The impact flux (hazard?) on Earth

Size: px
Start display at page:

Download "The impact flux (hazard?) on Earth"

Transcription

1 The impact flux (hazard?) on Earth The young Earth and Moon suffered the same heavy bombardment early in the Solar System Only the Moon preserves the record of this The lunar record indicates roughly constant crater formation during the last 3 billion years. Same for Earth?

2 Earth cratering rate: last 3x10 yr 9 3 estimates of the rate: 1) Look at lunar record and adjust for Earth's larger size (bigger target!) and gravity. 2) Look at recent terrestrial craters and correct for erosion to get rate 3) Estimate cratering rate from studies of near Earth objects (Apollos and Atens) hitting Earth All agree to factor of 2. Implies rate has been ~constant

3 At what rate do objects strike Earth? Is this something to worry about? Should we spend 100 M$ for some telescopes to find the impactors?

4 Should money be spent? A) Yes, we should do this to protect society. B) No, if the heavens decide our time is up, so be it. C) No, we should spend the money on other more urgent social programs (eg, health care, housing) D) No, this is just astronomers trying to get money

5 Proceed from smallest to largest Interplanetary Dust Paticles (IDPs) Several tons of dust (1 100 µm) hit Earth per day Dust collected in the stratosphere by old spy planes! Many IDPs are of cometary origin

6 Meteors ~0.1 mm to cm sized bodies streaking through atmosphere at km/second! Light is emitted as particle 'burns up' high in atmosphere Some times of year are especially active for meteor activity: meteor showers:why?

7 Meteor showers are linked to comets Comet leaves debris behind in path On the day Earth intersects comet's orbit, showers occur (every year)

8 Meteorites (cm to 10 meters) Meteorites are smallest objects which penetrate atmosphere and reach ground (but atmosphere slows!) Many collected in Antarctica Some 'falls' observed; sometimes spectacular fireballs No confirmed human deaths

9 The Peekskill fireball October 9, 1992 Crossed northeastern U.S.; was heavily videotaped (football!). Film shown in class. Allowed orbit determination (asteroidal orbit) Hit a car!

10 meters Last objects for which Earth's atmosphere is an obstacle (slows them down before ground) But kinetic energy very large (>10 megatons) Explosion in atmosphere (10 30 km up) One happened in Tunguska, Siberia in June 1908 In London: Explosion HEARD Barometers moved Nights glowed for days

11 Tunguska effects First expeditions >20 years later Bolide (meteor) was sighted 500 km away Witnesses knocked off porches 50 km Witnesses found herds of burnt reindeer

12 Radial treefall pattern for >10 km Similar to atmospheric nuclear explosion 1930 (above) Today (below)

13 At what rate do 'Tunguskas' happen? Every few hundred years Human recorded history only a few thousand years...

14 In your lifetime: Shoemaker Levy 9 hit Jupiter! A roughly 1 km comet was tidally disrupted while passing Jupiter and then struck the planet in 1994.

15 Biggies: The KT event The dinosaurs suddenly disappeared 65 Myr ago after dominating the planet for >100 Myr The impact of an asteroid is believed to be responsible. What evidence??

16 Evidence (1): Iridium layer Iridium is 'iron loving' element, almost all sank to Earth's core But there is a layer of iridium rich sediment all over the Earth at an age corresponding to 65 Myr ago ASTEROIDS (at least non differentiated ones) are rich in iridium

17 Measurements of 'iridium spike' Concentration of iridium as a function of height in geologic strata (left is older strata, right is younger) Where could a massive input of iridium come from? Not volcanoes. Also evidence for global fires (ash layer)

18 (2) Crater found! Chicxulub crater identified in Mexico, just off Yucatan peninsula. Crater date: ~65 Myr ago Shocked rocks and impact glasses prove this is an impact crater After effects are what caused extinctions: caused 'global winter'for several years while dust settled

19 Chicxulub is a multi ringed impact basin Gravity profile maps show the details of the partially submerged structure, 180 km diam. From this size and iridium content, impactor estimated to be 10 km diameter How often do such events happen?

20 Again, bigger = rarer At left, asteroid diameter (meters) versus frequency K/T ~ 100 Myr Tunguskas ~300 yrs Intermediate (like Berringer crater, left) sizes every ~100 kyr

21 The impact threat (?) Objects with 1 km or greater have globally catastrophic consequences.

22 Impact consequences On any given year, there is a roughly 1 in 100,000 chance of a >1 km impactor hitting This scale of disaster has never happened in recorded history. Should we do something? Consequence of 1 km impactor : million fatalities (depending on where it hits)

23 Impact insurance? We spend hundreds of millions of $/year for airline safety, but 'only' a few hundred people die per year. Airline death rate: (100 people/year) 1 km impactor only occurs every 10 years but fatalities are 100 million 6 Impact death rate is therefore also 100 /year But airplane accidents can NEVER kill everyone... Societal risk vs personal.

24 'Personal' risks Estimated risk for an American over a 50 year period. Risk of death from botulism 1 in 2,000,000 Risk of death from fireworks 1 in 1,000,000 Risk of death from tornados 1 in 50,000 Risk of death from airplane crash 1 in 20,000 Risk of death from asteroid impact 1 in 20,000 Risk of death from electrocution Risk of death from firearms accident 1 in 2,000 Risk of death from homicide Risk of death from automobile accident 1 in in 5,000 1 in 300

25 Societal risks Impacts are the only risk that can threaten all of humanity. Should we spend money trying to find potentially impacting asteroids??

26 Surveying the near Earth objects There are several small telescopes that search for Earth crossing asteroids and comets Would take a hundred years (a human lifetime) to find all such 'NEOs' Should ~$100 million be spent to find all in 10 years? (< annual budget of U.S. FAA for airlines)

27 Should money be spent? A) Yes, we should do this to protect society. B) No, if the heavens decide our time is up, so be it. C) No, we should spend the money on other more urgent social programs (eg, health care, housing) D) No, this is just astronomers trying to get money

28 Pan Starrs is being built! A network of telescopes which will search the entire sky several times per month. 1.4 gigapixel camera on 1.8m telescopes see: pan starrs.ifa.hawaii.edu/

The End of the World...

The End of the World... The End of the World... as we know it. Impacts in the Inner Solar System Collisions have played a key role in the past formation of planets by accretion fragmentation (formation of the Moon) sustained

More information

Two significant figures are enough! You can round your calculations to 2 significant figures. Hopefully this will prevent some of the sloppy

Two significant figures are enough! You can round your calculations to 2 significant figures. Hopefully this will prevent some of the sloppy Homework Issues Two significant figures are enough! You can round your calculations to 2 significant figures. Hopefully this will prevent some of the sloppy mistakes. The speed of light is 299,792,458

More information

Big Impacts and Bio-Extinctions ASTR 2120 Sarazin

Big Impacts and Bio-Extinctions ASTR 2120 Sarazin Big Impacts and Bio-Extinctions ASTR 2120 Sarazin Final Exam Saturday, May 5, 9:00 am - noon ASTR 265 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

Asteroids, Comets and NEOs. (Answers) Solar System Impacts. Author: Sarah Roberts

Asteroids, Comets and NEOs. (Answers) Solar System Impacts. Author: Sarah Roberts Asteroids, Comets and NEOs (Answers) Author: Sarah Roberts Asteroids, Comets and NEOs - Impact craters on the Earth 1. Using the data given below for real impact craters on the Earth, investigate the effect

More information

Chapter 12. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 34: Asteroids and Comets [4/13/07] Announcements. Near-Earth Objects

Chapter 12. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 34: Asteroids and Comets [4/13/07] Announcements. Near-Earth Objects ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 34: Asteroids and Comets [4/13/07] Announcements Near-Earth Objects

More information

Chapter 9 Remnants of Rock and Ice. Asteroids, Comets, and Pluto

Chapter 9 Remnants of Rock and Ice. Asteroids, Comets, and Pluto Chapter 9 Remnants of Rock and Ice Asteroids, Comets, and Pluto 9.1 Asteroids and Meteorites Our Goals for Learning Why is there an asteroid belt? How are meteorites related to asteroids? Asteroid Facts

More information

Homework #3 is due Friday at 11:50am! Nighttime observing has 10 more nights. Check the webpage. 1 st exam is October 10 th 2 weeks from Friday.

Homework #3 is due Friday at 11:50am! Nighttime observing has 10 more nights. Check the webpage. 1 st exam is October 10 th 2 weeks from Friday. Homework #3 is due Friday at 11:50am! Nighttime observing has 10 more nights. Check the webpage. 1 st exam is October 10 th 2 weeks from Friday. Outline Back to Atoms for fun The Earth as a Planet. magnetic

More information

Outline. Atoms in the Solar System. Atoms in the Earth. Back to Atoms for fun The Earth as a Planet. Homework #3 is due Friday at 11:50am!

Outline. Atoms in the Solar System. Atoms in the Earth. Back to Atoms for fun The Earth as a Planet. Homework #3 is due Friday at 11:50am! Homework #3 is due Friday at 11:50am! Nighttime observing has more nights. Check the webpage. 1 st exam is October th 2 weeks from Friday. Outline Back to Atoms for fun The Earth as a Planet. magnetic

More information

GET-WISE Presentation on Collisions in the Solar System Dr. Jeffrey Morgenthaler

GET-WISE Presentation on Collisions in the Solar System Dr. Jeffrey Morgenthaler When Worlds Collide GET-WISE Presentation on Collisions in the Solar System Dr. Jeffrey Morgenthaler Copyright, 1996 Dale Carnegie & Associates, Inc. Introduction This talk is about impacts between objects

More information

Asteroids: Introduction

Asteroids: Introduction Asteroids: Introduction Name Read through the information below. Then complete the Fill-Ins at the bottom of page. Asteroids are rocky objects that orbit the Sun in our solar system. Also known as minor

More information

Smaller Bodies of the Solar System Chapter 2 continued

Smaller Bodies of the Solar System Chapter 2 continued Smaller Bodies of the Solar System Chapter 2 continued Small, rocky (sometimes metallic) bodies with no atmospheres. or planetoids 100,000 numbered and 12,000 named 1-1000 km in size most are small ~ 1

More information

Death From the Skies

Death From the Skies Death From the Skies Learning Objectives! Use the Titius-Bode Rule to list the planet s distances. What connects the Titius-Bode Rule to the asteroids?! How big is Ceres? How big are typical asteroids?

More information

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers Review Clickers The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts Asteroids a) are rocky and small typically the size of a grain of rice or

More information

Terrestrial World Surfaces

Terrestrial World Surfaces 1 Terrestrial World Surfaces Solid rocky surfaces shaped (to varying degrees) by: Impact cratering Volcanism Tectonics (gross movement of surface by interior forces) Erosion (by impacts or by weather)

More information

PTYS 214 Spring Announcements. Midterm #4 in one week!

PTYS 214 Spring Announcements. Midterm #4 in one week! PTYS 214 Spring 2018 Announcements Midterm #4 in one week! 1 Previously Mass extinctions K/Pg extinction Impact theory -- evidence? Other possible causes Other extinctions 2 Where did the K/Pg impactor

More information

Solar System Debris. Asteroids 11/28/2010. Large rocky debris orbiting the Sun. Ceres, the largest asteroid. Discovering Asteroids

Solar System Debris. Asteroids 11/28/2010. Large rocky debris orbiting the Sun. Ceres, the largest asteroid. Discovering Asteroids Solar System Debris Material leftover from the formation of the Solar System Gives important clues about its origin Composition: Asteroids and Meteoroids: rock and iron Comets: ice and dust The basic building

More information

The Little Things. Today. Rings, meteorites. Asteroids & Comets. Dwarf Planets Events. Homework 5. Due

The Little Things. Today. Rings, meteorites. Asteroids & Comets. Dwarf Planets Events. Homework 5. Due Today The Little Things Rings, meteorites Asteroids & Comets Dwarf Planets Events Homework 5 Due geysers on Triton Rocky Planets versus Icy Moons Rock melts at higher temperatures. Only large rocky planets

More information

Chapter 3 Checkpoint 3.1 Checkpoint 3.2 Venn Diagram: Planets versus Asteroids Checkpoint 3.3 Asteroid Crashes the Moon?

Chapter 3 Checkpoint 3.1 Checkpoint 3.2 Venn Diagram: Planets versus Asteroids Checkpoint 3.3 Asteroid Crashes the Moon? Chapter 3 Checkpoint 3.1 Which characteristics are true of both planets and asteroids? a) They are approximately spherical in shape. b) There are thousands of examples. c) They formed 1 to 2 billion years

More information

Near Earth Objects and Past Impacts

Near Earth Objects and Past Impacts Near Earth Objects and Past Impacts Part 1: NEO Impacts A very large number of meteoroids enter the Earth's atmosphere each day amounting to more than a hundred tons of material. But they are almost all

More information

Meteors. Meteors Comet dust particles entering our atmosphere and burning up from the friction. The Peekskill, NY Meteorite Fall.

Meteors. Meteors Comet dust particles entering our atmosphere and burning up from the friction. The Peekskill, NY Meteorite Fall. Meteors Meteors Comet dust particles entering our atmosphere and burning up from the friction. 2 Updated july 19, 2009 Every year about Nov. 18 the Earth goes through the path of an old comet. Meteorites

More information

The Good Earth: Introduction to Earth Science 3rd Edition Test Bank Chapter 03 - Near-Earth Objects

The Good Earth: Introduction to Earth Science 3rd Edition Test Bank Chapter 03 - Near-Earth Objects Test Bank The Good Earth: Introduction to Earth Science 3rd Edition McConnell Steer Completed download: https://testbankreal.com/download/good-earth-introduction-earth-science- 3rd-edition-test-bank-mcconnell-steer/

More information

Today. Events. The Little Things. Impacts & extinctions. Dwarf Planets. Homework 5 DUE

Today. Events. The Little Things. Impacts & extinctions. Dwarf Planets. Homework 5 DUE Today The Little Things Impacts & extinctions Dwarf Planets Events Homework 5 DUE Facts About Impacts on Earth Asteroids and comets have hit the Earth. A major impact is only a matter of time: not IF but

More information

Solar System Junk however, a large number of bodies were left over as Junk or the debris of planet building

Solar System Junk however, a large number of bodies were left over as Junk or the debris of planet building Solar System Junk So far, we ve taken a brief look at the 8 planets of the solar system, their array of moons or natural satellites, and how we think such a system formed. Most of the material in the solar

More information

Unit 12 Lesson 1 What Objects Are Part of the Solar System?

Unit 12 Lesson 1 What Objects Are Part of the Solar System? Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other

More information

Planetary Impacts Planetary Impacts

Planetary Impacts Planetary Impacts Planetary Impacts Planetary Impacts Impacts between planets & asteroid-sized bodies have played an important role in determining the planets properties. In the case of Mercury, a large head-on impact is

More information

Rings, asteroids, meteorites. Homework 5 Due. Thanksgiving next week. Final Dec. 20

Rings, asteroids, meteorites. Homework 5 Due. Thanksgiving next week. Final Dec. 20 Today Rings, asteroids, meteorites Events Homework 5 Due Thanksgiving next week Final Dec. 20 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Saturn s rings Note refraction in atmosphere

More information

Impacts from Above. Mass Extinctions: Death and Destruction

Impacts from Above. Mass Extinctions: Death and Destruction Impacts from Above 50,000 yr old Meteor Crater, AZ Watching the skies for potential catastrophes Mass Extinctions: Death and Destruction Five Big Mass Extinctions When (End of ) ~440 Myrs Ordovician ~360

More information

Boardworks Ltd Asteroids and Comets

Boardworks Ltd Asteroids and Comets 1 of 20 Boardworks Ltd 2011 Asteroids and Comets 2 of 20 Boardworks Ltd 2011 What are asteroids? 3 of 20 Boardworks Ltd 2011 Asteroids are large rocks which normally orbit the Sun. Scientists believe that

More information

12.3 Pluto: Lone Dog No More

12.3 Pluto: Lone Dog No More 12.3 Pluto: Lone Dog No More Our goals for learning: How big can a comet be? What are the large objects of the Kuiper belt like? Are Pluto and Eris planets? How big can a comet be? Pluto s Orbit Pluto

More information

Today. Events. asteroids, meteorites, comets. Homework 5 Due. things that go bump. Thanksgiving next week. Exam III - Dec. 7

Today. Events. asteroids, meteorites, comets. Homework 5 Due. things that go bump. Thanksgiving next week. Exam III - Dec. 7 Today asteroids, meteorites, comets things that go bump Events Homework 5 Due Thanksgiving next week Exam III - Dec. 7 Lots of small asteroids number A few big asteroids apparent brightness Asteroids are

More information

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet

More information

Vagabonds of the Solar System. Chapter 15

Vagabonds of the Solar System. Chapter 15 Vagabonds of the Solar System Chapter 15 ASTR 111 003 Fall 2007 Lecture 13 Nov. 26, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15)

More information

Chapter 11. Meteors, Asteroids and Comets. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 11. Meteors, Asteroids and Comets. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 11 Meteors, Asteroids and Comets Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Asteroids and Comets Orbiting the Sun are numerous small bodies the

More information

1 of 5 2/15/2013 3:45 PM

1 of 5 2/15/2013 3:45 PM 1 of 5 2/15/2013 3:45 PM + View the NASA Portal Frequently Asked Questions What Is A Near-Earth Object (NEO)? What Is The Purpose Of The Near-Earth Object Program? How Many Near-Earth Objects Have Been

More information

Contents of the Solar System

Contents of the Solar System The Solar System Contents of the Solar System Sun Planets 9 known (now: 8) Mercury, Venus, Earth, Mars ( Terrestrials ) Jupiter, Saturn, Uranus, Neptune ( Jovians ) Pluto (a Kuiper Belt object?) Natural

More information

Chapter 19: Meteorites, Asteroids, and Comets

Chapter 19: Meteorites, Asteroids, and Comets Chapter 19: Meteorites, Asteroids, and Comets Comet Superstition Throughout history, comets have been considered as portants of doom, even until very recently: Appearances of comet Kohoutek (1973), Halley

More information

Chapter 25 Meteorites, Asteroids, and Comets

Chapter 25 Meteorites, Asteroids, and Comets Chapter 25 Meteorites, Asteroids, and Comets Guidepost In Chapter 19, we began our study of planetary astronomy by asking how our solar system formed. In the five chapters that followed, we surveyed the

More information

Asteroids and Meteorites

Asteroids and Meteorites Asteroids and Meteorites Asteroid Facts Asteroids are rocky le2overs of planet forma7on. Asteroids are cratered and not round. The largest is Ceres, diameter ~1000 kilometers. 150,000 in catalogs, and

More information

Asteroid Mitigation Strategy. By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr

Asteroid Mitigation Strategy. By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr Asteroid Mitigation Strategy By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr Impact History 65 mya- End of the Jurassic Period 3.3 mya- Impact in Argentina 50,000 ya- Barringer

More information

Images of Planets 11/18/08. Cassini Movie

Images of Planets 11/18/08. Cassini Movie Announce: Look at Essay 4 for next week Thursday is Einstein Movie Images of Planets Cassini Movie Review of Ch. 9 Ch. 10 Errors in Crab Lab. 11/18/08 Images of Planets Cassini Movie Ch. 9 Questions Second

More information

Chapter 25. Meteorites, Asteroids, and Comets

Chapter 25. Meteorites, Asteroids, and Comets Chapter 25 Meteorites, Asteroids, and Comets Guidepost In Chapter 19 you began your study of planetary astronomy by considering evidence about how our solar system formed. In the five chapters that followed

More information

Small Bodies in our Solar System. Comets, Asteroids & Meteoroids

Small Bodies in our Solar System. Comets, Asteroids & Meteoroids Small Bodies in our Solar System Comets, Asteroids & Meteoroids * A Small Body is any object in the solar system that is smaller than a planet or moon, such as a comet, an asteroid, or a meteoroid. Compiled

More information

Meteorites, Impacts, and Mass Extinction

Meteorites, Impacts, and Mass Extinction Page 1 of 13 EENS 3050 Tulane University Natural Disasters Prof. Stephen A. Nelson Meteorites, Impacts, and Mass Extinction This document last updated on 27-Apr-2018 Meteorites On February 15, 2013 a meteor

More information

Pluto s orbit is tilted and significantly elliptical. Neptune orbits three times during the time Pluto orbits twice resonance prevents a collision.

Pluto s orbit is tilted and significantly elliptical. Neptune orbits three times during the time Pluto orbits twice resonance prevents a collision. Chapter 9 Part 2 Dwarf Planets and Impacts Pluto s Orbit Pluto s orbit is tilted and significantly elliptical. Neptune orbits three times during the time Pluto orbits twice resonance prevents a collision.

More information

Solar System. Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc.

Solar System. Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc. Solar System Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc. Comparative Planetology Compares planets and other solar system bodies to help understand how they

More information

5/3/17. Extinction of the Dinosaurs. Extinction of Dinosaurs - Causes. #40 Meteorite Impacts III - Dinosaur Extinction, Future Risk, Mitigation

5/3/17. Extinction of the Dinosaurs. Extinction of Dinosaurs - Causes. #40 Meteorite Impacts III - Dinosaur Extinction, Future Risk, Mitigation Paper Scores are posted Please check grades Web Exercise #6 LATE; was Due by 1 pm, Monday 5/1 There is a 2-point penalty for every 24-hour period the assignment is late. No Web Exercise #6 will be accepted

More information

The Moon. Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon

The Moon. Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon The Moon Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon Earth Moon Semi-major Axis 1 A.U. 384 x 10 3 km Inclination 0 Orbital period 1.000 tropical year 27.32

More information

Where in the Solar System Are Smaller Objects Found?

Where in the Solar System Are Smaller Objects Found? 3.5 Explore Where in the Solar System Are Smaller Objects Found? In Learning Set 1, you read about some of the other objects in the solar system. You learned about dwarf planets and smaller solar system

More information

6. (11.2) What shape are typical asteroids and how do we know? Why does Ceres not have this shape?

6. (11.2) What shape are typical asteroids and how do we know? Why does Ceres not have this shape? SUMMARY Our Solar System contains numerous small bodies: dwarf planets, asteroids, comets, and meteoroids. They are important astronomically because they give us information about the time of formation,

More information

Laboratory 15: Meteor Impact

Laboratory 15: Meteor Impact Laboratory 15: Meteor Impact Figure 1: Meteor Crater Meteor Crater was formed about 50,000 years ago by a massive meteorite striking the Earth. There were no humans living in North America at that time:

More information

Lecture Outlines. Chapter 14. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 14. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 14 Astronomy Today 7th Edition Chaisson/McMillan Chapter 14 Solar System Debris Units of Chapter 14 14.1 Asteroids What Killed the Dinosaurs? 14.2 Comets 14.3 Beyond Neptune 14.4

More information

Vagabonds of the Solar System

Vagabonds of the Solar System Vagabonds of the Solar System Guiding Questions 1. How and why were the asteroids first discovered? 2. Why didn t the asteroids coalesce to form a single planet? 3. What do asteroids look like? 4. How

More information

12/3/14. Guiding Questions. Vagabonds of the Solar System. A search for a planet between Mars and Jupiter led to the discovery of asteroids

12/3/14. Guiding Questions. Vagabonds of the Solar System. A search for a planet between Mars and Jupiter led to the discovery of asteroids Guiding Questions Vagabonds of the Solar System 1. How and why were the asteroids first discovered? 2. Why didn t the asteroids coalesce to form a single planet? 3. What do asteroids look like? 4. How

More information

PHYSICS OF ASTROPHSYICS - Energy.

PHYSICS OF ASTROPHSYICS - Energy. PHYSICS OF ASTROPHSYICS - Energy http://apod.nasa.gov/apod/ ENERGY Result of a force acting through a distance. units = erg = dyne cm i.e., force x distance = gm cm 2 /sec 2 Two types: kinetic - energy

More information

August 20, EPICS Design 1 Teams Design EPICS Program Colorado School of Mines th Street Golden, CO Dear EPICS 1 Teams,

August 20, EPICS Design 1 Teams Design EPICS Program Colorado School of Mines th Street Golden, CO Dear EPICS 1 Teams, Joel G. Duncan, Ph.D. Teaching Professor Design EPICS Program GOLDEN, CO 80401-1887 USA August 20, 2013 EPICS Design 1 Teams Design EPICS Program Colorado School of Mines 815 15 th Street Golden, CO 80401

More information

AST103 chapter 6 notes

AST103 chapter 6 notes Chapter 6 The Origin and Evolution of Life on Earth From chapter 3 the Cosmic Calendar 6.1 When Did Life Begin? Evidence: Stromatolites Colonies of photosynthetic cyanobacteria living on outer layers of

More information

What s in Our Solar System?

What s in Our Solar System? The Planets What s in Our Solar System? Our Solar System consists of a central star (the Sun), the main eight planets orbiting the sun, the dwarf planets, moons, asteroids, comets, meteors, interplanetary

More information

Lunar Crater Activity - Teacher Pages

Lunar Crater Activity - Teacher Pages Adapted from: http://www.nasa.gov/pdf/180572main_etm.impact.craters.pdf I took the activity and simplified it so that there was just one independent variable: the drop height, and one dependent variable:

More information

Teacher Background. Impact! Down to Earth KS 3&4

Teacher Background. Impact! Down to Earth KS 3&4 Teacher Background Impact! Impact! - Teacher Background- 2 Meteorites What Are They, and Where Do They Come From? Meteorites are rocks from space that have passed through the atmosphere and landed on the

More information

Asteroids, Comets, and Meteoroids

Asteroids, Comets, and Meteoroids Asteroids, Comets, and Meteoroids Bode s Law In 1772 Johann Bode, a German astronomer, created a mathematical formula now called Bode s Law. This formula determines the pattern that describes the distances

More information

CST Prep- 8 th Grade Astronomy

CST Prep- 8 th Grade Astronomy CST Prep- 8 th Grade Astronomy Chapter 15 (Part 1) 1. The theory of how the universe was created is called the 2. Which equation states that matter and energy are interchangeable? 3. All matter in the

More information

What we ll learn today:!

What we ll learn today:! Learning Objectives (LO) Lecture 17: Age Dating and Earth History Read: Chapter 12-13 Homework #14 What we ll learn today:! 1. 1. Define the concept of half-life and absolute age dating! 2. 2. List the

More information

Ch. 6: Smaller Bodies in the Solar System

Ch. 6: Smaller Bodies in the Solar System Ch. 6: Smaller Bodies in the Solar System FIGURE 9-1 (Discovering the Universe) Different Classifications of Solar System Objects Some of the definitions of the different types of objects in the solar

More information

Moon and Mercury 3/8/07

Moon and Mercury 3/8/07 The Reading Assignment Chapter 12 Announcements 4 th homework due March 20 (first class after spring break) Reminder about term paper due April 17. Next study-group session is Monday, March 19, from 10:30AM-12:00Noon

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Announcements: 1. Midterm exam on Thursday (in this room) 2. Oct 21 st - 26 th : Sections replaced by evening observing) Lecture 8: October 18, 2016 Previously on Astro 1 Solar System

More information

Earth in the Universe Unit Notes

Earth in the Universe Unit Notes Earth in the Universe Unit Notes The Universe - everything everywhere, 15-20 billion years old Inside the universe there are billions of Galaxies Inside each Galaxy there are billions of Solar Systems

More information

A supernova is the explosion of a star. It is the largest explosion that takes place in space.

A supernova is the explosion of a star. It is the largest explosion that takes place in space. What is a supernova? By NASA, adapted by Newsela staff on 03.28.17 Word Count 974 Level 1110L TOP: A vivid view of a supernova remnant captured by NASA's Spitzer and Chandra space observatories and the

More information

Finding Impact Craters with Landsat

Finding Impact Craters with Landsat Name Finding Impact Craters with Landsat Known Effects of Impact Events When an object from space hits the Earth, here is what can happen. There's a huge explosion. The impact makes a big hole or crater

More information

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts. Chapter 12 Lecture

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts. Chapter 12 Lecture Chapter 12 Lecture The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts

More information

Griffith Observatory Samuel Oschin Planetarium. Griffith Observatory Samuel Oschin Planetarium. Griffith Observatory Samuel Oschin Planetarium

Griffith Observatory Samuel Oschin Planetarium. Griffith Observatory Samuel Oschin Planetarium. Griffith Observatory Samuel Oschin Planetarium Test 04 Chapters 15-20 Limited Copies Are available Griffith Observatory Samuel Oschin Planetarium June 4 th from 8:00 pm - 10:00 pm Covering ALL Tests Slide 1 Slide 2 Griffith Observatory Samuel Oschin

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 4 - Group Homework Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Density is defined as A) mass times weight. B) mass per unit volume.

More information

What are they? Where do they come from?

What are they? Where do they come from? Comets What are they? Where do they come from? Lesson Objectives To distinguish between the orbits of planets and those of comets. To describe the likely origins of short-period and long-period comets.

More information

Chapter 11. Meteors, Asteroids and Comets. YT: If a meteor hits the Earth

Chapter 11. Meteors, Asteroids and Comets. YT: If a meteor hits the Earth Chapter 11 Meteors, Asteroids and Comets YT: If a meteor hits the Earth Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Asteroids and Comets Orbiting the

More information

Astronomy Study Guide Answer Key

Astronomy Study Guide Answer Key Astronomy Study Guide Answer Key Section 1: The Universe 1. Cosmology is the study of how the universe is arranged. 2. Identify the type of cosmology a. The sun is the center of the Universe Heliocentric

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore meteor

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore meteor Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore meteor shooting star, falling star For the complete encyclopedic

More information

LECTURE #25: Mega Disasters - Mass Extinctions, Meteorite Impacts...

LECTURE #25: Mega Disasters - Mass Extinctions, Meteorite Impacts... GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #25: Mega Disasters - Mass Extinctions, Meteorite Impacts... Date: 19 April 2018 I. Time & Life on Earth geologic time scale o divided into named

More information

The Moon & Mercury: Dead Worlds

The Moon & Mercury: Dead Worlds The Moon & Mercury: Dead Worlds There are many similarities between the Moon and Mercury, and some major differences we ll concentrate mostly on the Moon. Appearance of the Moon from the Earth We ve already

More information

Intro to Earth Science Chapter 23 Study Guide

Intro to Earth Science Chapter 23 Study Guide Name _ Date _ Period _ Intro to Earth Science Chapter 23 Study Guide 1. is the planet that cannot be classified as either a terrestrial or a Jovian planet. 2. The densities of the planets are about five

More information

TABLE OF CONTENTS. click one to go to that page, or just go on. What is the Solar System? Neptune (Pluto) The Sun. Asteroids. Mercury.

TABLE OF CONTENTS. click one to go to that page, or just go on. What is the Solar System? Neptune (Pluto) The Sun. Asteroids. Mercury. The Solar System TABLE OF CONTENTS click one to go to that page, or just go on. What is the Solar System? The Sun Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune (Pluto) Asteroids Meteors and Meteorites

More information

Terrestrial Planetary Atmospheres

Terrestrial Planetary Atmospheres Terrestrial For the first time in my life, I saw the horizon as a curved line. It was accentuated by a thin seam of dark blue light our atmosphere. Obviously this was not the ocean of air I had been told

More information

PHYSICS OF ASTROPHSYICS - Energy.

PHYSICS OF ASTROPHSYICS - Energy. PHYSICS OF ASTROPHSYICS - Energy http://apod.nasa.gov/apod/ ENERGY Result of a force acting through a distance. units = erg = dyne cm i.e., force x distance = gm cm 2 /sec 2 Two types: kinetic - energy

More information

Astronomy Wed. Oct. 6

Astronomy Wed. Oct. 6 Astronomy 301 - Wed. Oct. 6 Guest lectures, Monday and today: Prof. Harriet Dinerstein Monday: The outer planets & their moons Today: asteroids, comets, & the Kuiper Belt; formation of the Solar System

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim #3 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version E of the exam. Please fill in (E) A) This

More information

Astronomy 3. Earth Movements Seasons The Moon Eclipses Tides Planets Asteroids, Meteors, Comets

Astronomy 3. Earth Movements Seasons The Moon Eclipses Tides Planets Asteroids, Meteors, Comets Astronomy 3 Earth Movements Seasons The Moon Eclipses Tides Planets Asteroids, Meteors, Comets Earth s Movements Orbit- the path in which an object travels around another object in space Revolution the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim #3 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version A of the exam. Please fill in (A) A) This

More information

The Origin of Near Earth Asteroids

The Origin of Near Earth Asteroids The Origin of Near Earth Asteroids Judit Györgyey Ries Priors, Quaternions and Residuals, Oh My! September 24, 2004 Austin, Texas Outline Why are we interested in Near Earth Asteroids? How does an asteroid

More information

Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System

Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23.1 The Solar System Terrestrial planets- Small Rocky

More information

Chapter 17 Impacts with Space Objects

Chapter 17 Impacts with Space Objects Natural Disasters Tenth Edition Chapter 17 Impacts with Space Objects Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Impact Scars Surface of the Moon: intense

More information

Earth. Physical Properties of Earth kg. Average Density g/cm 2. Surface Gravity 9.8 m/s o C to 50 o C. Surface Temperature

Earth. Physical Properties of Earth kg. Average Density g/cm 2. Surface Gravity 9.8 m/s o C to 50 o C. Surface Temperature Earth Physical Properties of Earth Equatorial Diameter Mass 12,756 km 5.976 10 24 kg Average Density 5.497 g/cm 2 Surface Gravity 9.8 m/s 2 Escape Velocity Surface Temperature 11.2 km/s -50 o C to 50 o

More information

Aside from my last lecture: my solar cooker!

Aside from my last lecture: my solar cooker! Aside from my last lecture: my solar cooker! Don t forget to turn in homework. Bring star wheel on Wed! Remember, no class next Monday, Nov 11, Veteran s day Wed Nov 13: second Kitt Peak trip: many more

More information

Due Friday, April 14 th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points.

Due Friday, April 14 th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points. HOMEWORK #1 Solar System Exploration Due Friday, April 14 th IN CLASS Answers to the questions must be given in complete sentences (except where indicated), using correct grammar and spelling. Please be

More information

Lunar Cratering and Surface Composition

Lunar Cratering and Surface Composition Lunar Cratering and Surface Composition Earth vs. Moon On Earth, the combined actions of wind and water erode our planet s surface and reshape its appearance almost daily Most of the ancient history of

More information

A Planetary Defense Policy

A Planetary Defense Policy A Planetary Defense Policy Al Globus February 2014 If the dinosaurs had a space program, they would still be here. anonymous Whereas, 1. Millions of Near Earth Objects (NEOs) large enough to cause significant

More information

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects.

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects. The Solar System Sun Center of the solar system About 150,000,000 km from the Earth An averaged sized, yellow star Spherical in shape due to gravity Made of about ¾ hydrogen and ¼ helium, both of which

More information

Part One: Reading Comprehension (Score24/40)

Part One: Reading Comprehension (Score24/40) Class: G.S/L.S Subject: English Part One: Reading Comprehension (Score24/40) Read the following article where the writer raises the issue of cosmic collision and its consequences. Then, answer the questions

More information

Biodiversity Through Earth History

Biodiversity Through Earth History Chapter 13 Biodiversity Through Earth History Underlying assumption is that the process of evolution is occurring evolution: creation of new species random mutation: genetic changes natural selection:

More information

Universe: everything that exists, including all matter and energy everywhere

Universe: everything that exists, including all matter and energy everywhere WHAT DO YOU KNOW? Universe: everything that exists, including all matter and energy everywhere The study of what is beyond Earth Many years ago, skywatchers took note of patterns in the stars and there

More information

TEACHER BACKGROUND INFORMATION

TEACHER BACKGROUND INFORMATION TEACHER BACKGROUND INFORMATION (The Universe) A. THE UNIVERSE: The universe encompasses all matter in existence. According to the Big Bang Theory, the universe was formed 10-20 billion years ago from a

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore METEO RO ID For the complete encyclopedic entry with media resources,

More information

(continued) Stephen Eikenberry 11 September 2012 AST 2037

(continued) Stephen Eikenberry 11 September 2012 AST 2037 Development of Life (continued) Stephen Eikenberry 11 September 2012 AST 2037 1 Evolutionary Timeline 530 MYa first footprint fossil found on land 505 Mya first true fish in the sea 475 MYa first land

More information