Interior Structure of Rocky and Vapor Worlds

Size: px
Start display at page:

Download "Interior Structure of Rocky and Vapor Worlds"

Transcription

1 Interior Structure of Rocky and Vapor Worlds Diana Valencia, 4 April 2011 NASA Sagan Fellow, MIT Exploring Strange New Worlds: From Giant Planets to Super-Earths

2 Super-Earths in the context of exoplanets 18 Super-Earths complete 16 the inventory of planets 14 for formation models Intermediate objects that allow for comparative planetology Radius (R Earth ) H-He H-He & H2O U N S J May be habitable 2 Me Ma V E H2O & Rocks Mass (M Earth )

3 Super-Earths Measured masses and radii of Super-Earths About 15% of stars have SE planets (perhaps up to 40%) Spectroscopy of Borucki, 10 super-earths

4 Data & Challenges Period & estimates of T eff, Age Minimum Mass -- RV surveys Radius Only -- Kepler Candidates M & R Coarse Spectroscopy Complexity in Composition Complex Dynamic Interiors Complex Atmospheres Few data points in the Solar System

5 Characterizing super-earths

6 Characterizing super-earths Are they habitable?

7 Characterizing super-earths What are they made of? Are they habitable?

8 Characterizing super-earths What are they made of? How did they form? Are they habitable?

9 Characterizing super-earths What are they made of? How did they form? How did they evolve? Are they habitable?

10 Characterizing super-earths What are they made of? How did they form? How did they evolve? What is their atmosphere like? Are they habitable?

11 Characterizing super-earths What are they made of? How did they form? How did they evolve? What is their atmosphere like? Are they habitable?

12 Characterizing super-earths What are they made of? How did they form? How did they evolve? What is their atmosphere like? Are they habitable? Single Planets Population

13 Characterizing super-earths What are they made of? How did they form? How did they evolve? What is their atmosphere like? Are they habitable? Single Planets Population

14 Now we have M & R + P, T eff,age

15 The First Transiting super-earths CoRoT- 7b Kepler-10b 55Cnc-e GJ 1214b Radius (RE) 1.58 ± ± ± ± 0.08 Mass(ME) 4.8 ± 0.8, 6.9 ± ±1.2, 5.7 ± 2.5, 2.3 ± ± ± ± ± 0.98 Period (j) Age (Gy) (± 4.5) ~ Temp (K) Ref. Leger et al 09, Queloz et al 09, Pont et al 10, Hatzes et al 10 & 11, Boise et al 10, Ferraz-Mello et al 10 Batalha et al 2010 Winn et al 2011 Demory et al 2011 Charbonneau et al 2009, Carter et al 2011

16 Recipe: Internal Structure Model H-He Assume a composition H 2 O, CH 4,.. Si, O, Mg, Fe Solve structure equations (M,, P, g, T, S) Need an EQUATION OF STATE

17 Recipe: Internal Structure Model H-He Assume a composition H 2 O, CH 4,.. Si, O, Mg, Fe Solve structure equations (M,, P, g, T, S) Need an EQUATION OF STATE Obtain: R(M; )

18 Recipe: Internal Structure Model H-He Assume a composition H 2 O, CH 4,.. Si, O, Mg, Fe Solve structure equations (M,, P, g, T, S) Need an EQUATION OF STATE Obtain: R(M; ) Valencia et al 06, Fortney et al 07, Grasset et al 07, Seager et al 07, Valencia et al 10, Rogers and Seager 10, Nettlemann & Fortney 10

19 M=5M Maximum Radius H2O Mantle Minimum Radius Core Super-Earth Composition M=5M 40 Maximum Radius H2O Silicate (ices) Mantle Fixed Si/Fe ratio Late delivery of H2O 0 10 Terrestrial Side Radius (km) Minimum Radius Terrestrial Side Fixed Si/Fe ratio Fe Late delivery of H2O 0 Core There is degeneracy in composition. Some compositions are improbable. Valencia et al. 2007b, see also Rogers and Seager 2010

20 M=5M Maximum Radius H2O Mantle Minimum Radius Core ¹ z Super-Earth Composition x ¹ ¹ M=5M 40 Maximum Radius H2O 90 y Silicate (ices) Mantle Fixed Si/Fe ratio Late delivery of H2O 0 10 Terrestrial Side Radius (km) Minimum Radius Terrestrial Side Fixed Si/Fe ratio Fe Late delivery of H2O 0 Core There is degeneracy in composition. Some compositions are improbable. Valencia et al. 2007b, see also Rogers and Seager 2010

21 Earth s Structure: MANTLE Olivine + Pyroxene (Mg,Fe)2SiO4 + (Mg,Fe)2Si2O6 Perovskite + Magnesiowustite (Mg,Fe)SiO3 + (Mg,Fe)O Post - Perovskite + Magnesiowustite (Mg,Fe)SiO3 + (Mg,Fe)O Iron + alloy Fe + (S, Si, O, H, C) CORE Iron-Nickel

22 Earth s Structure: Fe, Mg, Si, O, Ca,Al,Ti MANTLE Olivine + Pyroxene (Mg,Fe)2SiO4 + (Mg,Fe)2Si2O6 Perovskite + Magnesiowustite (Mg,Fe)SiO3 + (Mg,Fe)O Post - Perovskite + Magnesiowustite (Mg,Fe)SiO3 + (Mg,Fe)O Iron + alloy Fe + (S, Si, O, H, C) CORE Iron-Nickel

23 Variety in Rocky Compositions Fe, Mg, Si, O, Ca,Al, Ti 1. The planet has an Fe/Si, Fe/Mg... inventory which depends on its formation inventory and subsequent early evolution (giant impacts + atmospheric erosion)

24 Variety in Rocky Compositions Fe, Mg, Si, O, Ca,Al, Ti 1. The planet has an Fe/Si, Fe/Mg... inventory which depends on its formation inventory and subsequent early evolution (giant impacts + atmospheric erosion) Iron Iron-rich Earth-like no-iron (65% iron core 37 silicate mantle, no iron) (33% iron core 67 silicate mantle, 10% iron by mol) (pure Mgsilicate)

25 Variety in Rocky Compositions 2. Differentiated vs Undifferentiated planet silicate atmosphere R p =1.68R silicate mantle silicate Planet R cmb =0.86R M=5.6M iron solid core M=5.3M For CoRoT-7b first reported mass value Valencia et al, 2010; see also Tanton-Elkins and Seager 2009 for a mechanism for a coreless planet

26 Rocky Compositions U N Radius (km) no iron super-mercury pure-fe Earth-like 1 10 Mass (M Earth )

27 Rocky Compositions U N Radius (km) no iron super-mercury pure-fe Earth-like For a probable limit to the Fe/Si lower ratio see Marcus et al Mass (M Earth )

28 Rocky Compositions U N Radius (km) no iron super-mercury pure-fe K-10b C-7b Earth-like 1 10 Mass (M Earth ) Valencia et al 2010, Valencia 2011

29 Rocky Compositions U N Radius (km) no iron super-mercury pure-fe This study, 55Cnc-e K-10b C-7b Earth-like 55Cnc-e Winn et al R E 1 10 Mass (M Earth ) in Demory et al 2011

30 What about their envelopes? % H 2 O Radius (km) % H 2 O 20% H 2 O 5% H 2 O super-mercury pure-fe This study, 55Cnc-e K-10b C-7b 1 10 Mass (M Earth ) Earth-like 55Cnc-e Winn et al bars Vapor Atmosphere Valencia et al, 2010, Valencia 2011, Demory et al 2011

31 What about their envelopes? 10% H-He U N % H-He 100% H 2 O Radius (km) % H 2 O 20% H 2 O 5% H 2 O super-mercury pure-fe This study, 55Cnc-e K-10b C-7b Earth-like 55Cnc-e Winn et al 11 Radius (km) % H-He 0.01% H-He super-mercury pure-fe This study, 55Cnc-e K-10b C-7b Earth-like 55Cnc-e Winn et al bars 10 bars 1 10 Mass (M Earth ) 1 10 Mass (M Earth ) Vapor Atmosphere H-He Atmosphere Valencia et al, 2010, Valencia 2011, Demory et al 2011

32 Atmospheric Erosion Energy limited calculation based on UV flux dm = 3 F EUV dt 4 G K tide = g/s For more details on see Lammer et al 09 within an order of magnitude of the escape rate of HD b Even if it has a silicate atmosphere, it is thick enough for UV absorption

33 What about their envelopes? 10% H-He U N % H-He 100% H 2 O Radius (km) % H 2 O 20% H 2 O 5% H 2 O super-mercury pure-fe This study, 55Cnc-e K-10b C-7b 1 10 Mass (M Earth ) Earth-like 55Cnc-e Winn et al 11 Radius (km) % H-He 0.01% H-He super-mercury pure-fe This study, 55Cnc-e Earth-like 10 bars 10 bars K-10b C-7b 1 10 Mass (M Earth ) 55Cnc-e Winn et al 11

34 What about their envelopes? 10% H-He U N % H-He 100% H 2 O Radius (km) % H 2 O 20% H 2 O 5% H 2 O super-mercury pure-fe This study, 55Cnc-e K-10b C-7b 1 10 Mass (M Earth ) Earth-like 55Cnc-e Winn et al 11 Radius (km) % H-He 0.01% H-He super-mercury pure-fe This study, 55Cnc-e Earth-like 10 bars 10 bars K-10b C-7b 1 10 Mass (M Earth ) 55Cnc-e Winn et al 11 Evaporation Timescale ~ 1 Gy

35 What about their envelopes? 10% H-He U N % H-He 100% H 2 O Radius (km) % H 2 O 20% H 2 O 5% H 2 O super-mercury pure-fe This study, 55Cnc-e K-10b C-7b 1 10 Mass (M Earth ) Earth-like 55Cnc-e Winn et al 11 Radius (km) % H-He 0.01% H-He super-mercury pure-fe This study, 55Cnc-e Earth-like 10 bars 10 bars K-10b C-7b 1 10 Mass (M Earth ) 55Cnc-e Winn et al 11 Evaporation Timescale ~ 1 Gy Evaporation Timescale ~ 1 My!

36 CoRoT-7b s origin? Rocky Origin Volatile Origin 8 CMF f = b) inward migration Mass (M E ) cored planet CMF f =0.33 silicate planet Corot-7b s Mass Mass [M ] rocky cores H-He planets vapor planets Time (Gyr) Age[Ga] Valencia et al. 2010, see also Jackson et al 2010

37 CoRoT-7b s origin? Unconstrained Rocky Origin Volatile Origin 8 CMF f = b) inward migration Mass (M E ) cored planet CMF f =0.33 silicate planet Corot-7b s Mass Mass [M ] rocky cores H-He planets vapor planets Time (Gyr) Age[Ga] Valencia et al. 2010, see also Jackson et al 2010

38 Rocky or Vapor? pure-fe CoRoT-7b Kepler-10b 55Cnc-e Winn et al 11 super-mercury Earth-like Density (kg/m 3 ) 5000 v E Kepler-11b This study, 55Cnc-e no iron 2000 GJ 1214b N U Mass (M Earth ) in Demory et al 2011

39 Rocky or Vapor? pure-fe CoRoT-7b Kepler-10b 55Cnc-e Winn et al 11 super-mercury Earth-like Density (kg/m 3 ) 5000 v E Kepler-11b This study, 55Cnc-e no iron 2000 GJ 1214b N U Mass (M Earth ) in Demory et al 2011

40 GJ 1214b Charbonneau et al 2009 Radius = ± 0.13 R Earth Mass = 6.55 ± 0.98 M Earth Period = 1.58 days Age = 3-10 Gy T = K

41 GJ 1214b atmosphere from Miller-Ricci- Kempton et al 11 Miller-Ricci & Fortney 2010

42 GJ 1214b Composition Radius (km) % H 2 O 50% H 2 O 20% H 2 O 3% H 2 O GJ 1214b Charbonneau et al 09 super-mercury K11-b GJ 1214b Carter et al 10 K-10b C-7b 55Cnc-e (2) U 55Cnc-e (1) N Earth-like Because we expect some component of rocky material, GJ 1214b has some H-He. We calculate that H-He is present in amounts less than ~8% 1 10 Mass (M Earth ) 10 bars see also Rogers and Seager 2010 Nettlemann & Fortney 2010

43 GJ1214b: Unfolding picture Observations at the ~ millibar level Interior models start ~ bar level low or high molecular weight atmosphere? From discovery paper: Atmosphere What is the probably has composition of the H-He nucleus? With small R (from Carter et al 11), very little room for H-He

44 Structure of a H 2 O vapor GJ 1214b

45 Transit only planets: Kepler-9d 1% H-He GJ 436b HAT-P % H-He GJ 1214b Uranus Neptune Kepler-4b 100% H2O 50% H2O 20% H2O 5% H2O Can constrain maximum mass & maximum amount of volatiles Terrestrial line CoRoT-7b Fe-pure line Kepler-9d in Havel et al 2011

46 A theorist point of view on observational strategies

47 A theorist point of view on observational strategies If you need to increase precision on mass or radius, choose radius If you need to decide between measuring mass or radius, choose radius Transit only, hotter planets are better constrained than cooler ones

48 Summary We have now a handful of hot transiting super-earths. The composition of planets reflects their initial formation inventory and secondary formation processes (i.e. giant impacts, atmospheric escape). The composition of CoRoT-7b and Kepler-10b is very similar: ironenriched (by ~3x compared to Earth) 55Cnc-e has two radius measurements that stand at the 3 sigma level. While Winn et al 2011 value suggests it belongs to the same family of CoRoT-7b and Kepler-10b, Demory et al 2011 value suggests this is a vapor planet. GJ1214b undoubtedly has a volatile envelope. The observations of the atmosphere seem to be (somewhat) conflicting about its composition. Interior models predict at most ~10% of H-He by planetary mass.

49 Additional Slides

Terrestrial Exoplanet Radii, Structure and Tectonics. Diana Valencia (OCA), KITP, 31 March 2010

Terrestrial Exoplanet Radii, Structure and Tectonics. Diana Valencia (OCA), KITP, 31 March 2010 Terrestrial Exoplanet Radii, Structure and Tectonics Diana Valencia (OCA), KITP, 31 March 2010 Earth s Structure Olivine Structure Romanowicz, 2008 Earth s Structure Upper mantle (Mg,Fe)2SiO4 α +(Mg,Fe)2Si2O6

More information

Finding terrestrial planets in the habitable zones of nearby stars

Finding terrestrial planets in the habitable zones of nearby stars Finding terrestrial planets in the habitable zones of nearby stars Part II Astrophysics Essay Simon Hodgkin & Mark Wyatt (on sabbatical) Terrestrial? 15 Exoplanets Solar system 5 4.5 g cm 3 Winn et al.

More information

The structure of rocky planets

The structure of rocky planets he structure of rocky planets Christophe Sotin Iron planets (Mercury) errestrial planets Ocean / Icy planets Icy Moons Uranus and Neptune Giant planets References: Sotin et al. (21) errestrial Planet Interiors;

More information

Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy

Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy Eliza Kempton (Formerly: Miller-Ricci) Assistant Professor of Physics Grinnell College, Grinnell,

More information

Characterization of Transiting Planet Atmospheres

Characterization of Transiting Planet Atmospheres Characterization of Transiting Planet Atmospheres Heather Knutson Division of Geological and Planetary Sciences, Caltech A Bird s-eye View of Exoplanet Atmospheres Limited information available for individual

More information

Studies of Super-Earth and Terrestrial Planet Atmospheres with JWST

Studies of Super-Earth and Terrestrial Planet Atmospheres with JWST Studies of Super-Earth and Terrestrial Planet Atmospheres with JWST Eliza Kempton (Formerly: Miller-Ricci) Assistant Professor of Physics Grinnell College + University of Maryland, College Park Image Credit:

More information

Internal structure and atmospheres of planets

Internal structure and atmospheres of planets Internal structure and atmospheres of planets SERGEI POPOV 1312.3323 Sizes and masses Radius vs. mass Results of modeling. Old (relaxed) planets. Colors correspond to different fractions of light elements.

More information

COMPOSITIONS OF HOT SUPER-EARTH ATMOSPHERES: EXPLORING KEPLER CANDIDATES

COMPOSITIONS OF HOT SUPER-EARTH ATMOSPHERES: EXPLORING KEPLER CANDIDATES Draft version April 29, 2013 Preprint typeset using L A TEX style emulateapj v. 11/10/09 COMPOSITIONS OF HOT SUPER-EARTH ATMOSPHERES: EXPLORING KEPLER CANDIDATES Y. Miguel Max Planck Institut fuer Astronomie,

More information

Minimum Radii of Super-Earths: Constraints from Giant Impacts

Minimum Radii of Super-Earths: Constraints from Giant Impacts Minimum Radii of Super-Earths: Constraints from Giant Impacts Robert A. Marcus 1,a, Dimitar Sasselov 1, Lars Hernquist 1, Sarah T. Stewart 2 1 Astronomy Department, Harvard University, Cambridge, MA 02138

More information

How Could Plato Serve Planetary Physics and. What can we Learn From Solar System Planets for Terrestrial Exoplanets?

How Could Plato Serve Planetary Physics and. What can we Learn From Solar System Planets for Terrestrial Exoplanets? How Could Plato Serve Planetary Physics and Leben und die Entwicklung der Planeten What can we Learn From Solar System Planets for Terrestrial Exoplanets? Tilman Spohn Tilman Spohn PLATO What we expect

More information

The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b

The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b Mon. Not. R. Astron. Soc. 407, 910 922 (2010) doi:10.1111/j.1365-2966.2010.17012.x The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b Brian Jackson, 1 Neil Miller, 2 Rory

More information

Planetary interiors: What they can(not) tell us about formation

Planetary interiors: What they can(not) tell us about formation Planetary interiors: What they can(not) tell us about formation Methods and constraints Jérémy Leconte Timeline Formation ( 1-10 Myr) Mass Radius Orbital Parameters Stellar Parameters... Evolution ( 1-10

More information

Kepler s Multiple Planet Systems

Kepler s Multiple Planet Systems Kepler s Multiple Planet Systems TITech & Kobe Univ. February 2018 Jack J. Lissauer NASA Ames Outline Solar System & Exoplanets Kepler Mission Kepler planets and planetery systems Principal Kepler findings

More information

OCEAN PLANET OR THICK ATMOSPHERE: ON THE MASS-RADIUS RELATIONSHIP FOR SOLID EXOPLANETS WITH MASSIVE ATMOSPHERES

OCEAN PLANET OR THICK ATMOSPHERE: ON THE MASS-RADIUS RELATIONSHIP FOR SOLID EXOPLANETS WITH MASSIVE ATMOSPHERES The Astrophysical Journal, 673:1160Y1164, 2008 February 1 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. A OCEAN PLANET OR THICK ATMOSPHERE: ON THE MASS-RADIUS RELATIONSHIP

More information

Time: a new dimension of constraints for planet formation and evolution theory

Time: a new dimension of constraints for planet formation and evolution theory S. Jin, P. Mollière Max Planck Institut for Astronomy, Heidelberg, Germany Y. Alibert & W. Benz University of Bern, Switzerland Christoph Mordasini PLATO meeting Taormina 3.12.2014 Time: a new dimension

More information

Transmission spectra of exoplanet atmospheres

Transmission spectra of exoplanet atmospheres Transmission spectra of exoplanet atmospheres David Ehrenreich Grenoble Institute of Planetology and Astrophysics (IPAG) Alain Lecavelier des Etangs (IAP) David K. Sing (U Exeter) J.-M. Désert (Harvard)

More information

Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations

Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations Dr. Katja Poppenhaeger Sagan Fellow Harvard-Smithsonian Center for Astrophysics Exoplanets Exoplanets in 2005 (from the

More information

Precise Stellar Parameters are Crucial for Constraining Transiting Exoplanet Interiors

Precise Stellar Parameters are Crucial for Constraining Transiting Exoplanet Interiors Precise Stellar Parameters are Crucial for Constraining Transiting Exoplanet Interiors Andrew Vanderburg! NASA Sagan Fellow The University of Texas at Austin Juliette C. Becker, Lars A. Buchhave, Annelies

More information

Mass-Radius Relationships for Solid Exoplanets

Mass-Radius Relationships for Solid Exoplanets Mass-Radius Relationships for Solid Exoplanets Sara Seager Massachusetts Institute of Technology See Seager, Kuchner, HierMichelson Summer Workshop 2007 Image credit: NASA/JPL-Caltech/R. Hurt (SSC) Majumder,

More information

Why Search for Extrasolar Planets?

Why Search for Extrasolar Planets? Why Search for Extrasolar Planets? What is the diversity of habitats for life in the universe? Are Earth-like planets common or rare in our region of the galaxy? We have an elaborate and self-consistent

More information

Characterizing the Atmospheres of Extrasolar Planets. Julianne I. Moses (Space Science Institute)

Characterizing the Atmospheres of Extrasolar Planets. Julianne I. Moses (Space Science Institute) Characterizing the Atmospheres of Extrasolar Planets Julianne I. Moses (Space Science Institute) Intern Brown Bag, 18 June 2014 1795 Confirmed Exoplanets as of 16 June 2014 hot Jupiters Jupiter Super Earths

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Optimal measures for characterizing water-rich super-earths

Optimal measures for characterizing water-rich super-earths International Journal of Astrobiology 14 (2): 177 189 (2015) doi:10.1017/s1473550414000421 Cambridge University Press 2014 Optimal measures for characterizing water-rich super-earths Nikku Madhusudhan

More information

DETAILED MODELS OF SUPER-EARTHS: HOW WELL CAN WE INFER BULK PROPERTIES?

DETAILED MODELS OF SUPER-EARTHS: HOW WELL CAN WE INFER BULK PROPERTIES? The Astrophysical Journal, 665:1413 1420, 2007 August 20 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. A DETAILED MODELS OF SUPER-EARTHS: HOW WELL CAN WE INFER BULK

More information

The Solar System consists of

The Solar System consists of The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar

More information

The Transit Method: Results from the Ground

The Transit Method: Results from the Ground The Transit Method: Results from the Ground Results from individual transit search programs The Mass-Radius relationships (internal structure) Global Properties The Rossiter-McClaughlin Effect There are

More information

Planets of the Solar System. What s Initially Available: Solar Nebula - Composition

Planets of the Solar System. What s Initially Available: Solar Nebula - Composition Planets of the Solar System What s Initially Available: Solar Nebula - Composition Size versus Mass depends on composition - fight between gravity & pressure Differentiation causes the picture to be more

More information

Helmut Lammer Austrian Academy of Sciences, Space Research Institute Schmiedlstr. 6, A-8042 Graz, Austria (

Helmut Lammer Austrian Academy of Sciences, Space Research Institute Schmiedlstr. 6, A-8042 Graz, Austria ( The search of habitable Earth-like exoplanets Helmut Lammer Austrian Academy of Sciences, Space Research Institute Schmiedlstr. 6, A-8042 Graz, Austria (email: helmut.lammer@oeaw.ac.at) Graz in Space 2008

More information

arxiv: v1 [astro-ph] 25 Oct 2007

arxiv: v1 [astro-ph] 25 Oct 2007 Draft version September 5, 2018 Preprint typeset using L A TEX style emulateapj v. 12/01/06 OCEAN PLANET OR THICK ATMOSPHERE: ON THE MASS-RADIUS RELATIONSHIP FOR SOLID EXOPLANETS WITH MASSIVE ATMOSPHERES

More information

Transits of planets: mean densities

Transits of planets: mean densities Chapter 3 Transits of planets: mean densities Close-in (short period) planets have a relatively high chance to transit in front of the star. A transit introduces a small periodic dimming of the star which

More information

LAST RESULTS ON THE CHARACTERIZATION OF EXOPLANETS AND THEIR STELLAR HOSTS with VEGA/CHARA Ligi et al. 2016, A&A, 586, A94

LAST RESULTS ON THE CHARACTERIZATION OF EXOPLANETS AND THEIR STELLAR HOSTS with VEGA/CHARA Ligi et al. 2016, A&A, 586, A94 LAST RESULTS ON THE CHARACTERIZATION OF EXOPLANETS AND THEIR STELLAR HOSTS with VEGA/CHARA Ligi et al. 2016, A&A, 586, A94 ROXANNE LIGI CNES POST-DOCTORAL FELLOW LABORATOIRE D ASTROPHYSIQUE DE MARSEILLE

More information

Professional / Amateur collaborations in exoplanetary science

Professional / Amateur collaborations in exoplanetary science Professional / Amateur collaborations in exoplanetary science Alexandre Santerne Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto alexandre.santerne@astro.up.pt Outline Exoplanets:

More information

Heavy meteal rules. Vardan Adibekyan Institute of Astrophysics and Space Sciences. The star-planet connection. 1 June 2015 NAOJ, Tokyo

Heavy meteal rules. Vardan Adibekyan Institute of Astrophysics and Space Sciences. The star-planet connection. 1 June 2015 NAOJ, Tokyo The star-planet connection Institute of Astrophysics and Space Sciences 1 June 2015 NAOJ, Tokyo 1 Introduction to exoplanets Diversity of exoplanets Planet formation theories 2 Planet formation and metallicity

More information

Observational Astronomy - Lecture 6 Solar System I - The Planets

Observational Astronomy - Lecture 6 Solar System I - The Planets Observational Astronomy - Lecture 6 Solar System I - The Planets Craig Lage New York University - Department of Physics craig.lage@nyu.edu March 23, 2014 1 / 39 The Sun and the Earth The Sun is 23,000

More information

PLANETARY RADII ACROSS FIVE ORDERS OF MAGNITUDE IN MASS AND STELLAR INSOLATION: APPLICATION TO TRANSITS

PLANETARY RADII ACROSS FIVE ORDERS OF MAGNITUDE IN MASS AND STELLAR INSOLATION: APPLICATION TO TRANSITS The Astrophysical Journal, 659:1661 1672, 2007 April 20 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. PLANETARY RADII ACROSS FIVE ORDERS OF MAGNITUDE IN MASS AND STELLAR

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from N.P.) Rotation Axes to orbit plane (Sun & most planets;

More information

General Introduction. The Earth as an evolving geologic body

General Introduction. The Earth as an evolving geologic body General Introduction The Earth as an evolving geologic body Unique/important attributes of Planet Earth 1. Rocky planet w/ strong magnetic field Mercury has a weak field, Mars has a dead field 1 Unique/important

More information

Comparative Planetology: Transiting Exoplanet Science with JWST

Comparative Planetology: Transiting Exoplanet Science with JWST Comparative Planetology: Transiting Exoplanet Science with JWST Mark Clampin, JWST Science Working Group, JWST Transits Working Group, Drake Deming, and Don Lindler MarkClampin JWSTObservatoryProjectScientist

More information

The Physics of Exoplanets

The Physics of Exoplanets The Physics of Exoplanets Heike Rauer Institut für Planetenforschung, DLR, Berlin-Adlershof, Zentrum für Astronomie und Astrophysik, TU Berlin Formation in protoplanetary disk, migration Loss of primary,

More information

Silicate Atmospheres, Clouds, and Fractional Vaporization of Hot Earth-like Exoplanets

Silicate Atmospheres, Clouds, and Fractional Vaporization of Hot Earth-like Exoplanets Silicate Atmospheres, Clouds, and Fractional Vaporization of Hot Earth-like Exoplanets Laura Schaefer and Bruce Fegley, Jr. Planetary Chemistry Laboratory Department of Earth and Planetary Sciences Washington

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

The Terrestrial Planets

The Terrestrial Planets The Terrestrial Planets Large Bodies: Earth (1 R E, 1 M E ) Venus (0.95 R E, 0.82 M E ) Small Bodies: Mars (0.53 R E, 0.11 M E ) Mercury (0.38 R E, 0.055 M E ) Moon (0.27 R E, 0.012 M E ) The surfaces

More information

Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with

Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with Robert Wilson, Steven Majewski, Katia Cunha, Verne Smith, Diogo Souto, Chad Bender, Suvrath Mahadevan,

More information

Super-Earths as Failed Cores in Orbital Migration Traps

Super-Earths as Failed Cores in Orbital Migration Traps Super-Earths as Failed Cores in Orbital Migration Traps Yasuhiro Hasegawa (Jet Propulsion Laboratory, California Institute of Technology) Hasegawa 2016, ApJ, 832, 83 Copyright 2017. All rights reserved.

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

HARPS-N Contributions to the Mass-Radius

HARPS-N Contributions to the Mass-Radius HARPS-N Contributions to the Mass-Radius Diagram for Rocky Exoplanets David Latham for the HARPS-N team HARPS-N Collaboration Francesco Pepe, Andrew Collier Cameron, David W. Latham, Emilio Molinari, Stéphane

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week - Dynamics Reynolds number, turbulent vs. laminar flow Velocity fluctuations, Kolmogorov cascade Brunt-Vaisala frequency, gravity waves Rossby waves,

More information

CHARACTERIZING EXOPLANETS SATELLITE

CHARACTERIZING EXOPLANETS SATELLITE JWST Transit Workshop Pasadena CHARACTERIZING EXOPLANETS SATELLITE David Ehrenreich! CHEOPS Mission Scientist s first small-class mission Mass-radius diagram Apparent continuity of masses for exoplanets

More information

Internal structures and compositions of (giant) exoplanets. Tristan Guillot (OCA, Nice)

Internal structures and compositions of (giant) exoplanets. Tristan Guillot (OCA, Nice) Internal structures and compositions of (giant) exoplanets Tristan Guillot (OCA, Nice) Exoplanets in Lund Lund 6-8 May 2015 Linking interior & atmospheric composition Interior Atmosphere If(h clou low

More information

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology A. Sozzetti INAF Osservatorio Astrofisico di Torino Detection/Characterization Detection (Visible): - Doppler spectroscopy (95%) -

More information

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum Conclusions PD. Dr. C. Mordasini Max Planck Institute for Astronomy, Heidelberg Programm: 1) Weiterführende Vorlesungen 2) Fragebogen 3) Eigene Forschung 4) Bachelor/Masterarbeiten

More information

Observations of Gas-Giant Exoplanet Atmospheres

Observations of Gas-Giant Exoplanet Atmospheres Observations of Gas-Giant Exoplanet Atmospheres http://en.wikipedia.org/wiki/file:upsilonandromedae_d_moons.jpg Brian Jackson - NASA/GSFC Earliest Observations of a Jovian atmosphere From Rogers (1995)

More information

Exoplanet Mass, Radius, and the Search for Habitable Worlds

Exoplanet Mass, Radius, and the Search for Habitable Worlds Sara Seager Exoplanet Mass, Radius, and the Search for Habitable Worlds O ur sun is one amongst hundreds of billions of stars in our galaxy. Based on the number of times the planetary dice must have been

More information

Adam Burrows, Princeton April 7, KITP Public Lecture

Adam Burrows, Princeton April 7, KITP Public Lecture Adam Burrows, Princeton April 7, 2010 KITP Public Lecture The Ancient History of Comparative Planetology There are infinite worlds both like and unlike this world of ours...we must believe that in all

More information

Hunting Habitable Shadows. Elizabeth Tasker

Hunting Habitable Shadows. Elizabeth Tasker Hunting Habitable Shadows Elizabeth Tasker Saturn Earth Uranus Mercury Mars Jupiter Venus Neptune Saturn Earth Uranus Mercury Mars Jupiter Venus Neptune 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004

More information

Michaël Gillon (Université de Liège, Belgium)

Michaël Gillon (Université de Liège, Belgium) 12th Meeting of the FNRS Contact Group Astronomie & Astrophysique 17 May 2011 Planetarium, Brussels Michaël Gillon (Université de Liège, Belgium) michael.gillon@ulg.ac.be ~1% pour Soleil + Jupiter Brown

More information

Challenges in Exoplanet Research for the UV

Challenges in Exoplanet Research for the UV Challenges in UV Astronomy Garching 7 Oct 2013 Collaborators Catherine Huitson Exeter, UK / U of Colorado Alain Lecavelier des Etangs IAP, France Alfred Vidal-Madjar IAP, France V. Bourrier IAP, France

More information

The Kepler Catalog A Tale of Evaporation

The Kepler Catalog A Tale of Evaporation Astronomy & Astrophysics manuscript no. report_corrected c ESO 2016 September 2, 2016 The Kepler Catalog A Tale of Evaporation Corentin C. Cadiou, 1 James E. Owen 2 and Fred C. Adams 3 1 Sorbonne Universités,

More information

Exoplanetary Science with Mul4- Object Spectrographs (and GLAO) Norio Narita (NAOJ)

Exoplanetary Science with Mul4- Object Spectrographs (and GLAO) Norio Narita (NAOJ) Exoplanetary Science with Mul4- Object Spectrographs (and GLAO) Norio Narita (NAOJ) Outline Conclusion of My Considera4ons Current Status of Exoplanetary Science Summary of Previous Discoveries Future

More information

Observational constraints from the Solar System and from Extrasolar Planets

Observational constraints from the Solar System and from Extrasolar Planets Lecture 1 Part II Observational constraints from the Solar System and from Extrasolar Planets Lecture Universität Heidelberg WS 11/12 Dr. Christoph Mordasini mordasini@mpia.de Mentor Prof. T. Henning Lecture

More information

Atmospheric Chemistry on Substellar Objects

Atmospheric Chemistry on Substellar Objects Atmospheric Chemistry on Substellar Objects Channon Visscher Lunar and Planetary Institute, USRA UHCL Spring Seminar Series 2010 Image Credit: NASA/JPL-Caltech/R. Hurt Outline introduction to substellar

More information

Transiting Exoplanet Simulations with the James Webb Space Telescope

Transiting Exoplanet Simulations with the James Webb Space Telescope Transiting Exoplanet Simulations with the James Webb Space Telescope Natasha Batalha 1, Jason Kalirai 1, Jonathan Lunine 2, Mark Clampin 3, Don Lindler 3 1 Space Telescope Science Institute, 3700 San Martin

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 28. Search for life on jovian moons. March

More information

Evaporation of planetary atmospheres

Evaporation of planetary atmospheres Evaporation of planetary atmospheres Alain Lecavelier des Etangs Institut d Astrophysique de Paris Une planète s évapore Evaporation of planetary atmospheres V. Bourrier (IAP) R. Ferlet (IAP) G. Hébrard

More information

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France What is to expect from the transit method M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France Transit - method Occurrence: only if the planet orbital plane is close to

More information

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009 Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets PHY 688, Lecture 24 Mar 23, 2009 Outline Review of previous lecture: atmospheric temperature structure of irradiated planets isothermal

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has

More information

http://eps.mcgill.ca/~courses/c201_winter/ http://eps.mcgill.ca/~courses/c201_winter/ Neutron Proton Nucleosynthesis neutron!! electron!+!proton!!=!!é!!+!h +!! t 1/2 =!12!minutes H + +!neutron!! Deuterium!(D)

More information

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley Extrasolar Planets Properties 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Finding extrasolar planets is hard quick recap Planet Detection Direct: pictures or spectra of the planets

More information

arxiv: v1 [astro-ph.ep] 16 Oct 2017

arxiv: v1 [astro-ph.ep] 16 Oct 2017 Assessing the Interior Structure of Terrestrial Exoplanets with Implications for Habitability Caroline Dorn, Dan J. Bower, and Antoine Rozel arxiv:1710.05605v1 [astro-ph.ep] 16 Oct 2017 Abstract Astrophysical

More information

Overview and Kepler Update

Overview and Kepler Update verview and Kepler Update Dimitar Sasselov Department of Astronomy rigins of Life Initiative Harvard University Credit: S. Cundiff Exoplanets and the Planetary rigins of Life Life is a planetary phenomenon

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

GG101 Dynamic Earth Dr. Fletcher, POST 802A Text Fletcher, WileyPLUS

GG101 Dynamic Earth Dr. Fletcher, POST 802A Text Fletcher, WileyPLUS GG101 Dynamic Earth Dr. Fletcher, POST 802A fletcher@soest.hawaii.edu 956-2582 Text Fletcher, 2011 WileyPLUS Three exams, 50% total 20 to 25 homeworks, 50% total All homeworks done on-line Assignments

More information

The obliquities of the planetary systems detected with CHEOPS. Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence

The obliquities of the planetary systems detected with CHEOPS. Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence The obliquities of the planetary systems detected with CHEOPS Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence CHEOPS Characterizing Exoplanets Satellite Science Workshop

More information

Journal of Astrobiology and Outreach Dr. Jean Schneider Editorial Board member

Journal of Astrobiology and Outreach Dr. Jean Schneider Editorial Board member Journal of Astrobiology and Outreach Dr. Jean Schneider Editorial Board member Senior Researcher in Astronomy Univers et Théorie Paris Observatory Meudon France Biography Dr. Jean Schneider He is a Promoter

More information

Astr 1050 Fri., Feb. 24, 2017

Astr 1050 Fri., Feb. 24, 2017 Astr 1050 Fri., Feb. 24, 2017 Chapter 7 & 8: Overview & Formation of the Solar System Reading: Chapters 7 on Solar System Chapter 8: Earth & Terrestrial Planets Reminders: New homework on MA up this afternoon,

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Current Properties of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from North pole) Rotation

More information

Silicate cloud formation in the atmospheres of close-in super-earths and gas giants

Silicate cloud formation in the atmospheres of close-in super-earths and gas giants Silicate cloud formation in the atmospheres of close-in super-earths and gas giants by Gourav Mahapatra Student number: 4413385 in partial fulfillment of the requirements for the degree of Master of Science

More information

Detection and characterization of exoplanets from space

Detection and characterization of exoplanets from space Detection and characterization of exoplanets from space Heike Rauer 1,2, 1:Institute for Planetary Research, DLR, Berlin 2:Center for Astronomy and Astrophysics, TU Berlin Exoplanet Space Missions and

More information

III The properties of extrasolar planets

III The properties of extrasolar planets III The properties of extrasolar planets (as of early 2016) http://sgoodwin.staff.shef.ac.uk/phy229.html 3.0 Introduction This lecture will discuss what we have found so far. It is important to remember

More information

Astronomy 330 HW 2. Outline. Presentations. ! Alex Bara

Astronomy 330 HW 2. Outline. Presentations. ! Alex Bara Astronomy 330 This class (Lecture 10): Origin of the Moon Ilana Strauss Next Class: Our Planet Scott Huber Thomas Hymel HW 2! Alex Bara http://userpages.bright.net/~phobia/main.htm! Margaret Sharp http://hubpages.com/hub/proof-that-ufos-exist---

More information

26. Introduction to the Solar System page 1

26. Introduction to the Solar System page 1 26. Introduction to the Solar System page 1 A. To get a sense of scale: Here is a "scale model for the Solar System" illustrating the relative sizes of, and distances between, the planets and the Sun.

More information

Volatiles in the terrestrial planets. Sujoy Mukhopadhyay University of California, Davis CIDER, 2014

Volatiles in the terrestrial planets. Sujoy Mukhopadhyay University of California, Davis CIDER, 2014 Volatiles in the terrestrial planets Sujoy Mukhopadhyay University of California, Davis CIDER, 2014 Atmophiles: Elements I will talk about rock-loving iron-loving sulfur-loving Temperatures in Protoplanetary

More information

GJ 436. Michaël Gillon (Geneva)

GJ 436. Michaël Gillon (Geneva) Michaël Gillon (Geneva) Michelson Summer Workshop - July 25, 2007 2004: first hot Neptunes detected by radial velocity Among them: b (Butler et al. 2004, Maness et al. 2007) M * ~ 0.44 M Sun (M2.5V) R

More information

Habitable Planets: 2 Estimating f s "

Habitable Planets: 2 Estimating f s Habitable Planets: 2 Estimating f s " Stellar Requirements (f s )" We assume that our planet needs to orbit a star" Leaves out planets around brown dwarfs" Leaves out nomad planets (may be many)" About

More information

3.4 Transiting planets

3.4 Transiting planets 64 CHAPTER 3. TRANSITS OF PLANETS: MEAN DENSITIES 3.4 Transiting planets A transits of a planet in front of its parent star occurs if the line of sight is very close to the orbital plane. The transit probability

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 18 Planetary System Formation and Evolution February 25, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Evaporation of extrasolar planets

Evaporation of extrasolar planets Bull. Astr. Soc. India (2010) 38, 137 145 Evaporation of extrasolar planets A. Lecavelier des Etangs 1 1 Institut d astrophysique de Paris, CNRS/UPMC, 98bis bld Arago, F-75014 Paris, France Received 2010

More information

[25] Exoplanet Characterization (11/30/17)

[25] Exoplanet Characterization (11/30/17) 1 [25] Exoplanet Characterization (11/30/17) Upcoming Items APOD 12/2/16 1. Read chapters 24.1-24.3 for Tuesday 2. We will have a final exam review in the last discussion section (Friday, Dec 8) and also

More information

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets Credit: NASA/Kepler Mission/Dana Berry Exoplanets Outline What is an exoplanet? Why are they interesting? How can we find them? Exolife?? The future... Jon Thaler Exoplanets 2 What is an Exoplanet? Most

More information

Solar System Physics I

Solar System Physics I Department of Physics and Astronomy Astronomy 1X Session 2006-07 Solar System Physics I Dr Martin Hendry 6 lectures, beginning Autumn 2006 Lectures 4-6: Key Features of the Jovian and Terrestrial Planets

More information

The Search for Another Earth Part II

The Search for Another Earth Part II The Search for Another Earth Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will

More information

Science with Transiting Planets TIARA Winter School on Exoplanets 2008

Science with Transiting Planets TIARA Winter School on Exoplanets 2008 Science with Transiting Planets TIARA Winter School on Exoplanets 2008 Eric Agol University of Thanks to Josh Winn for slides 1 Venusian transit 2004 August 6, 2004 from Slovenia (Lajovic et al.) 2 History

More information

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009 Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets PHY 688, Lecture 23 Mar 20, 2009 Outline Review of previous lecture hot Jupiters; transiting planets primary eclipses and atmospheric

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 17 Planetary System Formation and Evolution February 22, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ)

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ) Search for Transiting Planets around Nearby M Dwarfs Norio Narita (NAOJ) Outline Introduction of Current Status of Exoplanet Studies Motivation for Transiting Planets around Nearby M Dwarfs Roadmap and

More information

Structure and evolution of (giant) exoplanets: some news from the theoretical front. I. Baraffe University of Exeter

Structure and evolution of (giant) exoplanets: some news from the theoretical front. I. Baraffe University of Exeter Structure and evolution of (giant) exoplanets: some news from the theoretical front I. Baraffe University of Exeter I) Structure of Jupiter and Saturn II) Exoplanets: Interior structure and evolutionary

More information

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley ASTR 200 : Lecture 6 Introduction to the Solar System 1 2004 Pearson Education Inc., publishing as Addison-Wesley Comparative Planetology Studying the similarities among and differences between the planets

More information

TMT High-Contrast Exoplanet Science. Michael Fitzgerald University of California, Los Angeles (UCLA)

TMT High-Contrast Exoplanet Science. Michael Fitzgerald University of California, Los Angeles (UCLA) TMT High-Contrast Exoplanet Science Michael Fitzgerald University of California, Los Angeles (UCLA) The Next Decade+ Demographics Kepler has provided rich census of radius/semimajoraxis space down to terrestrial

More information