3 UCM & Gravity Student Physics Regents Date

Size: px
Start display at page:

Download "3 UCM & Gravity Student Physics Regents Date"

Transcription

1 Student Physics Regents Date 1. Which diagram best represents the gravitational forces, Fg, between a satellite, S, and Earth? A) B) 4. Gravitational force exists between point objects and separated by distance. If the mass of is doubled and distance is tripled, what is the new gravitational force between and? A) B) C) C) D) 2. Gravitational forces differ from electrostatic forces in that gravitational forces are A) attractive, only B) repulsive, only C) neither attractive nor repulsive D) both attractive and repulsive 3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. D) 5. The radius of Mars is approximately one-half the radius of Earth, and the mass of Mars is approximately one-tenth the mass of Earth. Compared to the acceleration due to gravity on the surface of Earth, the acceleration due to gravity on the surface of Mars is A) smaller B) larger C) the same What is the magnitude of the gravitational force exerted by ball A on ball B? A) N B) N C) N D) N

2 6. Base your answer to the following question on the information and diagram below. Spacecraft S is traveling from planet P1 toward planet P2 At the position shown, the magnitude of the gravitational force of planet P1 on the spacecraft is equal to the magnitude of the gravitational force of planet P2 on the spacecraft. As the spacecraft moves from the position shown toward planet P2, the ratio of the gravitational force of P2 on the spacecraft to the gravitational force of P1 on the spacecraft will A) decrease B) increase C) remain the same 7. If the Earth were twice as massive as it is now, then the gravitational force between it and the Sun would be A) the same B) twice as great C) half as great D) four times as great 8. Two equal point masses are separated by a distance of 1 meter. If one mass is doubled, the gravitational force between the two masses would be A) one-half as great B) two times greater C) one-fourth as great D) four times greater 9. The weight of a 2.0-kilogram mass on planet A is 40 Newtons. The acceleration due to gravity on planet A is closest to A) 20 m/s 2 B) 2.0 m/s 2 C) 80 m/s 2 D) 40 m/s Two bodies attract each other with a gravitational force of 10.0 Newtons. What will be the force of attraction if the mass of each body is doubled? A) 5 N B) 10 N C) 20 N D) 40 N 11. Base your answer to the following question on the information below. In an experiment, a kilogram rubber stopper is attached to one end of a string. A student whirls the stopper overhead in a horizontal circle with a radius of 1.0 meter. The stopper completes 10. revolutions in 10. seconds. Determine the speed of the whirling stopper.

3 12. Which graph best represents the relationship between the magnitude of the centripetal acceleration and the speed of an object moving in a circle of constant radius? A) 14. Base your answer to the following question on the diagram below which represents a mass of 10.0 kilograms traveling at constant speed of 4. meters per second in a horizontal circular path about point D. B) C) D) If the 10.-kilogram mass is replaced with a greater mass, the centripetal acceleration will A) decrease B) increase C) remain the same 15. Base your answer to the following question on the diagram below. The diagram shows a student spinning a 0.10-kilogram ball at the end of a 0.50-meter string in a horizontal circle at a constant speed of 10. meters per second. [Neglect air resistance.] 13. The diagram below represents a 0.40-kilogram stone attached to a string. The stone is moving at a constant speed of 4.0 meters per second in a horizontal circle having a radius of 0.80 meter. If the magnitude of the force applied to the string by the student's hand is increased, the magnitude of the acceleration of the ball in its circular path will A) decrease B) increase C) remain the same The magnitude of the centripetal acceleration of the stone is A) 0.0 m/s 2 B) 2.0 m/s 2 C) 5.0 m/s 2 D) 20. m/s 2

4 16. Base your answer to the following question on the information and diagram below. A 60.-kilogram adult and a 30.-kilogram child are passengers on a rotor ride at an amusement park. When the rotating hollow cylinder reaches a certain constant speed, v, the floor moves downward. Both passengers stay "pinned" against the wall of the rotor, as shown in the diagram below. 18. Base your answer to the following question on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal circle of radius meters, at a constant speed of meters per second. The floor is lowered and the student remains against the wall without falling to the floor. Compared to the magnitude of the acceleration of the adult, the magnitude of the acceleration of the child is A) less B) greater C) the same 17. Base your answer to the following question on the diagram below which represents a ball of mass M attached to a string. The ball moves at a constant speed around a flat horizontal circle of radius R. Which vector best represents the direction of the centripetal acceleration of the student at point A. A) B) C) D) If the string is shortened while the speed of the ball remains the same, the centripetal acceleration will A) decrease B) increase C) remain the same

5 19. Base your answer to the following question on the information and diagram below. The diagram shows a student seated on a rotating circular platform, holding a 2.0-kilogram block with a spring scale. The block is 1.2 meters from the center of the platform. The block has a constant speed of 8.0 meters per second. [Frictional forces on the block are negligible.] 21. Centripetal force Fc acts on a car going around a curve. If the speed of the car were twice as great, the magnitude of the centripetal force necessary to keep the car moving in the same path would be A) B) C) D) 22. The diagram below shows a 5.0-kilogram bucket of water being swung in a horizontal circle of-meter radius at a constant speed of 2.0 meters per second. The reading on the spring scale is approximately A) 20. N B) 53 N C) 110 N D) 130 N 20. Base your answer to the following question on the diagram below which represents a 5.0-kilogram object revolving around a circular track in a horizontal plane at a constant speed. The radius of the track is 20. meters and the centripetal force on the object is Newtons. The magnitude of the centripetal force on the bucket of water is approximately A) 5.7 N B) 14 N C) 29 N D) 200 N In the position shown, the object's centripetal acceleration is directed toward point A) A B) B C) C D) D

6 23. Base your answer to the following question on the information and diagram below. A 1200-kilogram car traveling at a constant speed of 9.0 meters per second turns at an intersection. The car follows a horizontal circular path with a radius of 25 meters to point P. 24. Base your answer to the following question on the diagram below which represents an object M suspended by a string from point P. When object M is swung to a height of h and released, it passes through the rest position at a speed of 10 meters per second. The magnitude of the centripetal force acting on the car as it travels around the circular path is approximately A) N B) N C) N D) N The centripetal force on object M could be halved as it passes through the rest position by doubling the A) weight of the object, only B) length of the string, only C) height h and the weight of the object D) the length of the string and the height h 25. A ball attached to a string is moved at constant speed in a horizontal circular path. A target is located near the path of the ball as shown in the diagram. At which point along the ball's path should the string be released, if the ball is to hit the target? A) A B) B C) C D) D

7 Base your answers to questions 26 and 27 on the information and diagram below. An athlete in a hammer-throw event swings a 7.0-kilogram hammer in a horizontal circle at a constant speed of 12 meter per second. The radius of the hammer's path is 2.0 meters 28. Base your answer to the following question on the diagram below which represents a satellite in an elliptical orbit about the Earth. The highest point, A, is four Earth radii ( ) from the center of the Earth. The lowest point, B, is two Earth radii ( ) from the center of the Earth. The mass of the satellite is kilograms. 26. What is the magnitude of the centripetal acceleration of the hammer? A) 6.0 m/s 2 B) 24 m/s 2 C) 72 m/s 2 D) 500 m/s If the hammer is released at the position shown, it will travel toward point A) A B) B C) C D) D Which vector represents the direction of the satellite's velocity at A? A) B) C) D) 29. A plane flying horizontally above Earth s surface at 100. meters per second drops a crate. The crate strikes the ground 30.0 seconds later. What is the magnitude of the horizontal component of the crate s velocity just before it strikes the ground? [Neglect friction.] A) 0 m/s B) 100. m/s C) 294 m/s D) 394 m/s

8 30. In the diagram below, a stationary observer on the ground watches as a seagull flying horizontally to the right drops a clamshell. 31. The diagram below shows the muzzle of a cannon located 50. meters above the ground. When the cannon is fired, a ball leaves the muzzle with an initial horizontal speed of 250. meters per second. [Neglect air resistance.] Which diagram best represents the path of the falling clamshell as seen by the observer? [Neglect air resistance.] A) B) Which action would most likely increase the time of flight of a ball fired by the cannon? A) pointing the muzzle of the cannon toward the ground B) moving the cannon closer to the edge of the cliff C) positioning the cannon higher above the ground D) giving the ball a greater initial horizontal velocity C) D)

9 32. Base your answer to the following question on the information and diagram below. A student standing on a knoll throws a snowball horizontally 4.5 meters above the level ground toward a smokestack 15 meters away. The snowball hits the smokestack 0.65 second after being released. [Neglect air resistance.] At the instant the snowball is released, the horizontal component of its velocity is approximately A) 6.9 m/s B) 9.8 m/s C) 17 m/s D) 23 m/s 33. The diagram below represents the path of an object after it was thrown. What happens to the object's acceleration as it travels from A to B? [Neglect friction.] A) It decreases. B) It increases. C) It remains the same. 34. Base your answer to the following question on the information and diagram below. A child kicks a ball with an initial velocity of 8.5 meters per second at an angle of 35 with the horizontal, as shown. The ball has an initial vertical velocity of 4.9 meters per second and a total time of flight of 1.0 second. [Neglect air resistance.] The horizontal component of the ball's initial velocity is approximately A) 3.6 m/s B) 7.0 m/s C) 4.9 m/s D) 13 m/s

10 35. A 2-kilogram block is dropped from the roof of a tall building at the same time a 6-kilogram ball is thrown horizontally from the same height. Which statement best describes the motion of the block and the motion of the ball? [Neglect air resistance.] A) The 2-kg block hits the ground first because it has no horizontal velocity. B) The 6-kg ball hits the ground first because it has more mass. C) The 6-kg ball hits the ground first because it is round. D) The block and the ball hit the ground at the same time because they have the same vertical acceleration. 36. Base your answer to the following question on the following information. In the diagram below, a 10.-kilogram sphere, A, is projected horizontally with a velocity of 30. meters per second due east from a height of 20. meters above level ground. At the same instant, a 20.-kilogram sphere, B, is projected horizontally with a velocity of 10. meters per second due west from a height of 80. meters above level ground. [Neglect air friction.] 37. Base your answer to the following question on the diagram below which shows a ball projected horizontally with an initial velocity of 20. meters per second east, off a cliff 100. meters high. [Neglect air resistance.] During the flight of the ball, what is the direction of its acceleration? A) downward B) upward C) westward D) eastward 38. Base your answer to the following question on the information below. A ball is projected vertically upward from the surface of the Earth with an initial speed of +49 meters per second. The ball reaches its maximum height in 5.0 seconds. (Disregard air resistance.) Which graph best represents the relationship between velocity and time for the motion of the ball? A) B) C) D) Compared to the vertical acceleration of sphere A, the vertical acceleration of sphere B is A) the same B) twice as great C) one-half as great D) four times as great

11 39. Base your answer to the following question on the information below. 3 UCM & Gravity A 28-gram rubber stopper is attached to a string and whirled clockwise in a horizontal circle with a radius of 0.80 meter. The diagram below represents the motion of the rubber stopper. The stopper maintains a constant speed of 2.5 meters per second. On the diagram above, draw an arrow showing the direction of the centripetal force acting on the stopper when it is at the position shown. Base your answers to questions 40 through 42 on the information below. A kicked soccer ball has an initial velocity of 25 meters per second at an angle of 40º above the horizontal, level ground. [Neglect friction.] 40. On the diagram below, sketch the path of the ball s flight from its initial position at point P until it returns to level ground. 42. Calculate the magnitude of the vertical component of the ball s initial velocity [Show all work, including the equation and substitution with units.] 41. Calculate the maximum height the ball reaches above its initial position. [Show all work, including the equation and substitution with units.]

12 Base your answers to questions 43 and 44 on the passage and data table below. 3 UCM & Gravity The net force on a planet is due primarily to the other planets and the Sun. By taking into account all the forces acting on a planet, investigators calculated the orbit of each planet. A small discrepancy between the calculated orbit and the observed orbit of the planet Uranus was noted. It appeared that the sum of the forces on Uranus did not equal its mass times its acceleration, unless there was another force on the planet that was not included in the calculation. Assuming that this force was exerted by an unobserved planet, two scientists working independently calculated where this unknown planet must be in order to account for the discrepancy. Astronomers pointed their telescopes in the predicted direction and found the planet we now call Neptune. 43. The magnitude of the force the Sun exerts on Uranus is newtons. Explain how it is possible for the Sun to exert a greater force on Uranus than Neptune exerts on Uranus. 44. The diagram represents Neptune, Uranus, and the Sun in a straight line. Neptune is meters from Uranus. Calculate the magnitude of the interplanetary force of attraction between Uranus and Neptune at this point. [Show all work, including the equation and substitution with units.] Base your answers to questions 45 and 46 on the information below and on your knowledge of physics. Pluto orbits the Sun at an average distance of meters. Pluto's diameter is meters and its mass is kilograms. Charon orbits Pluto with their centers separated by a distance of meters. Charon has a diameter of meters and a mass of kilograms. 45. State the reason why the magnitude of the Sun s gravitational force on Pluto is greater than the magnitude of the Sun s gravitational force on Charon. 46. Calculate the magnitude of the acceleration of Charon toward Pluto. [Show all work, including the equation and substitution with units.]

13 47. A car travels at constant speed around a section of horizontal, circular track. On the diagram below, draw an arrow at point P to represent the direction of the centripetal acceleration of the car when it is at point P. 48. Calculate the magnitude of the centripetal force acting on Earth as it orbits the Sun, assuming a circular orbit and an orbital speed of meters per second. [Show all work, including the equation and substitution with units.] 49. Base your answer to the following question on the information below. Io (pronounced EYE oh ) is one of Jupiter s moons discovered by Galileo. Io is slightly larger than Earth s Moon. The mass of Io is kilograms and the mass of Jupiter is kilograms. The distance between the centers of Io and Jupiter is meters. Calculate the magnitude of the gravitational force of attraction that Jupiter exerts on Io. [Show all work, including the equation and substitution with units.] Base your answers to questions 50 and 51 on the information below. A projectile is launched into the air with an initial speed of vi at a launch angle of 30. above the horizontal. The projectile lands on the ground 2.0 seconds later. 50. How does the total horizontal distance traveled by the projectile change as the launch angle is increased from 30. to 45 above the horizontal? [Assume the same initial speed, vi.] 51. How does the maximum altitude of the projectile change as the launch angle is increased from 30. to 45 above the horizontal? [Assume the same initial speed, vi.]

14 52. Base your answer to the following question on the information and diagram below. A projectile is launched horizontally at a speed of meters per second from a platform located a vertical distance above the ground. The projectile strikes the ground after time at horizontal distance from the base of the platform. [Neglect friction.] Base your answers to questions 53 through 55 on the information below. The combined mass of a race car and its driver is 600. kilograms. Traveling at constant speed, the car completes one lap around a circular track of radius 160 meters in 36 seconds. 53. Calculate the magnitude of the centripetal acceleration of the car. Express the projectile's total time of flight,, in terms of the vertical distance,, and the acceleration due to gravity,. [Write an appropriate equation and solve it for.] 54. On the diagram above, draw an arrow to represent the direction of the net force acting on the car when it is in position A. 55. Calculate the speed of the car.

15 Answer Key 3 UCM & Gravity Rev 1. C 2. A 3. C 4. A 5. A 6. B 7. B 8. B 9. A 10. D m/s 12. B 13. D 14. C 15. B 16. C 17. B 18. A 19. C 20. D 21. D 22. C 23. C 24. B 25. B 26. C 27. B 28. C 29. B 30. D 31. C 32. D 33. C 34. B 35. D 36. A 37. A 38. D m m/s 43. The sun is larger in mass. 44. F = Gm1m 2 r 2 F = ( N m 2 /kg 2 )( kg)( kg) ( m) 2 F = N 45. Pluto has a greater mass than Charon or The total horizontal distance will increase. 51. The projectile s maximum altitude will increase ac = 4.9 m/s m/s or 27.9 m/s

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass. Name: ate: 1. The graph given shows the weight of three objects on planet X as a function of their mass. 3. If the circular track were to suddenly become frictionless at the instant shown in the diagram,

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below.

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65-kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Chapter 6 Motion in Two Dimensions

Chapter 6 Motion in Two Dimensions Conceptual Physics/ PEP Name: Date: Chapter 6 Motion in Two Dimensions Section Review 6.1 1. What is the word for the horizontal distance a projectile travels? 2. What does it mean to say a projectile

More information

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

More information

Circular Motion Class:

Circular Motion Class: Circular Motion Class: Name: Date: 1. What is the magnitude of the centripetal acceleration of a 4-kilogram mass orbiting at 10 meters per second with a radius of 2 meters? (1) 5 m/sec 2 (2) 50 m/sec 2

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

Circular Motion & Gravitation MC Question Database

Circular Motion & Gravitation MC Question Database (Questions #4,5,6,27,37,38,42 and 58 each have TWO correct answers.) 1) A record player has four coins at different distances from the center of rotation. Coin A is 1 cm away, Coin B is 2 cm away. Coin

More information

3.The wrecking crane shown is moving toward a brick wall that is to be torn down.

3.The wrecking crane shown is moving toward a brick wall that is to be torn down. Test Name: Physics Practice Test Section 1 1.Which of the following best classifies a material that has extremely low conductivity? 1. A. semiconductor B. insulator C. metalloid D. conductor 2.Which of

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

Name St. Mary's HS AP Physics Circular Motion HW

Name St. Mary's HS AP Physics Circular Motion HW Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

Circular Motion and Gravitation Practice Test Provincial Questions

Circular Motion and Gravitation Practice Test Provincial Questions Circular Motion and Gravitation Practice Test Provincial Questions 1. A 1 200 kg car is traveling at 25 m s on a horizontal surface in a circular path of radius 85 m. What is the net force acting on this

More information

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0 PHYSICS 5 TEST 2 REVIEW 1. A car slows down as it travels from point A to B as it approaches an S curve shown to the right. It then travels at constant speed through the turn from point B to C. Select

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

Circular Motion PreTest

Circular Motion PreTest Circular Motion PreTest Date: 06/03/2008 Version #: 0 Name: 1. In a series of test runs, a car travels around the same circular track at different velocities. Which graph best shows the relationship between

More information

CIRCULAR MOTION AND UNIVERSAL GRAVITATION

CIRCULAR MOTION AND UNIVERSAL GRAVITATION CIRCULAR MOTION AND UNIVERSAL GRAVITATION Uniform Circular Motion What holds an object in a circular path? A force. String Friction Gravity What happens when the force is diminished? Object flies off in

More information

AP Physics C Summer Assignment Kinematics

AP Physics C Summer Assignment Kinematics AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Physics Test Review: Mechanics Session: Name:

Physics Test Review: Mechanics Session: Name: Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below

More information

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes 1. Use Law of Universal Gravitation to solve problems involving different masses. 2. Determine changes in gravitational and kinetic

More information

PH201 Chapter 6 Solutions

PH201 Chapter 6 Solutions PH201 Chapter 6 Solutions 6.2. Set Up: Since the stone travels in a circular path, its acceleration is directed toward the center of the circle. The only horizontal force on the stone is the tension of

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

B) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25

B) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25 1. 3. A ball attached to a string is whirled around a horizontal circle of radius r with a tangential velocity v. If the radius is changed to 2r and the magnitude of the centripetal force is doubled the

More information

Multiple Choice Portion

Multiple Choice Portion Unit 5: Circular Motion and Gravitation Please Note that the gravitational potential energy questions are located in Unit 4 (Energy etc.) Multiple Choice Portion 1. What is the centripetal acceleration

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

ΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem!

ΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem! PHYSICS HOMEWORK #31 SECOND LAW ΣF=ma NEWTON S LAWS Newton s Second Law of Motion The acceleration of an object is directly proportional to the force applied, inversely proportional to the mass of the

More information

LAHS Physics Semester 1 Final Practice Multiple Choice

LAHS Physics Semester 1 Final Practice Multiple Choice LAHS Physics Semester 1 Final Practice Multiple Choice The following Multiple Choice problems are practice MC for the final. Some or none of these problems may appear on the real exam. Answers are provided

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

St. Mary's H.S. Physics. Midterm Review

St. Mary's H.S. Physics. Midterm Review Name Midterm Review St. Mary's H.S. Physics 1. If a car accelerates uniformly from rest to 15 meters per second over a distance of 100. meters, the magnitude of the car s acceleration is A) 0.15 m/s 2

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW:

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW: Assignment - Periodic Motion Reading: Giancoli, Chapter 5 Holt, Chapter 7 Objectives/HW: The student will be able to: 1 Define and calculate period and frequency. 2 Apply the concepts of position, distance,

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the

Proficient. a. The gravitational field caused by a. The student is able to approximate a numerical value of the Unit 6. Circular Motion and Gravitation Name: I have not failed. I've just found 10,000 ways that won't work.-- Thomas Edison Big Idea 1: Objects and systems have properties such as mass and charge. Systems

More information

Forces Review. A. less than the magnitude of the rock s weight, but greater than zero A. 0 B. 45 C. 90. D. 180.

Forces Review. A. less than the magnitude of the rock s weight, but greater than zero A. 0 B. 45 C. 90. D. 180. Name: ate: 1. Two 20.-newton forces act concurrently on an object. What angle between these forces will produce a resultant force with the greatest magnitude?. 0 B. 45 C. 90.. 180. 5. rock is thrown straight

More information

Circular Motion & Gravitation FR Practice Problems

Circular Motion & Gravitation FR Practice Problems 1) A mass m is attached to a length L of string and hung straight strainght down from a pivot. Small vibrations at the pivot set the mass into circular motion, with the string making an angle θ with the

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN 2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN Topics: Forces Motion Momentum Gravity Electrostatics DATE: TIME: ROOM: PROCTOR: YOU ARE REQUIRED TO BRING: 1. CALCULATOR (YOUR OWN NO SHARING) 2. PENCIL

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 5 Dynamics of Uniform Circular Motion Interactive Lecture Questions 5.1.1. An airplane flying at 115 m/s due east makes a gradual turn

More information

Slide 1 / A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km

Slide 1 / A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km Slide 1 / 96 1 train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km Slide 2 / 96 2 bicyclist moves at a constant speed of 6 m/s. How long it will

More information

Midterm Review. January 07, Grade:«11-12» Subject:Honors Physics. Date:«1/7-1/8 2015»

Midterm Review. January 07, Grade:«11-12» Subject:Honors Physics. Date:«1/7-1/8 2015» Midterm Review 1 train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? Grade:«11-12» Subject:Honors Physics ate:«1/7-1/8 2015» 10 km 22.5 km 25 km 45 km 50 km 2 bicyclist moves

More information

SAPTARSHI CLASSES PVT. LTD.

SAPTARSHI CLASSES PVT. LTD. SAPTARSHI CLASSES PVT. LTD. NEET/JEE Date : 13/05/2017 TEST ID: 120517 Time : 02:00:00 Hrs. PHYSICS, Chem Marks : 360 Phy : Circular Motion, Gravitation, Che : Halogen Derivatives Of Alkanes Single Correct

More information

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

More information

DEVIL CHAPTER 6 TEST REVIEW

DEVIL CHAPTER 6 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 51 DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 6 TEST REVIEW 1. A cyclist rides around a circular track at a uniform speed. Which of the following correctly gives

More information

TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB

TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB TYPICAL NUMERIC QUESTIONS FOR PHYSICS I REGULAR QUESTIONS TAKEN FROM CUTNELL AND JOHNSON CIRCULAR MOTION CONTENT STANDARD IB 1. A car traveling at 20 m/s rounds a curve so that its centripetal acceleration

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

D. 2πmv 2 (Total 1 mark)

D. 2πmv 2 (Total 1 mark) 1. A particle of mass m is moving with constant speed v in uniform circular motion. What is the total work done by the centripetal force during one revolution? A. Zero B. 2 mv 2 C. mv 2 D. 2πmv 2 2. A

More information

For each of the following questions, give clear and complete evidence for your choice in the space provided.

For each of the following questions, give clear and complete evidence for your choice in the space provided. Name (printed) First Day Stamp For each of the following questions, give clear and complete evidence for your choice in the space provided. 1. An astronomer observes that a certain heavenly body is moving

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Chapter 5 Review : Circular Motion; Gravitation

Chapter 5 Review : Circular Motion; Gravitation Chapter 5 Review : Circular Motion; Gravitation Conceptual Questions 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration

More information

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion Section 1 Circular Motion Preview Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System Section 1 Circular Motion Objectives Solve problems involving centripetal

More information

AP Physics Daily Problem #31

AP Physics Daily Problem #31 AP Physics Daily Problem #31 A 10kg mass is whirled around on the end of a 3m long cord. The speed of the mass is 7m/s. Ignore gravitational forces. 3.0m 7.0m/s Draw a free body diagram of the mass. (hint:

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

AP Physics QUIZ Gravitation

AP Physics QUIZ Gravitation AP Physics QUIZ Gravitation Name: 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Circular Motion 1

Circular Motion 1 --------------------------------------------------------------------------------------------------- Circular Motion 1 ---------------------------------------------------------------------------------------------------

More information

Full file at

Full file at Section 3-1 Constructing Complex Motions from Simple Motion *1. In Figure 3-1, the motion of a spinning wheel (W) that itself revolves in a circle is shown. Which of the following would not be represented

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

More examples: Summary of previous lecture

More examples: Summary of previous lecture More examples: 3 N Individual Forces Net Force 5 N 37 o 4 N Summary of previous lecture 1 st Law A net non zero force is required to change the velocity of an object. nd Law What happens when there is

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph. Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Honors Assignment - Circular and Periodic Motion

Honors Assignment - Circular and Periodic Motion Honors Assignment - Circular and Periodic Motion Reading: Chapter 5, and 11 1 through 11 5 Objectives/HW: Assignment #1 M: # 1 6 Assignment #2 M: # 7 15 Assignment #3 Text: Chap 5 # 6, 12 M: # 17 22 Assignment

More information

PSI AP Physics B Circular Motion

PSI AP Physics B Circular Motion PSI AP Physics B Circular Motion Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

1. What three dimensions are used to derive most measurements in physics?

1. What three dimensions are used to derive most measurements in physics? Physics Semester 1 Exam Review Unit 1: Measurement What is the SI unit for length, mass, and time? When are zeros significant figures? When are zeros not significant figures? When are calculations rounded-off

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

More information

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D)

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D) A 1500 kg car travels at a constant speed of 22 m/s around a circular track which has a radius of 80 m. Which statement is true concerning this car? A) The velocity of the car is changing. B) The car is

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant

More information

Multiple Choice (A) (B) (C) (D)

Multiple Choice (A) (B) (C) (D) Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions are: (A) (B) (C) (D) 2.

More information

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown?

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown? Physics hristmas reak Packet w/ nswers 2018 Name: ate: 1. Which vector below represents the resultant of the two displacement vectors shown? 4. The accompanying diagram represents a block sliding down

More information

Physics12 Exam Review Questions

Physics12 Exam Review Questions Physics12 Exam Review Questions 1) You are making a circular turn in your car on a horizontal road when you hit a big patch of ice, causing the force of friction between the tires and the road to become

More information

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. 1. Which statement describes the gravitational force and the electrostatic force between two charged particles? A) The gravitational force may be either attractive or repulsive, whereas the electrostatic

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

IB PHYSICS SL SEMESTER 1 FINAL REVIEW

IB PHYSICS SL SEMESTER 1 FINAL REVIEW Class: Date: IB PHYSICS SL SEMESTER 1 FINAL REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A rocket is fired vertically. At its highest point,

More information

Circular Velocity and Centripetal Acceleration

Circular Velocity and Centripetal Acceleration 1. An object is spun around in circular motion such that it completes 100 cycles in 25 s. a. What is the period of its rotation? [0.25 s] b. If the radius is 0.3 m what is the velocity? [7.54 m/s] c. Draw

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

2016 PHYSICS FINAL REVIEW PACKET

2016 PHYSICS FINAL REVIEW PACKET 2016 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN CHAPTER TOPIC # OF QUESTIONS 6 CONSERVATION OF ENERGY 22 7 MOMENTUM/COLLISIONS 17 5 CIRCULAR MOTION GRAVITY/SATELLITE MOTION 30 11 WAVES 24 - ELECTROMAGNETISM/MISC./LABS

More information

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached. 1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Circular Motion. 2 types of Acceleration. Centripetal Force and Acceleration. In a circle. Constant Velocity vs. Constant Speed.

Circular Motion. 2 types of Acceleration. Centripetal Force and Acceleration. In a circle. Constant Velocity vs. Constant Speed. Circular Motion What does it mean to accelerate Centripetal Force and Acceleration Constant Velocity vs. Constant Speed. 2 types of Acceleration In a circle Direction of acceleration / velocity top view

More information

Rotational Motion and the Law of Gravity 1

Rotational Motion and the Law of Gravity 1 Rotational Motion and the Law of Gravity 1 Linear motion is described by position, velocity, and acceleration. Circular motion repeats itself in circles around the axis of rotation Ex. Planets in orbit,

More information