Post Activity/ Homework Questions: 1. Before a star forms A. Where do you think the gas and dust originally came from?
|
|
- Cynthia Martha Johns
- 4 years ago
- Views:
Transcription
1 Critical Thinking Questions: (work on these with a partner) 1. During the formation of a Red Giant Star, the core of a star pushes the outer shell back only enough to make the star larger. However, during the formation of a planetary nebula, the outer shell of a star gets pushed way out into the solar system. Explain how and why you think this difference is caused. In other words, explain how and why the outer shell is pushed out a little bit vs. pushed out far away. Post Activity/ Homework Questions: 1. Before a star forms A. Where do you think the gas and dust originally came from? 2. Protostars & Main Sequence Stars A. Why is a protostar not classified as an actual star? & what needs to occur for a star to transform from a Protostar to an actual star? B. Why is our sun classified as a Main Sequence Star? C. Describe what needs to happen to our sun for it to transform into a Red Giant. & Will this happen to our Sun? When? 2. Average sized stars like our Sun do not explode as supernova, but super-massive stars do. Both types of stars undergo nuclear fusion and have an outer shell influenced by gravity. Explain why a star like our Sun will not go supernova, but a super-massive star will. Explain your answer describing the processes of nuclear fusion and gravitational force. D. Complete the following Venn Diagram Protostars? How are both Similar? Actual Stars 3. Stars do not have enough energy to fuse elements heavier than iron. If this is true, how and why are elements that are heavier than iron created? 3. Red Giant vs. White Dwarf Star Complete the Venn Diagram: What is Unique How are both What is Unique during the formation formations Similar? of Red Giants during the formation of a White Dwarf 4. Once you figured out question #3, identify how the following elements were created: Element How was it created Oxygen Gold Carbon Lead 4. Planetary Nebula & New Stars A. Use the Internet to research the reason why Planetary Nebula's a are named so, even though they have nothing to do with planets B. Describe the process that would need to take place for a planetary nebula to form a whole new star.
2 \/ SCROLL DOWN FOR KEY \/
3 SCROLL DOWN FOR KEY \/
4 Critical Thinking Questions: (work on these with a partner) 1. During the formation of a Red Giant Star, the core of a star pushes the outer shell back only enough to make the star larger. However, during the formation of a planetary nebula, the outer shell of a star gets pushed way out into the solar system. Explain how and why you think this difference is caused. In other words, explain how and why the outer shell is pushed out a little bit vs. pushed out far away. During Red Giant formation, the core fuses a new element (Helium) and the star restabilizes. Once Helium runs out, fusion can't continue in the core and gravity is the only force left. The core can't balance the shell anymore and kicks it away one last time. 2. Average sized stars like our Sun do not explode as supernova, but super-massive stars do. Both types of stars undergo nuclear fusion and have an outer shell influenced by gravity. Explain why a star like our Sun will not go supernova, but a super-massive star will. Explain your answer describing the processes of nuclear fusion and gravitational force. Post Activity/ Homework Questions: 1. Before a star forms A. Where do you think the gas and dust originally came from? The Big Bang 2. Protostars & Main Sequence Stars A. Why is a protostar not classified as an actual star? & what needs to occur for a star to transform from a Protostar to an actual star? A protostar is not an actual star because fusion doesn't occur. To become an actual star, nuclear fusion needs to occur. B. Why is our sun classified as a Main Sequence Star? The force of fusion in the core is balanced with the shells gravity C. Describe what needs to happen to our sun for it to transform into a Red Giant. & Will this happen to our Sun? When? Our sun needs to run out of hydrogen and begin fusing helium This will happen to our sun in 5 billion years D. Complete the following Venn Diagram Protostars? How are both Similar? Nuclear Fusion does not occur It does not create & give off light They both contain gas and dust They both have a core and an outer shell Actual Stars Nuclear fusion occurs It creates & gives off light Because a super-massive star has more mass, it has a larger fusion force and gravitational force. When fusion stops in the core of a super-massive star, the gravitational force is so strong on the core, that the star explodes. 3. Stars do not have enough energy to fuse elements heavier than iron. If this is true, how and why are elements that are heavier than iron created? The explosion of a supernova gives off a lot more energy to fuse heavier elements 4. Once you figured out question #3, identify how the following elements were created: Element How was it created Oxygen Gold Carbon Lead 3. Red Giant vs. White Dwarf Star Complete the Venn Diagram: What is Unique How are both What is Unique during the formation formations Similar? of Red Giants during the formation of a White Dwarf The star begins by fusing hydrogen & ends by fusing helium The outer shell remains held to the star Both formations begin by fusing something. Both involve the core pushing the outer shell of the star The star begins by fusing helium & ends by not fusing anything at all. The outer shell doesn't remain held to the star 4. Planetary Nebula & New Stars A. Use the Internet to research the reason why Planetary Nebula's a are named so, even though they have nothing to do with planets B. Describe the process that would need to take place for a planetary nebula to form a whole new star.
5
6
7
Life Cycle of a Star Worksheet
Life Cycle of a Star Worksheet A STAR IS BORN STAGES COMMON TO ALL STARS All stars start as a nebula. A nebula is a large cloud of gas and dust. Gravity can pull some of the gas and dust in a nebula together.
The Life Cycle of Stars. : Is the current theory of how our Solar System formed.
Life Cycle of a Star Video (5 min) http://www.youtube.com/watch?v=pm9cqdlqi0a The Life Cycle of Stars Solar Nebula Theory : Is the current theory of how our Solar System formed. This theory states that
Life Cycle of a Star - Activities
Name: Class Period: Life Cycle of a Star - Activities A STAR IS BORN STAGES COMMON TO ALL STARS All stars start as a nebula. A nebula is a large cloud of gas and dust. Gravity can pull some of the gas
Life of a Star. Pillars of Creation
Life of a Star Life of a Star Pillars of Creation Life of a Star Pillars of Creation Stars form from massive clouds of gas that primarily consist of hydrogen. Life of a Star Gravity causes gas to contract
They developed a graph, called the H-R diagram, that relates the temperature of a star to its absolute magnitude.
Ejnar Hertzsprung and Henry Russell noticed that stars with higher temperatures and large sizes also have brighter absolute magnitudes the actual amount of light given off by a star. (also referred to
Stellar Evolution Notes
Name: Block: Stellar Evolution Notes Stars mature, grow old and die. The more massive a star is, the shorter its life will be. Our Sun will live about 10 billion years. It is already 5 billion years old,
Ch. 29 The Stars Stellar Evolution
Ch. 29 The Stars 29.3 Stellar Evolution Basic Structure of Stars Mass effects The more massive a star is, the greater the gravity pressing inward, and the hotter and more dense the star must be inside
Reading and Announcements. Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28
Reading and Announcements Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28 The life of the Sun The Sun started as a cloud of gas. Gravity caused the cloud to collapse.
21/11/ /11/2017 Space Physics AQA Physics topic 8
Space Physics AQA Physics topic 8 8.1 Solar System, Orbits and Satellites The eight planets of our Solar System Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune As well as the eight planets, the
Low-mass Stellar Evolution
Low-mass Stellar Evolution The lives of low-mass stars And the lives of massive stars The Structure of the Sun Let s review: The Sun is held together by? The inward force is balanced by? Thinking about
Stars. The composition of the star It s temperature It s lifespan
Stars Stars A star is a ball of different elements in the form of gases The elements and gases give off electromagnetic radiation (from nuclear fusion) in the form of light Scientists study the light coming
What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?
Stars What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth? Answer: The SUN It s about 150,000,000 km from earth =
Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium
Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes
GraspIT Questions AQA GCSE Physics Space physics
A. Solar system: stability of orbital motions; satellites (physics only) 1. Put these astronomical objects in order of size from largest to smallest. (3) Fill in the boxes in the correct order. the Moon
*Generally speaking, there are two main life cycles for stars. *The factor which determines the life cycle of the star is its mass.
Generally speaking, there are two main life cycles for stars. The factor which determines the life cycle of the star is its mass. 1 solar mass = size of our Sun Any star less than about three solar masses
Star Formation A cloud of gas and dust, called a nebula, begins spinning & heating up. Eventually, it gets hot enough for fusion to take place, and a
Stars Star- large ball of gas held together by gravity that produces tremendous amounts of energy and shines Sun- our closest star Star Formation A cloud of gas and dust, called a nebula, begins spinning
17.3 Life as a High-Mass Star
17.3 Life as a High-Mass Star Our goals for learning: What are the life stages of a high-mass star? How do high-mass stars make the elements necessary for life? How does a high-mass star die? What are
Abundance of Elements. Relative abundance of elements in the Solar System
Abundance of Elements Relative abundance of elements in the Solar System What is the origin of elements in the universe? Three elements formed in the first minutes after the big bang (hydrogen, helium
Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)
Chapter 12 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) As a main-sequence star, the Sun's hydrogen supply should last about 10 billion years from the zero-age
Birth & Death of Stars
Birth & Death of Stars Objectives How are stars formed How do they die How do we measure this The Interstellar Medium (ISM) Vast clouds of gas & dust lie between stars Diffuse hydrogen clouds: dozens of
Stars and their properties: (Chapters 11 and 12)
Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using
Daily Science 03/30/2017
Daily Science 03/30/2017 The atmospheres of different planets contain different gases. Which planet is most likely Earth? a. planet 1 b. planet 2 c. planet 3 d. planet 4 KeslerScience.com Can you name
Page 2. Q1. The diagram shows part of the life cycle of a star which is much bigger than the Sun.
Q1. The diagram shows part of the life cycle of a star which is much bigger than the Sun. (a) (i) What is the relationship between the masses of the dust and gas in the cloud in Stage 2 and the force of
Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1
Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro 110-01 Lecture 25 1 12.3 Life as a High-Mass Star Learning Goals What are the life stages of a
Review: HR Diagram. Label A, B, C respectively
Stellar Evolution Review: HR Diagram Label A, B, C respectively A C B a) A: White dwarfs, B: Giants, C: Main sequence b) A: Main sequence, B: Giants, C: White dwarfs c) A: Main sequence, B: White Dwarfs,
SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES
SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES Q1. The figure below shows what scientists over 1000 years ago thought the solar system was like. Give one way that the historical model of the solar
The Formation of Stars
The Formation of Stars A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful objects in the sky. We are interested
Stars and Galaxies. Evolution of Stars
Stars and Galaxies Evolution of Stars What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement
Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium
Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes
LIFE CYCLE OF A STAR
LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,
1. Star: A object made of gas found in outer space that radiates.
1. Star: A object made of gas found in outer space that radiates. 2. Stars produce extremely great quantities of energy through the process of. The chemical formula for nuclear fusion looks like this:
A Star Becomes a Star
A Star Becomes a Star October 28, 2002 1) Stellar lifetime 2) Red Giant 3) White Dwarf 4) Supernova 5) More massive stars Review Solar winds/sunspots Gases and Dust Molecular clouds Protostars/Birth of
Life and Death of a Star. Chapters 20 and 21
Life and Death of a Star Chapters 20 and 21 90 % of a stars life Most stars spend most of their lives on the main sequence. A star like the Sun, for example, after spending a few tens of millions of years
Stellar Evolution and the HertzsprungRussell Diagram 7/14/09. Astronomy 101
Stellar Evolution and the HertzsprungRussell Diagram 7/14/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Outline for Today Astronomy Picture of the Day News Articles Business Return Lab 5
Stellar Astronomy Sample Questions for Exam 4
Stellar Astronomy Sample Questions for Exam 4 Chapter 15 1. Emission nebulas emit light because a) they absorb high energy radiation (mostly UV) from nearby bright hot stars and re-emit it in visible wavelengths.
Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.
Chapter 17 Lecture The Cosmic Perspective Seventh Edition Star Stuff Star Stuff 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect
Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23
Midterm Exam #2 Tuesday, March 23 Outline - March 18, 2010 Closed book Will cover Lecture 8 (Special Relativity) through Lecture 14 (Star Formation) only If a topic is in the book, but was not covered
Astronomy 104: Stellar Astronomy
Astronomy 104: Stellar Astronomy Lecture 18: A High-Mass Star s Life and Death (a.k.a. - Things that go BOOM in the night) Spring Semester 2013 Dr. Matt Craig 1 1 Reading Today: Chapter 12.1 (Life and
CONTENT EXPECTATIONS
THE SUN & THE STARS CONTENT EXPECTATIONS STARS What are stars? Are they all the same? What makes them different? What is our nearest star? THE SUN Why is it important? provides heat and light that we need
Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence
Lecture 9: Post-main sequence evolution of stars Lifetime on the main sequence Shell burning and the red giant phase Helium burning - the horizontal branch and the asymptotic giant branch The death of
What You Should Know About Stars With Less Than 8 Solar Masses!
What You Should Know About Stars With Less Than 8 Solar Masses! 1.) That is, what basic characteristic makes a star a star? (fusion is happening in its core) 2.) How long will it take a small star to run
December 18, What do you know about the life of a star?
December 18, 2013 What do you know about the life of a star? Bellwork December 18, 2014 What determines the life cycle and life time of a star? Scale 4 3 2 1 0 I am a 3 and can apply the stages to the
Age of M13: 14 billion years. Mass of stars leaving the main-sequence ~0.8 solar masses
Age of M13: 14 billion years. Mass of stars leaving the main-sequence ~0.8 solar masses Helium coreburning stars Giants Subgiants Main Sequence Here is a way to think about it. Outside of star Plenty of
Why Do Stars Leave the Main Sequence? Running out of fuel
Star Deaths Why Do Stars Leave the Main Sequence? Running out of fuel Observing Stellar Evolution by studying Globular Cluster HR diagrams Plot stars in globular clusters in Hertzsprung-Russell diagram
What do the Roman numerals mean and how do stars die
What do the Roman numerals mean and how do stars die What is luminosity? Luminosity is the energy emitted from a star, or basically how bright it is compared to our Sun The higher the luminosity, the higher
Supernovae and cosmology
Supernovae and cosmology On the Death of Stars and Standard Candles Gijs Hijmans Supernovae Types of Supernovae Type I Ia (no hydrogen but strong silicon lines in spectrum) Ib (non ionized helium lines)
Ch. 25 In-Class Notes: Beyond Our Solar System
Ch. 25 In-Class Notes: Beyond Our Solar System ES2a. The solar system is located in an outer edge of the disc-shaped Milky Way galaxy, which spans 100,000 light years. ES2b. Galaxies are made of billions
25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.
25.2 Stellar Evolution By studying stars of different ages, astronomers have been able to piece together the evolution of a star. Star Birth The birthplaces of stars are dark, cool interstellar clouds,
Chapter 12: The Lives of Stars. How do we know it s there? Three Kinds of Nebulae 11/7/11. 1) Emission Nebulae 2) Reflection Nebulae 3) Dark Nebulae
11/7/11 Chapter 12: The Lives of Stars Space is Not Empty The Constellation Orion The Orion Nebula This material between the stars is called the Interstellar Medium It is very diffuse and thin. In fact
8.8A describe components of the universe, including stars, nebulae, galaxies and use models such as HR diagrams for classification
8.8A describe components of the universe, including stars, nebulae, galaxies and use models such as HR diagrams for classification 8.8B recognize that the Sun is a medium-sized star near the edge of a
Astro 21 first lecture. stars are born but also helps us study how. Density increases in the center of the star. The core does change from hydrogen to
Astro 21 first lecture The H-R H R Diagram helps us study how stars are born but also helps us study how they die. Stars spend most of their lives as main sequence stars. The core does change from hydrogen
Life and Death of a Star 2015
Life and Death of a Star 2015 Name Date 1. In the main-sequence, the core is slowly shrinking because A. the mass of the star is slowly increasing B. hydrogen fusing to helium makes the core more dense
BANG! Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf. Lives of High Mass Stars
Structure of a White Dwarf NO energy production gravity = degenerate gas pressure as it cools, becomes Black Dwarf Mass Limit for White Dwarfs S. Chandrasekhar (1983 Nobel Prize) -calculated max. mass
10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure
10/26/16 Lecture Outline 13.1 Star Birth Chapter 13: Star Stuff How do stars form? Our goals for learning: How do stars form? How massive are newborn stars? Star-Forming Clouds Stars form in dark clouds
Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars
Today Stars Evolution of High Mass Stars Nucleosynthesis Supernovae - the explosive deaths of massive stars 1 Another good job on exam! Class average was 71% Given the difficulty of the exam, this was
Chapters 12 and 13 Review: The Life Cycle and Death of Stars. How are stars born, and how do they die? 4/1/2009 Habbal Astro Lecture 27 1
Chapters 12 and 13 Review: The Life Cycle and Death of Stars How are stars born, and how do they die? 4/1/2009 Habbal Astro 110-01 Lecture 27 1 Stars are born in molecular clouds Clouds are very cold:
STARS AND GALAXIES STARS
STARS AND GALAXIES STARS enormous spheres of plasma formed from strong gravitational forces PLASMA the most energetic state of matter; responsible for the characteristic glow emitted by these heavenly
Universe Celestial Object Galaxy Solar System
ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy
Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula.
Low mass stars Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Low mass stars Interstellar Cloud
Instructions. Students will underline the portions of the PowerPoint that are underlined.
STARS Instructions Students will underline the portions of the PowerPoint that are underlined. Nuclear Furnace 1. A star is like a gigantic nuclear furnace. 2. The nuclear reactions inside convert hydrogen
chapter 31 Stars and Galaxies
chapter 31 Stars and Galaxies Day 1:Technology and the Big Bang Studying the Stars A. Telescopes - Electromagnetic radiation emitted by stars and other objects include light, radio, and X-ray Space telescopes
To infinity, and beyond!
stars The night sky is filled with stars that shine at different levels of brightness. The brightness of the stars we observe can be related to the size of the star or its distance from Earth. In order
Describe the lifecycle of a star in chronological order and explain the main stages, relating the stellar evolution to initial mass
Learning Objectives At the end of this unit you should be able to; Explain the major events in the evolution of the universe according to the Big Bang Theory, in chronological order, backing up your arguments
AST 101 Introduction to Astronomy: Stars & Galaxies
AST 101 Introduction to Astronomy: Stars & Galaxies Summary: When a Low-Mass Star runs out of Hydrogen in its Core 1. With fusion no longer occurring in the core, gravity causes core collapse 2. Hydrogen
NSCI 314 LIFE IN THE COSMOS
NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM
Birth and Death of Stars. Birth of Stars. Gas and Dust Clouds. Astronomy 110 Class 11
Birth and Death of Stars Astronomy 110 Class 11 Birth of Stars Start in cloud of gas and dust Contraction and Fragmentation Gravitational collapse and heating Protostar and disk Main Sequence Star Gas
Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017
Brock University Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:
LIFE CYCLE OF A STAR
LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,
Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages
The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,
The Deaths of Stars 1
The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,
Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.
Skills Worksheet Directed Reading A Section: The Life Cycle of Stars TYPES OF STARS (pp. 444 449) 1. Besides by mass, size, brightness, color, temperature, and composition, how are stars classified? a.
Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages
The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,
Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two
Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come
2. Very generally, describe how the Milky Way Galaxy formed. (Words or labeled picture)
Potter Name: Date: Hour: Score: /11 Learning Check 2.1 LT 2.1 Galaxy Formation: I am able to describe the formation of the Milky Way Galaxy and our solar system and model earth s position in each. 1. Label
Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015
Brock University Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Number of hours: 50 min Time of Examination: 18:00 15:50 Instructor:
M42 (The Orion Nebula) and M43
3.4b demonstrate an understanding that emission nebulae, absorption nebulae and open clusters are associated with the birth of stars 3.4c demonstrate an understanding that planetary nebulae and supernovae
The Evolution of Low Mass Stars
The Evolution of Low Mass Stars Key Ideas: Low Mass = M < 4 M sun Stages of Evolution of a Low Mass star: Main Sequence star star star Asymptotic Giant Branch star Planetary Nebula phase White Dwarf star
Planetary Nebulae White dwarfs
Life of a Low-Mass Star AST 101 Introduction to Astronomy: Stars & Galaxies Planetary Nebulae White dwarfs REVIEW END STATE: PLANETARY NEBULA + WHITE DWARF WHAS IS A WHITE DWARF? Exposed core of a low-mass
Astronomy Notes Chapter 13.notebook. April 11, 2014
All stars begin life in a similar way the only difference is in the rate at which they move through the various stages (depends on the star's mass). A star's fate also depends on its mass: 1) Low Mass
Unit 1: Space. Section 2- Stars
Unit 1: Space Section 2- Stars Stars Recall: stars are celestial bodies of hot gas that give off heat and light Stars The milky way contains hundreds of billions of stars and is only one of hundreds of
(nuclear) reactor 1. (average) time taken for number of nuclei to halve or (average) time taken for count-rate / activity to halve
M. (a) (same) number of protons same atomic number is insufficient (i) nuclei split do not accept atom f nuclei / nucleus (ii) (nuclear) react (c) (d) beta any one from: atomic / proton number increases
17.1 Lives in the Balance. Our goals for learning: How does a star's mass affect nuclear fusion?
Stellar Evolution 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect nuclear fusion? Stellar Mass and Fusion The mass of a main-sequence
Stars, Galaxies, and the Universe
Stars, Galaxies, and the Universe Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. What is a giant ball of hot gases that undergo nuclear fusion? a. a planet
Edwin Hubble Discovered galaxies other than the milky way. Galaxy:
Edwin Hubble Discovered galaxies other than the milky way. Galaxy: A collection of stars, planets, gas, and dust that are held together by gravity. Our sun and planets are in the Milky Way He noticed that
8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars
Classifying Stars In the early 1900s, Ejnar Hertzsprung and Henry Russell made some important observations. They noticed that, in general, stars with higher temperatures also have brighter absolute magnitudes.
1. What is the primary difference between the evolution of a low-mass star and that of a high-mass star?
FYI: The Lives of Stars E3:R6b 1. Read FYI: The Lives of Stars As you read use the spaces below to write down any information you find especially interesting. Also define the bold terms used in the text.
Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti
Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking
Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary
Earth Space Systems Semester 1 Exam Astronomy Vocabulary Astronomical Unit- Aurora- Big Bang- Black Hole- 1AU is the average distance between the Earth and the Sun (93 million miles). This unit of measurement
2.) 3.) Igneous Sedimentary Metamorphic Characteristic:
Grade / Name: Date: Period: CATALYST 1.) 2.) 3.) Igneous Sedimentary Metamorphic Characteristic: 1 OBJECTIVE SWBAT describe the life cycle of a star SWBAT identify the major source of 'power' in stars
CHAPTER 9: STARS AND GALAXIES
CHAPTER 9: STARS AND GALAXIES Characteristics of the Sun 1. The Sun is located about 150 million kilometres from the Earth. 2. The Sun is made up of hot gases, mostly hydrogen and helium. 3. The size of
Stellar Evolution. The lives of low-mass stars. And the lives of massive stars
Stellar Evolution The lives of low-mass stars And the lives of massive stars The Structure of the Sun Let s review: The Sun is held together by what force? The inward force is balanced by what other force?
1. Four different processes are described in List A. The names of these processes are given in List B.
Nuclear fission and nuclear fusion 1. Four different processes are described in List A. The names of these processes are given in List B. Draw a line to link each description in List A to its correct name
Stars IV Stellar Evolution
Stars IV Stellar Evolution Attendance Quiz Are you here today? Here! (a) yes (b) no (c) my views are evolving on the subject Today s Topics Stellar Evolution An alien visits Earth for a day A star s mass
The origin of the Solar System
The origin of the Solar System Astronomy 101 Syracuse University, Fall 2016 Walter Freeman November 9, 2017 Astronomy 101 The origin of the Solar System November 9, 2017 1 / 16 Astronomy 101 The origin
Logistics. Test 3 will be 4/24 MRS 2 due Thursday 4/17
Stellar Evolution Logistics Test 3 will be 4/24 MRS 2 due Thursday 4/17 GTA Award The Graduate Teaching Assistant Excellence Award is an internal initiative which is intended to promote, recognize, and
Chapter 21: Stars Notes
Branches of Earth Science Chapter 21: Stars Notes Astronomy: The study of planets, stars, and other objects in space. Lithosphere: the land masses of earth o Litho means rock Hydrosphere: waters of the
How Do Stars Appear from Earth?
How Do Stars Appear from Earth? Magnitude: the brightness a star appears to have from Earth Apparent Magnitude depends on 2 things: (actual intrinsic brightness) The color of a star is related to its temperature:
Stars and Galaxies. Evolution of Stars
chapter 13 3 Stars and Galaxies section 3 Evolution of Stars Before You Read What makes one star different from another? Do you think the Sun is the same as other stars? Write your ideas on the lines below.
Lecture 21 Formation of Stars November 15, 2017
Lecture 21 Formation of Stars November 15, 2017 1 2 Birth of Stars Stars originally condense out of a COLD, interstellar cloud composed of H and He + trace elements. cloud breaks into clumps (gravity)
AST 101 Introduction to Astronomy: Stars & Galaxies
The H-R Diagram review So far: AST 101 Introduction to Astronomy: Stars & Galaxies - Stars on Main Sequence (MS) - Pre MS (Star Birth) Next: - Post MS: Giants, Super Giants, White dwarfs Evolution of Low