Rays in the Interstellar Medium Nick Indriolo University of Illinois at Urbana- Champaign November 3, 2010 Stormy Cosmos Cosmic Ray Basics Energetic charged particles and nuclei protons, alpha particles,

More information

Part 3: Spectral Observations: Neutral Hydrogen Observations with the 25m Dish in the Milky Way

Part 3: Spectral Observations: Neutral Hydrogen Observations with the 25m Dish in the Milky Way The "Astropeiler Stockert Story" Part 3: Spectral Observations: Neutral Hydrogen Observations with the 25m Dish in the Milky Way Wolfgang Herrmann 1. Introduction This is the third part of a series of

More information

Project Scientist Status Report Al Wootten Interim Project Scientist JAO/NRAO

Project Scientist Status Report Al Wootten Interim Project Scientist JAO/NRAO Project Scientist Status Report Al Wootten Interim Project Scientist JAO/NRAO Report ASAC Considering Charges from Board Ch 4: The ASAC should read and discuss the Operations Plan. Depending on the questions

More information

=> most distant, high redshift Universe!? Consortium of international partners

=> most distant, high redshift Universe!? Consortium of international partners LOFAR LOw Frequency Array => most distant, high redshift Universe!? Consortium of international partners Dutch ASTRON USA Haystack Observatory (MIT) USA Naval Research Lab `best site = WA Novel `technology

More information

arxiv:astro-ph/ v1 13 Sep 2000

arxiv:astro-ph/ v1 13 Sep 2000 A&A manuscript no. (will be inserted by hand later) Your thesaurus codes are: 09 09.03.1; 09.08.1; 09.11.1; 09.13.2; ASTRONOMY AND ASTROPHYSICS February 1, 2008 A ridge of recent massive star formation

More information

1mm VLBI Call for Proposals: Cycle 4

1mm VLBI Call for Proposals: Cycle 4 1mm VLBI Call for Proposals: Cycle 4 22 March 2016 Introduction The National Radio Astronomy Observatory (NRAO) invites proposals for 1mm Very Long Baseline Interferometry (VLBI) using the phased output

More information

arxiv: v1 [astro-ph] 20 Apr 2007

arxiv: v1 [astro-ph] 20 Apr 2007 Phase closure at 691 GHz using the Submillimeter Array T.R. Hunter 1, A.E.T. Schinckel 1, A.B. Peck 1, R.D. Christensen 1, R. Blundell 1, A. Camacho 1, F. Patt 2, K. Sakamoto 1, K.H. Young 1 arxiv:0704.2641v1

More information

CYCLOPROPENONE (c-h 2 C 3 O): A NEW INTERSTELLAR RING MOLECULE

CYCLOPROPENONE (c-h 2 C 3 O): A NEW INTERSTELLAR RING MOLECULE The Astrophysical Journal, 642:933 939, 2006 May 10 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. CYCLOPROPENONE (c-h 2 C 3 O): A NEW INTERSTELLAR RING MOLECULE J. M.

More information

COMBINED IRAM, Herschel/HIFI and ALMA STUDIES of abundant molecules in ORION KL

COMBINED IRAM, Herschel/HIFI and ALMA STUDIES of abundant molecules in ORION KL COMBINED IRAM, Herschel/HIFI and ALMA STUDIES of abundant molecules in ORION KL Belén Tercero ICMM-CSIC, Madrid, Spain CONTENTS 1. ORION REGION 2. THREE SETS OF DATA 3. STUDIES OF ORION-KL 4. CONCLUSIONS

More information

{ 2{ water vapor prole is specied by the surface relative humidity and a water vapor scale height (set at 2 km). We nd a good, theoretically based (se

{ 2{ water vapor prole is specied by the surface relative humidity and a water vapor scale height (set at 2 km). We nd a good, theoretically based (se SMA TECHNICAL MEMO 123 Date: 3 June 1998 Estimates of Haystack Opacity at 225 GHz Mark A. Gurwell ABSTRACT We estimate opacity at 225 GHz for the SMA Haystack site, based upon local weather data, measurements

More information

CO(1-0) in High-Redshift Radio Galaxies using the ATCA

CO(1-0) in High-Redshift Radio Galaxies using the ATCA The Interstellar Medium in High Redshift Galaxies Comes of Age NRAO Conference Series, Vol. 28 J. G. Mangum c 2012 National Radio Astronomy Observatory CO(1-0) in High-Redshift Radio Galaxies using the

More information

Millimetre Science with the AT

Millimetre Science with the AT Millimetre Science with the AT Astrochemistry with mm-wave Arrays G.A. Blake, Caltech 29Nov 2001 mm-arrays: Important Features - Spatial Filtering - Transform to image plane - Cross Correlation (Sub)Millimeter

More information

MOLECULES IN THE CIRCUMNUCLEAR DISK OF THE GALACTIC CENTER

MOLECULES IN THE CIRCUMNUCLEAR DISK OF THE GALACTIC CENTER MOLECULES IN THE CIRCUMNUCLEAR DISK OF THE GALACTIC CENTER Implications from Chemical Modeling Nanase Harada 1, Denise Riquelme 1, Serena Viti 2, Karl Menten 1, Miguel Requena-Torres 1, Rolf Güsten 1,

More information

The ALMA Observing Preparation Tool

The ALMA Observing Preparation Tool The ALMA Observing Preparation Tool Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Video versions of this material:

More information

Setting the stage for solar system formation

Setting the stage for solar system formation Setting the stage for solar system formation ALMA insights into the early years of young stars Jes Jørgensen! Niels Bohr Institute & Centre for Star and Planet Formation University of Copenhagen http://youngstars.nbi.dk

More information

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2 Next Generation Very Large Array Working Group 2 HI in M74: Walter+ 08 CO in M51: Schinnerer+ 13 Continuum in M82: Marvil & Owen Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of

More information

NEARBY GALAXIES AND ALMA

NEARBY GALAXIES AND ALMA NEARBY GALAXIES AND ALMA Jean Turner, UCLA nearby galaxies close-up views of star formation & nuclear fueling on scales of GMCs and star clusters - where & how do galaxies form stars? - where does gas

More information

arxiv: v1 [astro-ph] 15 Nov 2008

arxiv: v1 [astro-ph] 15 Nov 2008 arxiv:0811.2495v1 [astro-ph] 15 Nov 2008 Synergy of multifrequency studies from observations of NGC6334I Andreas Seifahrt 1, Sven Thorwirth 2, Henrik Beuther 3, Silvia Leurini 4, Crystal L Brogan 5, Todd

More information

Probing the Chemistry of Luminous IR Galaxies

Probing the Chemistry of Luminous IR Galaxies Probing the Chemistry of Luminous IR Galaxies, Susanne Aalto Onsala Space Observatory, Sweden Talk Outline Luminous IR galaxies Chemistry as a tool Observations in NGC 4418 Conclusions Luminous IR Galaxies

More information

Formation of complex molecules after energetic processing of icy grain mantles

Formation of complex molecules after energetic processing of icy grain mantles Formation of complex molecules after energetic processing of icy grain mantles Maria Elisabetta Palumbo INAF Osservatorio Astrofisico di Catania mepalumbo@oact.inaf.it http://www.oact.inaf.it/weblab/ Molecules

More information

The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423

The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423 The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423 Presented by Shannon Guiles Astronomy 671 April 24, 2006 Image:[C II] map of the galaxy

More information

Submillimeter Array 440 μm/690 GHz Line and Continuum Observations of Orion KL

Submillimeter Array 440 μm/690 GHz Line and Continuum Observations of Orion KL Submillimeter Array 440 μm/690 GHz Line and Continuum Observations of Orion KL The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

More information

arxiv: v1 [astro-ph.ga] 12 Feb 2014

arxiv: v1 [astro-ph.ga] 12 Feb 2014 Astronomy & Astrophysics manuscript no. 21872 c ESO 214 February 13, 214 Extended warm gas in Orion KL as probed by methyl cyanide T. A. Bell 1, J. Cernicharo 1, S. Viti 2, N. Marcelino 3, Aina Palau 4,

More information

ALMA Development Program

ALMA Development Program ALMA Development Program Jeff Kern CASA Team Lead Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Opportunities for Software

More information

Mapping of CO and HCN in Neptune's stratosphere

Mapping of CO and HCN in Neptune's stratosphere Mapping of CO and HCN in Neptune's stratosphere A. Moullet, M. Gurwell (Center for Astrophysics), M. Hofstadter (JPL), E. Lellouch, R. Moreno (LESIA), B. Butler (NRAO) Submillimeter Array Structure of

More information

Broadband Nitrile Reaction Screening. Kiera Matthews Hanifah Hendricks

Broadband Nitrile Reaction Screening. Kiera Matthews Hanifah Hendricks Broadband Nitrile Reaction Screening Kiera Matthews Hanifah Hendricks Acknowledgements Brooks Pate - University of Virginia Justin Neill University of Virginia Sarah Payne - University of Virginia Michael

More information

PoS(11th EVN Symposium)033

PoS(11th EVN Symposium)033 The remarkable blue-shift dominated jet in the high mass protostellar object G353.273+0.641 The Research Institute for Time Studies, Yamaguchi University E-mail: motogi@yamaguchi-u.ac.jp Kazuo Sorai Department

More information

Solar research with ALMA: Czech node of European ARC as your user-support infrastructure

Solar research with ALMA: Czech node of European ARC as your user-support infrastructure Solar research with ALMA: Czech node of European ARC as your user-support infrastructure M. Bárta 1, I. Skokič 1, R. Brajša 2,1 & the Czech ARC Node Team 1 European ARC Czech node, Astronomical Inst. CAS,

More information

arxiv: v1 [astro-ph.ga] 16 Oct 2014

arxiv: v1 [astro-ph.ga] 16 Oct 2014 13 C methyl formate: observations of a sample of high mass star-forming regions including Orion KL and spectroscopic characterization 1 arxiv:1410.4418v1 [astro-ph.ga] 16 Oct 2014 Cécile Favre Department

More information

TERAHERTZ SPECTROSCOPY OF DEUTERATED ACETALDEHYDE: CH 2 DCHO

TERAHERTZ SPECTROSCOPY OF DEUTERATED ACETALDEHYDE: CH 2 DCHO TERAHERTZ SPECTROSCOPY OF DEUTERATED ACETALDEHYDE: CH 2 DCHO L. Margulès, R. A. Motiyenko Laboratoire PhLAM, Université de Lille1, France L. H. Coudert LISA, CNRS, Universités Paris Est Créteil et Paris

More information

Observations of the solar chromosphere at millimeter wavelengths

Observations of the solar chromosphere at millimeter wavelengths Mem. S.A.It. Vol. 81, 592 c SAIt 2010 Memorie della Observations of the solar chromosphere at millimeter wavelengths M. Loukitcheva 1,2, S. K. Solanki 1, and S. M. White 3 1 Max-Planck-Institut für Sonnensystemforschung,

More information

9 - The Hot Corinos. Complex organic molecules in the inner 100 AU envelope of Solar type protostars

9 - The Hot Corinos. Complex organic molecules in the inner 100 AU envelope of Solar type protostars 9 - The Hot Corinos Complex organic molecules in the inner 100 AU envelope of Solar type protostars 1 THE COLLAPSING PROTOSTAR PHASE 2 THE INNER ENVELOPES OF LOW MASS PROTOSTARS Direct observations of

More information

arxiv: v1 [astro-ph.ga] 11 Aug 2017

arxiv: v1 [astro-ph.ga] 11 Aug 2017 Astronomy & Astrophysics manuscript no. JCorby_ArxivSubmission c ESO 2018 July 4, 2018 The Molecular Chemistry of Diffuse and Translucent Clouds in the Line-of-Sight to Sgr B2: Absorption by Simple Organic

More information

The Promise of HIFI. Xander Tielens (HIFI project scientist) on behalf of the HIFI consortium

The Promise of HIFI. Xander Tielens (HIFI project scientist) on behalf of the HIFI consortium The Promise of HIFI Xander Tielens (HIFI project scientist) on behalf of the HIFI consortium HIFI science HIFI is a versatile instrument Wide spectral coverage and high spectral resolution Physical conditions

More information

Interstellar Detection of Methyl Isocyanate CH 3 NCO. in Sgr B2(N): A Link from Molecular Clouds to Comets

Interstellar Detection of Methyl Isocyanate CH 3 NCO. in Sgr B2(N): A Link from Molecular Clouds to Comets Interstellar Detection of Methyl Isocyanate CH 3 NCO in Sgr B2(N): A Link from Molecular Clouds to Comets D. T. Halfen 1, V. V. Ilyushin 2, and L. M. Ziurys 1 1 Department of Chemistry and Biochemistry,

More information

arxiv:astro-ph/ v1 8 Sep 2004

arxiv:astro-ph/ v1 8 Sep 2004 Model of the W3(OH) environment based on data for both maser and quasi-thermal methanol lines arxiv:astro-ph/0409188v1 8 Sep 2004 Andrei M. Sobolev Ural State University, Russia Edmund C. Sutton University

More information

Interferometric Observations of S140-IRS1

Interferometric Observations of S140-IRS1 Interferometric Observations of S140-IRS1 e-merlin early science workshop April 2014 Luke T. Maud University of Leeds, UK Melvin G. Hoare University of Leeds Star formation scenario Collapse of a core

More information

CONFIRMATION OF INTERSTELLAR ACETONE Lewis E. Snyder, F. J. Lovas, 1 David M. Mehringer, 2 Nina Yanti Miao, 3 and Yi-Jehng Kuan 4. J. M.

CONFIRMATION OF INTERSTELLAR ACETONE Lewis E. Snyder, F. J. Lovas, 1 David M. Mehringer, 2 Nina Yanti Miao, 3 and Yi-Jehng Kuan 4. J. M. The Astrophysical Journal, 578:245 255, 2002 October 10 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. CONFIRMATION OF INTERSTELLAR ACETONE Lewis E. Snyder, F. J. Lovas,

More information

Detection of E-cyanomethanimine towards Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey

Detection of E-cyanomethanimine towards Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey Detection of E-cyanomethanimine towards Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey Daniel P. Zaleski 1, Nathan A. Seifert 1, Amanda L. Steber 1, Matt T. Muckle 1, Ryan A. Loomis 1, Joanna

More information

IMAGES OF ASTROPHYSICAL MASERS AND THEIR VARIABILITY IN A TURBULENT MEDIUM: THE 25 GHz METHANOL MASERS A. M. Sobolev 1. W. D.

IMAGES OF ASTROPHYSICAL MASERS AND THEIR VARIABILITY IN A TURBULENT MEDIUM: THE 25 GHz METHANOL MASERS A. M. Sobolev 1. W. D. The Astrophysical Journal, 590:333 339, 2003 June 10 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. IMAGES OF ASTROPHYSICAL MASERS AND THEIR VARIABILITY IN A TURBULENT

More information

Results of the ESO-SEST Key Programme: CO in the Magellanic Clouds. V. Further CO observations of the Small Magellanic Cloud

Results of the ESO-SEST Key Programme: CO in the Magellanic Clouds. V. Further CO observations of the Small Magellanic Cloud ASTRONOMY & ASTROPHYSICS AUGUST 1996, PAGE 263 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 118, 263-275 (1996) Results of the ESO-SEST Key Programme: CO in the Magellanic Clouds. V. Further CO observations

More information

arxiv: v1 [astro-ph.ga] 30 Nov 2015

arxiv: v1 [astro-ph.ga] 30 Nov 2015 Astronomy in Focus, Volume 15 XXIXth IAU General Assembly, August 2015 Kwok & Bergin, eds. c 2015 International Astronomical Union DOI: 00.0000/X000000000000000X Water in the interstellar media of galaxies

More information

arxiv: v3 [astro-ph] 4 Mar 2008

arxiv: v3 [astro-ph] 4 Mar 2008 Astronomy & Astrophysics manuscript no. aansgrb2 astroph c ESO 2018 October 31, 2018 Detection of amino acetonitrile in Sgr B2(N) A. Belloche 1, K. M. Menten 1, C. Comito 1, H. S. P. Müller 1,2, P. Schilke

More information

arxiv:astro-ph/ v1 15 Nov 2006

arxiv:astro-ph/ v1 15 Nov 2006 Astronomy & Astrophysics manuscript no. paper-low-mass c ESO 2018 January 1, 2018 Hot corinos in NGC1333-IRAS4B and IRAS2A S. Bottinelli 1,2, C. Ceccarelli 1, J. P. Williams 2, and B. Lefloch 1 arxiv:astro-ph/0611480v1

More information

ALMA Memo 373 Relative Pointing Sensitivity at 30 and 90 GHz for the ALMA Test Interferometer M.A. Holdaway and Jeff Mangum National Radio Astronomy O

ALMA Memo 373 Relative Pointing Sensitivity at 30 and 90 GHz for the ALMA Test Interferometer M.A. Holdaway and Jeff Mangum National Radio Astronomy O ALMA Memo 373 Relative Pointing Sensitivity at 30 and 90 GHz for the ALMA Test Interferometer M.A. Holdaway and Jeff Mangum National Radio Astronomy Observatory 949 N. Cherry Ave. Tucson, AZ 85721-0655

More information

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Observing with ALMA Introduction: ALMA and the NAASC Nine Antennas at

More information

Introduction to Radio Interferometry Jim Braatz (NRAO)

Introduction to Radio Interferometry Jim Braatz (NRAO) Introduction to Radio Interferometry Jim Braatz (NRAO) Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Radio Astronomy

More information

Spectral index map of the Crab Nebula in the optical range

Spectral index map of the Crab Nebula in the optical range Spectral index map of the Crab Nebula in the optical range N I Dolindo 1 and Yu A Shibanov 1,2 1 St. Petersburg State Polytechnical University, Polytechnicheskaya, 29, St. Petersburg, 195251, Russia 2

More information

ALMA's Window on Molecular Emission: Small Ions to Complex Prebiotics

ALMA's Window on Molecular Emission: Small Ions to Complex Prebiotics ALMA's Window on Molecular Emission: Small Ions to Complex Prebiotics Al Wootten Complex Molecules in Space Boom Time for IS Spectroscopy 1000 year anniversary of SN1006 this week! Correlator technology:

More information

Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis

Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis Johan E. Lindberg Astrochemistry Laboratory NASA Goddard Space Flight

More information

Non-Closing Offsets on the VLA. R. C. Walker National Radio Astronomy Observatory Charlottesville VA.

Non-Closing Offsets on the VLA. R. C. Walker National Radio Astronomy Observatory Charlottesville VA. VLA SCIENTIFIC MEMORANDUM NO. 152 Non-Closing Offsets on the VLA R. C. Walker National Radio Astronomy Observatory Charlottesville VA. March 1984 Recent efforts to obtain very high dynamic range in VLA

More information

Can we do this science with SKA1-mid?

Can we do this science with SKA1-mid? Can we do this science with SKA1-mid? Let s start with the baseline design SKA1-mid expected to go up to 3.05 GHz Proposed array configuration: 133 dishes in ~1km core, +64 dishes out to 4 km, +57 antennas

More information

The HDO/H2O and D2O/HDO ratios in solar-type protostars

The HDO/H2O and D2O/HDO ratios in solar-type protostars The HD/H and D/HD ratios in solar-type protostars Audrey CUTENS University College London M. V. Persson, J. K. Jørgensen, E. F. van Dishoeck, C. Vastel, V. Taquet, S. Bottinelli, E. Caux, D. Harsono, J.

More information

Received 2002 August 14; accepted 2002 November 27

Received 2002 August 14; accepted 2002 November 27 The Astrophysical Journal, 586:338 343, 2003 March 20 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. DETECTION OF HCN DIRECT l-type TRANSITIONS PROBING HOT MOLECULAR

More information

Solar Astrophysics with ALMA. Sujin Kim KASI/EA-ARC

Solar Astrophysics with ALMA. Sujin Kim KASI/EA-ARC Solar Astrophysics with ALMA Sujin Kim KASI/EA-ARC Contents 1. The Sun 2. ALMA science targets 3. ALMA capabilities for solar observation 4. Recent science results with ALMA 5. Summary 2 1. The Sun Dynamic

More information

Terahertz Science Cases for the Greenland Telescope

Terahertz Science Cases for the Greenland Telescope Terahertz Science Cases for the Greenland Telescope Hiroyuki Hirashita Satoki Matsushita, Patrick M. Koch ASIAA GLT Single Dish Science Discussion Group (ASIAA, Taiwan) Topics 1. GLT Project 2. Opening

More information

Radio spectroscopy. Annoying question at a NSF Science and Technology Center Review

Radio spectroscopy. Annoying question at a NSF Science and Technology Center Review Radio spectroscopy A. Harris Image: part of an H-ATLAS field as seen in the Herschel-SPIRE 250/350/500 m bands H-ATLAS: Eales et al., PASP 2010 Annoying question at a NSF Science and Technology Center

More information

Class 3. The PAH Spectrum, what does it tell us??

Class 3. The PAH Spectrum, what does it tell us?? Class 3 The PAH Spectrum, what does it tell us?? PAH Vibrations! CH str! CC str! CC str /CH ip! CH oop! 3! 4! 5! 6! 7! 8! 9! 10! 15! Wavelength (µm)! NASA Ames! Astrochemisty Lab! Vibration - S. Langhoff!

More information

arxiv: v1 [astro-ph.ga] 13 Jan 2010

arxiv: v1 [astro-ph.ga] 13 Jan 2010 DRAFT VERSION AUGUST 4, 2013 Preprint typeset using LATEX style emulateapj v. 11/10/09 EXPANDED VLA DETECTION OF 36.2 GHZ CLASS I METHANOL MASERS IN SAGITTARIUS A LORÁNT O. SJOUWERMAN 1, YLVA M. PIHLSTRÖM

More information

Extended Molecular Gas Distribution in Mrk 273 and Merger-Luminosity Evolution

Extended Molecular Gas Distribution in Mrk 273 and Merger-Luminosity Evolution University of Massachusetts Amherst From the SelectedWorks of Min S. Yun October 1, 1995 Extended Molecular Gas Distribution in Mrk 273 and Merger-Luminosity Evolution Min S. Yun, University of Massachusetts

More information

RADIO ASTRONOMY II. QPR No. 83. Academic and Research Staff

RADIO ASTRONOMY II. QPR No. 83. Academic and Research Staff II. RADIO ASTRONOMY Academic and Research Staff Prof. A. H. Barrett Prof. L. B. Lenoir Dr. S. H. Zisk Prof. B. F. Burke Prof. D. H. Staelin Patricia P. Crowther Prof. M. Loewenthal E. R. Jensen Graduate

More information

Polarimetry with the SMA

Polarimetry with the SMA Polarimetry with the SMA Ramprasad Rao Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA) Collaborators: J. M. Girart (IEEC-CSIC), D. P. Marrone (NRAO/U. Chicago), Y. Tang (ASIAA), and a

More information

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region Chin. J. Astron. Astrophys. Vol. 2 (2002), No. 3, 260 265 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Near-Infrared Imaging Observations of the Orion

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

An Introduction to the Cycle 4 ALMA Observing Tool

An Introduction to the Cycle 4 ALMA Observing Tool An Introduction to the Cycle 4 ALMA Observing Tool How to turn that great idea into ALMA data.. Harvey Liszt, Alison Peck, Tony Remijan, Sabrina Stierwalt Atacama Large Millimeter/submillimeter Array Expanded

More information

ngvla The Next Generation Very Large Array

ngvla The Next Generation Very Large Array NATIONAL RADIO ASTRONOMY OBSERVATORY Fine-Scale Non-Thermal Radio Filaments Throughout the Sagittarius A Complex Fertile grounds for the ngvla M.R. Morris (UCLA), J.-H. Zhao (CfA), W.M. Goss (NRAO) ngvla

More information

arxiv: v1 [astro-ph] 8 Mar 2008

arxiv: v1 [astro-ph] 8 Mar 2008 Complex Chemistry in Star-Forming Regions: An Expanded Gas-Grain Warm-up Chemical Model Robin T. Garrod Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn, 53121, Germany arxiv:0803.1214v1

More information

The Australia Telescope. The Australia Telescope National Facility. Why is it a National Facility? Who uses the AT? Ray Norris CSIRO ATNF

The Australia Telescope. The Australia Telescope National Facility. Why is it a National Facility? Who uses the AT? Ray Norris CSIRO ATNF The Australia Telescope National Facility The Australia Telescope Ray Norris CSIRO ATNF Why is it a National Facility? Funded by the federal government (through CSIRO) Provides radio-astronomical facilities

More information

Herschel Constraints on Ice Formation and Destruction in Protoplanetary Disks

Herschel Constraints on Ice Formation and Destruction in Protoplanetary Disks Herschel Constraints on Ice Formation and Destruction in Protoplanetary Disks Ilse Cleeves, University of Michigan Edwin Bergin, University of Michigan Karin Öberg, Harvard-Smithsonian CfA. Michiel Hogerheijde,

More information

arxiv: v1 [astro-ph] 17 Jul 2008

arxiv: v1 [astro-ph] 17 Jul 2008 Astronomy & Astrophysics manuscript no. mtf-exi-revised-2 c ESO 2018 May 26, 2018 Detection of vibrationally excited methyl formate in W51 e2 K. Demyk 1, G. Wlodarczak 1, and M. Carvajal 2 1 Laboratoire

More information