Mat. Res. Soc. Symp. Proc. Vol Materials Research Society

Size: px
Start display at page:

Download "Mat. Res. Soc. Symp. Proc. Vol Materials Research Society"

Transcription

1 Mat. Res. Soc. Symp. Proc. Vol Materials Research Society G Determination of the Plastic Behavior of Low Thermal Expansion Glass at the Nanometer Scale Richard Tejeda, 1 Roxann Engelstad, 1 Edward Lovell, 1 Anthony Anderson, 2 Dehua Yang, 2 and Kenneth Blaedel 3 1 University of Wisconsin Computational Mechanics Center, Madison, WI Hysitron Incorporated, Minneapolis, MN Lawrence Livermore National Laboratory, Livermore, CA ABSTRACT The nanometer-scale plastic behavior of two low thermal expansion glasses (ULE and Zerodur ) was determined through a combination of nanoindentation experiments and finite element modeling. The finite element models were then extended to investigate aspects of the performance of these materials as extreme ultraviolet lithography reticles. INTRODUCTION Cleanroom specifications used for semiconductor manufacturing allow for a finite number of airborne particles in the production environment. Inevitably, these particles and other very small pieces of debris shed from equipment will find their way onto surfaces that are critical to the lithographic process. For example, in the exposure tool, the backside of the reticle can be electrostatically clamped to the chuck. Here entrapped debris could distort the reticle and its image as it is projected onto the wafer that is being exposed. Simulations have shown that a localized gap as small as 40 nm at the interface of the reticle and chuck in an extreme ultraviolet lithography (EUVL) exposure tool can adversely affect the performance of the system [1]. In order to fully characterize this problem, a detailed investigation of the mechanics of a particle being crushed between the reticle and chuck was performed. Preliminary finite element (FE) models have shown that the particle crush event involves a substantial amount of plastic deformation of the reticle, chuck, and particle. An accurate FE simulation must, therefore, incorporate the nanometer-scale plastic behavior of the components. Techniques for the determination of hardness and elastic properties of materials at small (mesoscale) dimensions are well established [2]. However, it is not obvious how to extract information such as a material s yield strength and post-yield behavior from typical nanoindentation test data. This paper describes how the nonlinear material properties of two different glasses were derived using a combination of nanoindentation testing and FE modeling. The two types of glass investigated were ULE and Zerodur, which are principal candidates for the EUVL reticle and chuck material because of their low thermal expansivity. NANOINDENTATION PROCEDURE AND RESULTS Three key pieces of information were required from the nanoindentation experiments: 1) the elastic properties of the glass, 2) the geometry of the indenter tip, and 3) the force-deflection response of the materials during a non-elastic indentation. A Hysitron TriboIndenter equipped with a conical diamond tip was used for all of the nanoindentation testing. The tip had a 60

2 G included angle and a nominal radius of 1 µm. The nanoscale elastic properties of ULE and Zerodur were first determined by standard nanoindentation techniques and are listed in Table I. Two methods were used to check the radius of curvature of the end of the diamond tip. The first involved making an indentation in a known material and then using a Hertzian contact analysis to calculate the radius of the tip. This technique requires that a completely elastic indentation be made into a standard sample with known elastic properties. In this case, fused quartz was chosen as the standard. The resulting load vs. displacement data (see Fig. 1) can then be fit using the classic Hertz elastic contact equations to determine the tip radius. Using this analysis method, which is built into the Hysitron software, the tip radius was found to be between 700 and 800 nm. The second method requires that the tip be imaged with a scanning probe microscope on a standard of spikes that are much sharper than the tip itself (see Fig. 2). Here the spikes on the standard were approximately 10 nm in radius. These images were then used in two different ways. One was to use a commercially available software program to analyze the images and fit the data to calculate a radius at the end of the tip. This method gave a tip radius from 750 to 850 nm. An alternative procedure was to simply fit a circle to the cross-section profile of the image and measure the radius of that circle using the appropriate scale as shown in Fig. 3. These measurements indicate a tip radius in the range of 600 to 650 nm. Table I. Elastic properties of ULE and Zerodur determined by nanoindentation testing. ULE (GPa) Zerodur (GPa) Elastic Modulus Poisson s Ratio Figure 1. Force vs. displacement curve for 150 µn indent on fused quartz.

3 G Figure 2. Three-dimensional plot of image after scanning the indentation diamond tip over 10 nm silicon nitride spikes. Figure 3. Cross section of the indenter tip with sized circle superimposed on image. Load and deflection data were then collected for several non-elastic indentations into each glass sample. Finally, correlation of this information to an FE model allowed for the characterization of the glasses plastic properties as described in the next section. FINITE ELEMENT PROCEDURE AND RESULTS An axisymmetric model of the nanoindentation process was created for the FE code LS-DYNA (see Fig. 4). A uniform tip radius of 700 nm and the elastic properties listed in Table I were assumed.

4 G (a) (b) (c) Figure 4. FE simulation (a) before, (b) during, and (c) after nanoindentation. An elastic, perfectly-plastic constitutive model was chosen to represent the glass samples. Consequently, there was only a single unknown material parameter: the yield strength of each glass. This parameter was extracted by adjusting the numerical value of the proportional limit until the output of the FE model matched the experimental load-deflection data. An example of the agreement that can be achieved is shown in Fig. 5. The yield strengths that were obtained by this method are listed in Table II. Table II. Nanoscale yield strength of ULE and Zerodur. ULE Zerodur 8.5 GPa 8.0 GPa Indenter Load (mn) Nanoindenter FE model Indenter Depth (nm) Figure 5. Correlation between the FE simulation and nanoindention experimental results for ULE glass.

5 G Because of the assumptions of the preceding analysis, it is important that the values obtained only be used in applications involving a similar indenter size (700 nm) and indentation depth (800 nm). One such application is the analysis of particle contamination in an EUVL exposure tool, as described in the introduction. As part of a study to determine the appropriate clamping force for the EUVL reticle, an FE model (Fig. 6) that incorporates the material properties shown above was created in order to quantify the force required to fully crush and/or embed small particles. Output from the model (Fig. 7) shows that it takes less than 20 mn to crush a typical particle. Figure 6. Finite element simulation of a spherical ULE particle (1.0 µm diameter) being crushed between a ULE reticle and chuck Crush Force (mn) Zerodur ULE Displacement (nm) Figure 7. Force-displacement curves generated by the FE simulation of the particle crush event.

6 G SUMMARY AND CONCLUSIONS Potential imaging errors for extreme ultraviolet lithography could originate from debris particles trapped between the reticle and chuck. Both of these components will be fabricated from low thermal expansion glass, such as ULE or Zerodur. To support assessment of reticle distortion from particle crushing and embedding, the nanoscale material properties of these glasses were determined. Using conventional indentation methods, the elastic modulus and Poisson's ratio were measured for ULE (66.3 GPa and 0.17) and Zerodur (83.3 GPa and 0.24). Non-elastic indentation testing was also performed. The material constitutive relation was assumed to be elastic, perfectly plastic with unknown yield stresses. To identify these values, a finite element model replicated the non-elastic indentation test. By adjusting unknown parameters for matching experimental and FE results, the yield stresses were established as 8.5 GPa for ULE and 8.0 GPa for Zerodur. With these results, a comprehensive FE simulation of the clamping process showed that it takes less than 20 mn to crush a 1.0-µm diameter ULE particle between a ULE reticle and chuck. These methods and models can be extended to address related EUVL problems such as distortions induced from trapping multiple particles and reduced effective heat transfer from the reticle to the chuck. ACKNOWLEDGMENTS This research has been funded by International SEMATECH and DARPA / ARL. Computer support was provided by the Intel Corporation and Microsoft. REFERENCES 1. R. Tejeda, R. Engelstad, E. Lovell, and K. Blaedel, to appear in J. Vac. Sci. Technol. B (2002). 2. W. Oliver and G. Pharr, J. Mater. Res. 7,p.1564(1992).

Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation

Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation The Harvard community has made this article openly available. Please share how this access benefits

More information

Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis

Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis Materials Science-Poland, Vol. 28, No. 3, 2010 Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis A. WYMYSŁOWSKI 1*, Ł. DOWHAŃ 1, O.

More information

Supplementary Information: Nanoscale heterogeneity promotes energy dissipation in bone

Supplementary Information: Nanoscale heterogeneity promotes energy dissipation in bone Supplementary Information: Nanoscale heterogeneity promotes energy dissipation in bone KUANGSHIN TAI, * MING DAO, * SUBRA SURESH,, AHMET PALAZOGLU, & AND CHRISTINE ORTIZ Department of Materials Science

More information

Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su. ME 563: Nonlinear Finite Element Analysis.

Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su. ME 563: Nonlinear Finite Element Analysis. ME 563: Nonlinear Finite Element Analysis Spring 2016 Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su Department of Mechanical and Nuclear Engineering,

More information

Analysis of contact deformation between a coated flat plate and a sphere and its practical application

Analysis of contact deformation between a coated flat plate and a sphere and its practical application Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VII 307 Analysis of contact deformation between a coated flat plate and a sphere and its practical application T.

More information

Prediction of the bilinear stress-strain curve of engineering material by nanoindentation test

Prediction of the bilinear stress-strain curve of engineering material by nanoindentation test Prediction of the bilinear stress-strain curve of engineering material by nanoindentation test T.S. Yang, T.H. Fang, C.T. Kawn, G.L. Ke, S.Y. Chang Institute of Mechanical & Electro-Mechanical Engineering,

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Nanoindentation

More information

NANOINDENTATION STUDIES OF PAPER

NANOINDENTATION STUDIES OF PAPER Progress in Paper Physics Seminar 2008 - June 2-5, Otaniemi Finland NANOINDENTATION STUDIES OF PAPER B. F. West 1, B. T. Hotle 2, J. E. Jakes 3,4, J. M. Considine 3, R. E. Rowlands 1 and K. T. Turner 1,4

More information

STUDIES ON NANO-INDENTATION OF POLYMERIC THIN FILMS USING FINITE ELEMENT METHODS

STUDIES ON NANO-INDENTATION OF POLYMERIC THIN FILMS USING FINITE ELEMENT METHODS STUDIES ON NANO-INDENTATION OF POLYMERIC THIN FILMS USING FINITE ELEMENT METHODS Shen Xiaojun, Yi Sung, Lallit Anand Singapore-MIT Alliance E4-04-0, 4 Engineering Drive 3, Singapore 7576 Zeng Kaiyang Institute

More information

9-11 April 2008 Measurement of Large Forces and Deflections in Microstructures

9-11 April 2008 Measurement of Large Forces and Deflections in Microstructures 9-11 April 28 Measurement of Large Forces and Deflections in Microstructures Kai Axel Hals 1, Einar Halvorsen, and Xuyuan Chen Institute for Microsystem Technology, Vestfold University College, P.O. Box

More information

Supplementary Figures

Supplementary Figures Fracture Strength (GPa) Supplementary Figures a b 10 R=0.88 mm 1 0.1 Gordon et al Zhu et al Tang et al im et al 5 7 6 4 This work 5 50 500 Si Nanowire Diameter (nm) Supplementary Figure 1: (a) TEM image

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Copyright 2013 Tech Science Press MCB, vol.10, no.1, pp.27-42, 2013

Copyright 2013 Tech Science Press MCB, vol.10, no.1, pp.27-42, 2013 Copyright 213 Tech Science Press MCB, vol.1, no.1, pp.27-42, 213 Derivation of the Stress-Strain Behavior of the constituents of Bio-Inspired Layered TiO 2 /PE-Nanocomposites by Inverse Modeling Based

More information

Keysight Technologies Instrumented Indentation Testing with the Keysight Nano Indenter G200. Application Note

Keysight Technologies Instrumented Indentation Testing with the Keysight Nano Indenter G200. Application Note Keysight Technologies Instrumented Indentation Testing with the Keysight Nano Indenter G200 Application Note Introduction The scale of materials and machined components continues to decrease with advances

More information

Frictional characteristics of exfoliated and epitaxial graphene

Frictional characteristics of exfoliated and epitaxial graphene Frictional characteristics of exfoliated and epitaxial graphene Young Jun Shin a,b, Ryan Stromberg c, Rick Nay c, Han Huang d, Andrew T. S. Wee d, Hyunsoo Yang a,b,*, Charanjit S. Bhatia a a Department

More information

Dynamic Mechanical Analysis (DMA) of Polymers by Oscillatory Indentation

Dynamic Mechanical Analysis (DMA) of Polymers by Oscillatory Indentation Dynamic Mechanical Analysis (DMA) of Polymers by Oscillatory Indentation By Jennifer Hay, Nanomechanics, Inc. Abstract This application note teaches the theory and practice of measuring the complex modulus

More information

Nanoindentation of Polymers: An Overview

Nanoindentation of Polymers: An Overview Nanoindentation of Polymers: An Overview Mark R. VanLandingham*, John S. Villarrubia, Will F. Guthrie, and Greg F. Meyers National Institute of Standards and Technology, 1 Bureau Drive, Gaithersburg, MD

More information

Effects of Chrome Pattern Characteristics on Image Placement due to the Thermomechanical Distortion of Optical Reticles During Exposure

Effects of Chrome Pattern Characteristics on Image Placement due to the Thermomechanical Distortion of Optical Reticles During Exposure Effects of Chrome Pattern Characteristics on Image Placement due to the Thermomechanical Distortion of Optical Reticles During Exposure A. Abdo, ab L. Capodieci, a I. Lalovic, a and R. Engelstad b a Advanced

More information

Mechanics of wafer bonding: Effect of clamping

Mechanics of wafer bonding: Effect of clamping JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 1 1 JANUARY 2004 Mechanics of wafer bonding: Effect of clamping K. T. Turner a) Massachusetts Institute of Technology, Cambridge, Massachusetts 0219 M. D. Thouless

More information

Mechanical Characterization of High Aspect Ratio Silicon Nanolines

Mechanical Characterization of High Aspect Ratio Silicon Nanolines Mater. Res. Soc. Symp. Proc. Vol. 1086 2008 Materials Research Society 1086-U05-07 Mechanical Characterization of High Aspect Ratio Silicon Nanolines Bin Li 1, Huai Huang 1, Qiu Zhao 1, Zhiquan Luo 1,

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4 Issued: Wednesday, Mar. 5, 2014 PROBLEM SET #4 Due (at 9 a.m.): Tuesday Mar. 18, 2014, in the EE C247B HW box near 125 Cory. 1. Suppose you would like to fabricate the suspended cross beam structure below

More information

Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation. Mark Hardiman

Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation. Mark Hardiman Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation Mark Hardiman Materials and Surface Science Institute (MSSI), Department of Mechanical and Aeronautical

More information

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm Intensity (a.u.) Intensity (a.u.) a Oxygen plasma b 6 cm 1mm 10mm Single-layer graphene sheet 14 cm 9 cm Flipped Si/SiO 2 Patterned chip Plasma-cleaned glass slides c d After 1 sec normal Oxygen plasma

More information

Keysight Technologies Measuring Substrate-Independent Young s Modulus of Low-k Films by Instrumented Indentation. Application Note

Keysight Technologies Measuring Substrate-Independent Young s Modulus of Low-k Films by Instrumented Indentation. Application Note Keysight Technologies Measuring Substrate-Independent Young s Modulus of Low-k Films by Instrumented Indentation Application Note Introduction In digital circuits, insulating dielectrics separate the conducting

More information

Influence of friction in material characterization in microindentation measurement

Influence of friction in material characterization in microindentation measurement Influence of friction in material characterization in microindentation measurement W.C. Guo a,b,, G. Rauchs c, W.H. Zhang b, J.P. Ponthot a a LTAS. Department of Aerospace & Mechanical Engineering, University

More information

A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR AGAINST A RIGID FLAT UNDER VARYING MODULUS OF ELASTICITY AND SPHERE RADIUS

A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR AGAINST A RIGID FLAT UNDER VARYING MODULUS OF ELASTICITY AND SPHERE RADIUS Proceedings of the International Conference on Mechanical Engineering 2009 (ICME2009) 26-28 December 2009, Dhaka, Bangladesh ICME09- A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR

More information

FIDUCIAL MARKS AS MEASURES OF THIN FILM CRACK ARREST TOUGHNESS

FIDUCIAL MARKS AS MEASURES OF THIN FILM CRACK ARREST TOUGHNESS ORAL REFERENCE: ICF100572OR FIDUCIAL MARKS AS MEASURES OF THIN FILM CRACK ARREST TOUGHNESS Alex A. Volinsky 1, Michael L. Kottke 1, Neville R. Moody 3, Indira S. Adhihetty 1 and William W. Gerberich 2

More information

Characterisation Programme Polymer Multi-scale Properties Industrial Advisory Group 22 nd April 2008

Characterisation Programme Polymer Multi-scale Properties Industrial Advisory Group 22 nd April 2008 Characterisation Programme 6-9 Polymer Multi-scale Properties Industrial Advisory Group nd April 8 SE: Improved Design and Manufacture of Polymeric Coatings Through the Provision of Dynamic Nano-indentation

More information

Performance and Control of the Agilent Nano Indenter DCM

Performance and Control of the Agilent Nano Indenter DCM Performance and Control of the Agilent Nano Indenter DCM Application Note Introduction With new materials and material applications come new test challenges. As these new challenges emerge in materials

More information

Compliant MEMS Motion Characterization by Nanoindentation

Compliant MEMS Motion Characterization by Nanoindentation Mater. Res. Soc. Symp. Proc. Vol. 152 28 Materials Research Society 152-DD6-24 Compliant MEMS Motion Characterization by Nanoindentation Joseph Goerges Choueifati 1, Craig Lusk 1, Xialou Pang 1,2, and

More information

CONSIDERATIONS ON NANOHARDNESS MEASUREMENT

CONSIDERATIONS ON NANOHARDNESS MEASUREMENT CONSIDERATIONS ON NANOHARDNESS MEASUREMENT Z. Rymuza 1, M. Misiak 1 and J.T. Wyrobek 2 1 Institute of Micromechanics and Photonics, Department of Mechatronics Warsaw University of Technology, Chodkiewicza

More information

reported that the available simple contact conductance model was expressed as [5][6]: h sum = h solid + h fluid (1) Where h sum, h solid and h fluid a

reported that the available simple contact conductance model was expressed as [5][6]: h sum = h solid + h fluid (1) Where h sum, h solid and h fluid a Multiphysics Simulation of Conjugated Heat Transfer and Electric Field on Application of Electrostatic Chucks (ESCs) Using 3D-2D Model Coupling Kuo-Chan Hsu 1, Chih-Hung Li 1, Jaw-Yen Yang 1,2*, Jian-Zhang

More information

Nano-indentation of silica and silicate glasses. Russell J. Hand & Damir Tadjiev Department of Engineering Materials University of Sheffield

Nano-indentation of silica and silicate glasses. Russell J. Hand & Damir Tadjiev Department of Engineering Materials University of Sheffield Nano-indentation of silica and silicate glasses Russell J. Hand & Damir Tadjiev Department of Engineering Materials University of Sheffield Acknowledgements Pierre Samson Dr Simon Hayes Dawn Bussey EPSRC

More information

A Laboratory Experiment Using Nanoindentation to Demonstrate the Indentation Size Effect

A Laboratory Experiment Using Nanoindentation to Demonstrate the Indentation Size Effect Bucknell University Bucknell Digital Commons Faculty Journal Articles Faculty Scholarship 2013 A Laboratory Experiment Using Nanoindentation to Demonstrate the Indentation Size Effect Wendelin Wright Bucknell

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES a b c Supplementary Figure 1 Fabrication of the near-field radiative heat transfer device. a, Main fabrication steps for the bottom Si substrate. b, Main fabrication steps for the

More information

MECHANICAL PROPERTIES OF HYDROGEL USING NANOINDENTATION

MECHANICAL PROPERTIES OF HYDROGEL USING NANOINDENTATION MECHANICAL PROPERTIES OF HYDROGEL USING NANOINDENTATION Prepared by Duanjie Li, PhD & Jorge Ramirez 6 Morgan, Ste156, Irvine CA 9618 P: 949.461.99 F: 949.461.93 nanovea.com Today's standard for tomorrow's

More information

A General Equation for Fitting Contact Area and Friction vs Load Measurements

A General Equation for Fitting Contact Area and Friction vs Load Measurements Journal of Colloid and Interface Science 211, 395 400 (1999) Article ID jcis.1998.6027, available online at http://www.idealibrary.com on A General Equation for Fitting Contact Area and Friction vs Load

More information

Micro-meso draping modelling of non-crimp fabrics

Micro-meso draping modelling of non-crimp fabrics Micro-meso draping modelling of non-crimp fabrics Oleksandr Vorobiov 1, Dr. Th. Bischoff 1, Dr. A. Tulke 1 1 FTA Forschungsgesellschaft für Textiltechnik mbh 1 Introduction Non-crimp fabrics (NCFs) are

More information

Surface Chemical Analysis Using Scanning Probe Microscopy

Surface Chemical Analysis Using Scanning Probe Microscopy STR/03/067/ST Surface Chemical Analysis Using Scanning Probe Microscopy A. L. K. Tan, Y. C. Liu, S. K. Tung and J. Wei Abstract - Since its introduction in 1986 as a tool for imaging and creating three-dimensional

More information

Determining thermal noise limiting properties of thin films

Determining thermal noise limiting properties of thin films Determining thermal noise limiting properties of thin films Courtney Linn Institute for Gravitational Research University of Glasgow Summer 2011 Abstract In order to make thermally stable mirrors to be

More information

ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION

ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION Duanjie Li and Pierre Leroux, Nanovea, Irvine, CA Abstract The viscoelastic properties of a tire sample are comprehensively studied

More information

Keysight Technologies Young s Modulus of Dielectric Low-k Materials. Application Note

Keysight Technologies Young s Modulus of Dielectric Low-k Materials. Application Note Keysight Technologies Young s Modulus of Dielectric Low-k Materials Application Note Introduction In digital circuits, insulating dielectrics separate the conducting parts (wire interconnects and transistors)

More information

New Representation of Bearings in LS-DYNA

New Representation of Bearings in LS-DYNA 13 th International LS-DYNA Users Conference Session: Aerospace New Representation of Bearings in LS-DYNA Kelly S. Carney Samuel A. Howard NASA Glenn Research Center, Cleveland, OH 44135 Brad A. Miller

More information

Impact and Fracture Mechanics Assessment of a Fused Silica Window

Impact and Fracture Mechanics Assessment of a Fused Silica Window Arnold AFB Wind Tunnel Impact and Fracture Mechanics Analysis Rev-0 1 of 41 Impact and Fracture Mechanics Assessment of a Fused Silica Window Objective: Determine the survival probability of a fused silica

More information

Chapter 2 A Simple, Clean-Metal Contact Resistance Model

Chapter 2 A Simple, Clean-Metal Contact Resistance Model Chapter A Simple, Clean-Metal Contact Resistance Model A contact resistance model is presented in this chapter. The model assumes that the contact surfaces are clean, that is, there are no insulating films

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4 Issued: Wednesday, March 4, 2016 PROBLEM SET #4 Due: Monday, March 14, 2016, 8:00 a.m. in the EE C247B homework box near 125 Cory. 1. This problem considers bending of a simple cantilever and several methods

More information

Identification of model parameters from elastic/elasto-plastic spherical indentation

Identification of model parameters from elastic/elasto-plastic spherical indentation Thomas Niederkofler a, Andreas Jäger a, Roman Lackner b a Institute for Mechanics of Materials and Structures (IMWS), Department of Civil Engineering, Vienna University of Technology, Vienna, Austria b

More information

NIS: what can it be used for?

NIS: what can it be used for? AFM @ NIS: what can it be used for? Chiara Manfredotti 011 670 8382/8388/7879 chiara.manfredotti@to.infn.it Skype: khiaram 1 AFM: block scheme In an Atomic Force Microscope (AFM) a micrometric tip attached

More information

Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip

Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 1 1 JULY 2003 Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip Dejun Ma Department

More information

height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm.

height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm. Supplementary Figure 1. Few-layer BN nanosheets. AFM image and the corresponding height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm. Supplementary

More information

Nanoparticle Contamination Control and Metrology for the EUVL Systems

Nanoparticle Contamination Control and Metrology for the EUVL Systems Nanoparticle Contamination Control and Metrology for the EUVL Systems David Y. H. Pui Distinguished McKnight University Professor Mechanical Engineering Department University of Minnesota Jing Wang Assistant

More information

! Importance of Particle Adhesion! History of Particle Adhesion! Method of measurement of Adhesion! Adhesion Induced Deformation

! Importance of Particle Adhesion! History of Particle Adhesion! Method of measurement of Adhesion! Adhesion Induced Deformation ! Importance of Particle Adhesion! History of Particle Adhesion! Method of measurement of Adhesion! Adhesion Induced Deformation! JKR and non-jkr Theory! Role of Electrostatic Forces! Conclusions Books:

More information

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials 3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials Abstract: Talapady S. Bhat and T. A. Venkatesh Department of Material Science and Engineering Stony Brook University,

More information

IMPROVED METHOD TO DETERMINE THE HARDNESS AND ELASTIC MODULI USING NANO-INDENTATION

IMPROVED METHOD TO DETERMINE THE HARDNESS AND ELASTIC MODULI USING NANO-INDENTATION KMITL Sci. J. Vol. 5 No. Jan-Jun 005 IMPROVED METHOD TO DETERMINE THE HARDNESS AND ELASTIC MODULI USING NANO-INDENTATION Nurot Panich*, Sun Yong School of Materials Engineering, Nanyang Technological University,

More information

UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT

UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT 2004 AIMETA International Tribology Conference, September 14-17, 2004, Rome, Italy UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT Yuri KLIGERMAN( ), Yuri Kadin( ), Izhak ETSION( ) Faculty of

More information

Rolling, Sliding and Torsion friction of single silica microspheres: Comparison of nanoindentation based experimental data with DEM simulation Part A

Rolling, Sliding and Torsion friction of single silica microspheres: Comparison of nanoindentation based experimental data with DEM simulation Part A Faculty of Science and Technology Chair of Surface and Materials Technology Institute of Materials Engineering Rolling, Sliding and Torsion friction of single silica microspheres: Comparison of nanoindentation

More information

Improving the accuracy of Atomic Force Microscope based nanomechanical measurements. Bede Pittenger Bruker Nano Surfaces, Santa Barbara, CA, USA

Improving the accuracy of Atomic Force Microscope based nanomechanical measurements. Bede Pittenger Bruker Nano Surfaces, Santa Barbara, CA, USA Improving the accuracy of Atomic Force Microscope based nanomechanical measurements Bede Pittenger Bruker Nano Surfaces, Santa Barbara, CA, USA How can we improve accuracy in our nanomechanical measurements?

More information

A CONTACT-MECHANICS BASED MODEL FOR DISHING AND EROSION IN

A CONTACT-MECHANICS BASED MODEL FOR DISHING AND EROSION IN Mat. Res. Soc. Symp. Proc. Vol. 671 001 Materials Research Society A CONTACT-MECHANICS BASED MODEL FOR DISHING AND EROSION IN CHEMICAL-MECHANICAL POLISHING Joost J. Vlassak Division of Engineering and

More information

MICROMECHANICS OF A CARBON NANOTUBE TURF AND NUMERICAL MODELING OF NANOINDENTATION

MICROMECHANICS OF A CARBON NANOTUBE TURF AND NUMERICAL MODELING OF NANOINDENTATION Association of Metallurgical Engineers of Serbia Scientific paper AMES UDC:669.784.001.573-426.4:389.17=20 MICROMECHANICS OF A CARBON NANOTUBE TURF AND NUMERICAL MODELING OF NANOINDENTATION H. RADHAKRISHNAN

More information

AN EXPLANATION FOR THE SHAPE OF NANOINDENTATION UNLOADING CURVES BASED ON FINITE ELEMENT SIMULATION

AN EXPLANATION FOR THE SHAPE OF NANOINDENTATION UNLOADING CURVES BASED ON FINITE ELEMENT SIMULATION AN EXPLANATON FOR THE SHAPE OF NANONDENTATON UNLOADNG CURVES BASED ON FNTE ELEMENT SMULATON A BOLSHAKOV*, WC OLVER**, and GM PHARR* *Department of Materials Science, Rice University, POBox 1892, Houston,

More information

An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments

An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments W. C. Oliver Metals and Ceramics Division, Oak Ridge National Laboratory,

More information

Measuring Young s modulus of 20LP10L20-LLA40 Microspheres and Gelatin-Methacrylamide (GelMA) Hydrogel using nanoindentation

Measuring Young s modulus of 20LP10L20-LLA40 Microspheres and Gelatin-Methacrylamide (GelMA) Hydrogel using nanoindentation Thesis Measuring Young s modulus of 20LP10L20-LLA40 Microspheres and Gelatin-Methacrylamide (GelMA) Hydrogel using nanoindentation Josip Rauker Abstract Mechanical properties of different tissues are important

More information

Introductory guide to measuring the mechanical properties of nanoobjects/particles

Introductory guide to measuring the mechanical properties of nanoobjects/particles Jeremias Seppä MIKES Metrology, VTT Technical Research Centre of Finland Ltd P.O. Box 1000, FI-02044 VTT, Finland Contents: AFM Cantilever calibration F-d curves and cantilever bending Hitting the particles

More information

MASTER THESIS. Force/Deflection Measurements on Micromechanical Structures. Kai Axel Hals

MASTER THESIS. Force/Deflection Measurements on Micromechanical Structures. Kai Axel Hals MASTER THESIS Force/Deflection Measurements on Micromechanical Structures Kai Axel Hals Horten, YEAR 2007 Submitted to the Faculty of Science and Engineering, Vestfold University College, in partial fulfilment

More information

On Mooney-Rivlin Constants for Elastomers

On Mooney-Rivlin Constants for Elastomers th International LS-DYNA Users Conference Constitutive Modeling() On Mooney-ivlin Constants for Elastomers The Mooney-ivlin constitutive equation for rubber is W C I C I 3 3 William W. Feng John O. Hallquist

More information

A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against a Rigid Flat under Varying Modulus of Elasticity and Sphere Radius

A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against a Rigid Flat under Varying Modulus of Elasticity and Sphere Radius Engineering, 2010, 2, 205-211 doi:10.4236/eng.2010.24030 Published Online April 2010 (http://www. SciRP.org/journal/eng) 205 A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against

More information

EFFECT OF PILE-UP ON THE MECHANICAL CHARACTERISTICS OF STEEL WITH DIFFERENT STRAIN HISTORY BY DEPTH SENSING INDENTATION

EFFECT OF PILE-UP ON THE MECHANICAL CHARACTERISTICS OF STEEL WITH DIFFERENT STRAIN HISTORY BY DEPTH SENSING INDENTATION EFFECT OF PILE-UP ON THE MECHANICAL CHARACTERISTICS OF STEEL WITH DIFFERENT STRAIN HISTORY BY DEPTH SENSING INDENTATION Peter BURIK 1,a, Ladislav PEŠEK 2,b, Lukáš VOLESKÝ 1,c 1 Technical University of

More information

Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study

Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study Biplab Chatterjee, Prasanta Sahoo 1 Department of Mechanical Engineering, Jadavpur University

More information

AFM Studies of Pristine PCBM Changes Under Light Exposure. Erin Chambers

AFM Studies of Pristine PCBM Changes Under Light Exposure. Erin Chambers AFM Studies of Pristine PCBM Changes Under Light Exposure Erin Chambers Faculty of health, science, and technology Department of engineering and physics 15 cr Krister Svensson Lars Johansson 28 March 2013

More information

Y. C. Lee. Micro-Scale Engineering I Microelectromechanical Systems (MEMS)

Y. C. Lee. Micro-Scale Engineering I Microelectromechanical Systems (MEMS) Micro-Scale Engineering I Microelectromechanical Systems (MEMS) Y. C. Lee Department of Mechanical Engineering University of Colorado Boulder, CO 80309-0427 leeyc@colorado.edu January 15, 2014 1 Contents

More information

Lecture Note October 1, 2009 Nanostructure characterization techniques

Lecture Note October 1, 2009 Nanostructure characterization techniques Lecture Note October 1, 29 Nanostructure characterization techniques UT-Austin PHYS 392 T, unique # 5977 ME 397 unique # 1979 CHE 384, unique # 151 Instructor: Professor C.K. Shih Subjects: Applications

More information

Simulation of Cure Volume Shrinkage Stresses on Carbon/Vinyl Ester Composites in Microindentation Testing

Simulation of Cure Volume Shrinkage Stresses on Carbon/Vinyl Ester Composites in Microindentation Testing 8 th International LS-DYNA Users Conference Simulation Technology (3) Simulation of Cure Volume Shrinkage Stresses on Carbon/Vinyl Ester Composites in Microindentation Testing Tom Mase, Lanhong Xu, Lawrence

More information

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities Kavli Workshop for Journalists June 13th, 2007 CNF Cleanroom Activities Seeing nm-sized Objects with an SEM Lab experience: Scanning Electron Microscopy Equipment: Zeiss Supra 55VP Scanning electron microscopes

More information

Design and Optimization of An All Optically Driven Phase Correction MEMS Device using FEA

Design and Optimization of An All Optically Driven Phase Correction MEMS Device using FEA Presented at the COMSOL Conference 2009 Boston Design and Optimization of An All Optically Driven Phase Correction MEMS Device using FEA V. Mathur, K.Anglin, V.S. Prasher, K.Tremkoa, S.R. Vangala, X. Qian,

More information

Normal contact and friction of rubber with model randomly rough surfaces

Normal contact and friction of rubber with model randomly rough surfaces Normal contact and friction of rubber with model randomly rough surfaces S. Yashima 1-2, C. Fretigny 1 and A. Chateauminois 1 1. Soft Matter Science and Engineering Laboratory - SIMM Ecole Supérieure de

More information

ADHESION OF AN AXISYMMETRIC ELASTIC BODY: RANGES OF VALIDITY OF MONOMIAL APPROXIMATIONS AND A TRANSITION MODEL

ADHESION OF AN AXISYMMETRIC ELASTIC BODY: RANGES OF VALIDITY OF MONOMIAL APPROXIMATIONS AND A TRANSITION MODEL ADHESION OF AN AXISYMMETRIC ELASTIC BODY: RANGES OF VALIDITY OF MONOMIAL APPROXIMATIONS AND A TRANSITION MODEL A Thesis Presented By Fouad Oweiss to The Department of Mechanical and Industrial Engineering

More information

Fabrication of EUVL Micro-field Exposure Tools with 0.5 NA

Fabrication of EUVL Micro-field Exposure Tools with 0.5 NA Fabrication of EUVL Micro-field Exposure Tools with 0.5 NA EUV Litho, June 15 th, 2016 Luc Girard 1, Lou Marchetti 1, Jim Kennon 2, Bob Kestner 2, Regina Soufli 3, Eric Gullickson 4 1 Zygo Corporation,

More information

COMPUTATIONAL MODELING OF THE FORWARD AND REVERSE PROBLEMS IN INSTRUMENTED SHARP INDENTATION

COMPUTATIONAL MODELING OF THE FORWARD AND REVERSE PROBLEMS IN INSTRUMENTED SHARP INDENTATION Acta mater. 49 (2001) 3899 3918 www.elsevier.com/locate/actamat COMPUTATIONAL MODELING OF THE FORWARD AND REVERSE PROBLEMS IN INSTRUMENTED SHARP INDENTATION M. DAO, N. CHOLLACOOP, K. J. VAN VLIET, T. A.

More information

We published the text from the next page.

We published the text from the next page. Title:Shedding light on EUV mask inspection Authors:Kazunori Seki, Karen Badger, Emily Gallagher, Toshio Konishi, Gregory McIntyre Publisher:Photomask Japan 2012(SPIE) Citation:Kazunori Seki, Karen Badger,

More information

The plastic behaviour of silicon subjected to micro-indentation

The plastic behaviour of silicon subjected to micro-indentation JOURNAL OF MATERIALS SCIENCE 31 (1996) 5671-5676 The plastic behaviour of silicon subjected to micro-indentation L. ZHANG, M. MAHDI Centre for Advanced Materials Technology, Department of Mechanical and

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/31/5887/385/dc1 Supporting Online Material for Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene This PDF file includes: Changgu Lee,

More information

Extraction of Plastic Properties of Aluminum Single Crystal Using Berkovich Indentation

Extraction of Plastic Properties of Aluminum Single Crystal Using Berkovich Indentation Materials Transactions, Vol. 51, No. 11 (2010) pp. 2104 to 2108 #2010 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Extraction of Plastic Properties of Aluminum Single Crystal Using Berkovich Indentation

More information

Instrumented indentation testing (IIT) is a technique for

Instrumented indentation testing (IIT) is a technique for FEATURE Nanomechanical Characterization of Materials by Nanoindentation Series INTRODUCTION TO INSTRUMENTED INDENTATION TESTING by J. Hay Instrumented indentation testing (IIT) is a technique for measuring

More information

SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS

SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS Gautam Kumar, Shanna Smith, Florence Eschbach, Arun Ramamoorthy, Michael

More information

Indentation of Single-Crystal Silicon Nanolines: Buckling and

Indentation of Single-Crystal Silicon Nanolines: Buckling and Indentation of Single-Crystal Silicon Nanolines: Buckling and Contact Friction at Nanoscales Bin Li, 1 Qiu Zhao, 1 Huai Huang, 1 Zhiquan Luo, 1 Min K. Kang, 2 Jang-Hi Im, 1 Richard A. Allen, 3 Michael

More information

Failure modes of glass panels subjected to soft missile impact

Failure modes of glass panels subjected to soft missile impact Failure modes of glass panels subjected to soft missile impact L. R. Dharani & J. Yu Dept. of Mech. and Aerospace Engineering and Engineering Mechanics, University of Missouri-Rolla, U.S.A. Abstract Damage

More information

Investigation of the Local Mechanical Properties of the SAC Solder Joint with AFM Judit Kámán a *, Attila Bonyár b

Investigation of the Local Mechanical Properties of the SAC Solder Joint with AFM Judit Kámán a *, Attila Bonyár b Investigation of the Local Mechanical Properties of the SAC Solder Joint with AFM Judit Kámán a *, Attila Bonyár b Department of Electronics Technology Budapest University of Technology and Economics Budapest,

More information

Thin Wafer Handling Challenges and Emerging Solutions

Thin Wafer Handling Challenges and Emerging Solutions 1 Thin Wafer Handling Challenges and Emerging Solutions Dr. Shari Farrens, Mr. Pete Bisson, Mr. Sumant Sood and Mr. James Hermanowski SUSS MicroTec, 228 Suss Drive, Waterbury Center, VT 05655, USA 2 Thin

More information

Compressive stress effects on nanoparticle modulus and fracture

Compressive stress effects on nanoparticle modulus and fracture PHYSICAL REVIEW B 75, 1411 007 Compressive stress effects on nanoparticle modulus and fracture W. M. Mook, 1 J. D. Nowak, 1 C. R. Perrey, 1 C. B. Carter, 1 R. Mukherjee, S. L. Girshick, P. H. McMurry,

More information

3.052 Nanomechanics of Materials and Biomaterials Tuesday 05/08/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 22: THEORETICAL ASPECTS OF NANOINDENTATION

3.052 Nanomechanics of Materials and Biomaterials Tuesday 05/08/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 22: THEORETICAL ASPECTS OF NANOINDENTATION 3.052 Nanomehanis of Materials and Biomaterials Tuesday 05/08/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 22: THEORETICAL ASPECTS OF NANOINDENTATION Outline : REVIEW LECTURE #21 : EXPERIMENTAL SINGLE MACROMOLECULE

More information

Modeling Contact between Rigid Sphere and Elastic Layer Bonded to Rigid Substrate

Modeling Contact between Rigid Sphere and Elastic Layer Bonded to Rigid Substrate IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 24, NO. 2, JUNE 2001 207 Modeling Contact between Rigid Sphere and Elastic Layer Bonded to Rigid Substrate Mirko Stevanović, M. Michael

More information

Figure 43. Some common mechanical systems involving contact.

Figure 43. Some common mechanical systems involving contact. 33 Demonstration: experimental surface measurement ADE PhaseShift Whitelight Interferometer Surface measurement Surface characterization - Probability density function - Statistical analyses - Autocorrelation

More information

Impact of Pellicle on Overlay in Double Patterning Lithography

Impact of Pellicle on Overlay in Double Patterning Lithography Impact of Pellicle on Overlay in Double Patterning Lithography Oliver Loeffler 1, Frank Laske 2, Michael Ferber 2, Klaus-Dieter Roeth 2, Lin Chua 3, You Seung Jin 3, Gino Marcuccilli 3, Venkat Nagaswami

More information

Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics

Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics H. Zheng 1, X. Guo 1, D. Pei 1, W. Li 1, J. Blatz 1, K. Hsu 1, D. Benjamin 1, Y-H Lin 2, H-S Fung 2,

More information

Nanomechanics Measurements and Standards at NIST

Nanomechanics Measurements and Standards at NIST Nanomechanics Measurements and Standards at NIST Robert F. Cook Deputy Chief, Ceramics Division Leader, Nanomechanical Properties Group robert.cook@nist.gov NIST Mission Promote U.S. innovation and industrial

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

nano-ta: Nano Thermal Analysis

nano-ta: Nano Thermal Analysis nano-ta: Nano Thermal Analysis Application Note #1 Failure Analysis - Identification of Particles in a Polymer Film Author: David Grandy Ph.D. Introduction Nano-TA is a local thermal analysis technique

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Keysight Technologies Contact Deformation of LiNbO3 Single Crystal: Dislocations, Twins and Ferroelectric Domains.

Keysight Technologies Contact Deformation of LiNbO3 Single Crystal: Dislocations, Twins and Ferroelectric Domains. Keysight Technologies Contact Deformation of LiNbO3 Single Crystal: Dislocations, Twins and Ferroelectric Domains Application Note Abstract Reliability of many Lithium niobate LiNbO 3 optoelectronic devices

More information

Interaction anisotropy and shear instability of aspirin polymorphs established by nanoindentation

Interaction anisotropy and shear instability of aspirin polymorphs established by nanoindentation Chemical Science Electronic Supplementary Information Interaction anisotropy and shear instability of aspirin polymorphs established by nanoindentation Sunil Varughese, a M. S. R. N. Kiran, b Katarzyna

More information