~15 GA. (Giga Annum: Billion Years) today
|
|
- Janel Lloyd
- 4 years ago
- Views:
Transcription
1 ~15 GA (Giga Annum: Billion Years) today
2 ~ 300,000 years after the Big Bang The first map of the Universe. Not homogeneous. Cosmic microwave background (CMB) anisotropy. First detected by the COBE DMR instrument.
3 ~ 100 Billion Stars ~100,000 light years across We would be about here Typical spiral galaxy. Similar to our Milk Way Galaxy
4 Stars Massive, dense balls of incandescent gas Powered by fusion reactions in their core Sun (E = mc 2 ) An average star Reference for understanding other stars Origin of stars Gaseous nebula Mostly hydrogen Shock waves induce gravitational collapse Gravitational energy released into higher temperatures and pressures Protostar Accumulation of gases that will become a star
5 Star Birth and Formation
6
7 Core Very hot, most dense region Nuclear fusion releases gamma and x-ray radiation Radiation zone Radiation diffuses outward over millions of years Convection zone Structured by hot material rising from the interior, cooling, and sinking Upper reaches: visible surface of star Sun surface temp. ~5,800 K Stellar modeling
8 Lifetime of the Sun Converts about 1.4x10 17 kg of matter to energy each year About 2, lb SUVs! Lifetime depends on stellar mass Less massive stars have longer lifetimes More massive stars have shorter lifetimes Born 5 billion years ago Enough hydrogen for another 5 billion years But not every star is like the Sun
9 .the most violent event ever seen in the universe flashed into view on the morning of March 19th.
10 "This burst was a whopper," said Swift principal investigator Neil Gehrels of NASA's Goddard Space Flight Center in Greenbelt, Md. "It blows away every gamma ray burst we've seen so far.".the March 19th burst had a redshift of 0.94, corresponding to a look-back time of 7.5 billion years several thousand times more than the nearby galaxies. The farthest object ever seen by the naked eye. Most gamma ray bursts occur when massive stars run out of nuclear fuel. Their cores collapse to form black holes or neutron stars, releasing an intense burst of high-energy gamma rays and ejecting particle jets that rip through space at nearly the speed of light like turbocharged cosmic blowtorches. When the jets plow into surrounding interstellar clouds, they heat the gas, often generating bright afterglows. Gamma ray bursts are the most luminous explosions in the universe since the big bang.
11 Brightness of stars Differences in stellar brightness 1. Amount of light produced by star 2. Size of star 3. Distance to star Apparent magnitude Scheme to quantify observed brightness First magnitude star 100 times brighter than sixth magnitude star Five uniform divisions in between
12 Absolute magnitude Brightness adjusted to a defined, standard distance Example: Sun Apparent magnitude = Absolute magnitude = +4.8 Luminosity Total energy radiated into space per second Directly related to absolute magnitude Units correlated to Sun: 1 solar luminosity
13 Star temperature Color variations apparent: red, yellow, bluish white Color related to surface temperature Blackbody radiation curves Red: cooler stars Blue: hotter stars Yellow: in between (Sun) Classification scheme Based on temperature: hottest to coolest O, B, A, F, G, K, M
14 Protostar stage Gravitational collapse Density, temperature and pressure increase 10 million K: fusion ignition temperature Dynamical equilibrium Inward force of gravity Outward pressure of fusion energy Star enters main sequence Life of a star
15 Hertzsprung- Russel Diagram
16 A stars fate depends on its mass
17 Fate of the Sun. First a Red Giant, then a White dwarf within a planetary nebula
18
19 Magnetic fields around a sunspot
20 Winds' and Waves on the surface of Sol
21 SUN Hydrogen (74%), some helium (24%) Rocky inner planets Silicates with Iron/Nickel cores The giant Gas planets of the outer solar system Hydrogen, Helium, methane, water, ammonia
22 Planet summary
23 Mercury
24 Venus
25
26
27 Earth
28 Mars
29 The Martian ice cap Frozen water?
30 Craters on Mars
31 Olympus Mons ~ 625 km (324 miles) diameter Scarp Height ~ 6 km (4 miles) The largest mountain in the Solar System Why is it so big?
32
33 Olympus Mons on an overcast day
34 Evidence for water on mars
35 Wind-formed dunes on Mars Atmosphere: 0.7% of the Earth s atmospheric pressure; 95% Carbon Dioxide (CO 2 ), 3% Nitrogen (N 2 ); 1.7% Argon, 0.1% Oxygen (O 2 )
36 View of the surface of Mars from the Martian lander
37 Figure 15.09a Jupiter
38 Figure 15.09b
39 Movie of Jupiter
40
41
42 Saturn
43
44
45 Titan: moon of Saturn landing400.mov
46 Uranus
47
48 Neptune
49 Pluto
50 Smaller bodies of the Solar System Comets, asteroids, meteorites Leftover from solar and planetary formation Mass of smaller bodies may be 2/3 of total Solar System mass Bombard larger objects Comet Shoemaker-Levy 9 fragments (bottom) and strikes Jupiter (July 1994)
51 Comet structure Small, solid objects Dirty snowball model Frozen water, CO 2, ammonia, and methane Dusty and rocky bits Comet head Solid nucleus and coma of gas Two types of tails 1. Ionized gases 2. Dust Tail points away from Sun
52 Meteors and meteorites Meteoroids Remnants of comets and asteroids Meteor Meteoroid encountering Earth s atmosphere Meteor showers: Earth passing through comet s tail Meteorite Meteoroid surviving to strike Earth s surface Iron, stony (chondrites and achondrites) or stony-iron
53 Figure 15.19b
54 Figure 15.19a
55 Our moon: Luna
56 Current hypothesis: Luna was formed as a result of an impact by a Mars-sized object in the early stages of Solar System formation.
57 Lunar impact craters
58 Crater Tycho
59 Close up of Tycho
60 The lunar interior: crust, mantle core Mostly rock, very small iron core; cooled and tectonically inactive
61
PSSC: The Earth Sciences
PSSC: The Earth Sciences Dr. Neil Suits, Assistant Professor of Earth Science Office: Sci 118 Phone: 896 5931 neil.suits@msubillings.edu Best times to see me are right after class on Mondays and Fridays
The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14
The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations
Universe Celestial Object Galaxy Solar System
ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy
Pluto. Touring our Solar System. September 08, The Solar System.notebook. Solar System includes: Sun 8 planets Asteroids Comets Meteoroids
Touring our Solar System Solar System includes: Sun 8 planets Asteroids Comets Meteoroids Jan 4 5:48 PM Jan 4 5:50 PM A planet's orbit lies in an inclined orbital plane Planes of seven planets lie within
TEACHER BACKGROUND INFORMATION
TEACHER BACKGROUND INFORMATION (The Universe) A. THE UNIVERSE: The universe encompasses all matter in existence. According to the Big Bang Theory, the universe was formed 10-20 billion years ago from a
1. Cosmology is the study of. a. The sun is the center of the Universe. b. The Earth is the center of the Universe
Section 1: The Universe 1. Cosmology is the study of. 2. Identify the type of cosmology a. The sun is the center of the Universe b. The Earth is the center of the Universe 3. The two most abundant gases
A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars.
A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. They radiate energy (electromagnetic radiation) from a
Starting from closest to the Sun, name the orbiting planets in order.
Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist
Joy of Science Experience the evolution of the Universe, Earth and Life
Joy of Science Experience the evolution of the Universe, Earth and Life Review Introduction Main contents Quiz Unless otherwise noted, all pictures are taken from wikipedia.org Review 1 The presence of
NSCI 314 LIFE IN THE COSMOS
NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM
Astronomy Study Guide Answer Key
Astronomy Study Guide Answer Key Section 1: The Universe 1. Cosmology is the study of how the universe is arranged. 2. Identify the type of cosmology a. The sun is the center of the Universe Heliocentric
Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System
Chapter Outline Earth and Other Planets The Formation of the Solar System Exploring the Solar System Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from
LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system
Unit 2 Lesson 1 LESSON topic: formation of the solar system - Solar system formation - Star formation - Models of the solar system - Planets in our solar system Big bang theory Origin of the universe According
Lunar Eclipse. Solar Eclipse
Lunar Eclipse SUN Moon Solar Eclipse SUN SUN Moon Total solar eclipse Partial solar eclipse Moon Phases What does the moon look like from at each position? G H F A E B D C SUNLIGHT Refracting Telescopes
The Universe and Galaxies
The Universe and Galaxies 16.1 http://dingo.care-mail.com/cards/flash/5409/galaxy.swf Universe The sum of all matter and energy that exists, that has ever existed, and that will ever exist. We will focus
FCAT Review Space Science
FCAT Review Space Science The Law of Universal Gravitation The law of universal gravitation states that ALL matter in the universe attracts each other. Gravity is greatly impacted by both mass and distance
HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian
Key Points of Chapter 13 HNRS 227 Fall 2006 Chapter 13 The Solar System presented by Prof. Geller 24 October 2006 Planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune Dwarf Planets Pluto,
What s in Our Solar System?
The Planets What s in Our Solar System? Our Solar System consists of a central star (the Sun), the main eight planets orbiting the sun, the dwarf planets, moons, asteroids, comets, meteors, interplanetary
The Big Bang Theory (page 854)
Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called
Learning About Our Solar System
Learning About Our Solar System By debbie Routh COPYRIGHT 2004 Mark Twain Media, Inc. ISBN 978-1-58037-876-5 Printing No. 404007-EB Mark Twain Media, Inc., Publishers Distributed by Carson-Dellosa Publishing
Origin of the Solar System
Origin of the Solar System and Solar System Debris 1 Debris comets meteoroids asteroids gas dust 2 Asteroids irregular, rocky hunks small in mass and size Ceres - largest, 1000 km in diameter (1/3 Moon)
Comparative Planetology I: Our Solar System
Comparative Planetology I: Our Solar System Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon? 3. How do astronomers
CST Prep- 8 th Grade Astronomy
CST Prep- 8 th Grade Astronomy Chapter 15 (Part 1) 1. The theory of how the universe was created is called the 2. Which equation states that matter and energy are interchangeable? 3. All matter in the
Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company
Unit 2 Lesson 1 What Objects Are Part of the Solar System? Florida Benchmarks SC.5.E.5.2 Recognize the major common characteristics of all planets and compare/contrast the properties of inner and outer
Chapter 17 Solar System
Chapter 17 Solar System Rotation Earth spinning on its axis (like a top) "TOP" imaginary rod running through the center of the Earth from North pole to South pole The Earth is tilted on its axis at an
Astronomy 103: First Exam
Name: Astronomy 103: First Exam Stephen Lepp October 27, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial
Unit 2. Galaxies, Stars and the Solar System
Strand K Astrophysics Unit 2 Galaxies, Stars and the Solar System Contents Page The Early Universe 2 The Life Cycle of Stars 4 Features of the Solar System 7 K21 The Early Universe Running the current
The History of the Earth
The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big
Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.
Chapter 29 and 30 Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere. Explain how sunspots are related to powerful magnetic fields on the sun.
Instructions. Students will underline the portions of the PowerPoint that are underlined.
STARS Instructions Students will underline the portions of the PowerPoint that are underlined. Nuclear Furnace 1. A star is like a gigantic nuclear furnace. 2. The nuclear reactions inside convert hydrogen
UNIT 3: Chapter 8: The Solar System (pages )
CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher
Beyond Our Solar System Chapter 24
Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position
Lesson 3 THE SOLAR SYSTEM
Lesson 3 THE SOLAR SYSTEM THE NATURE OF THE SUN At the center of our solar system is the Sun which is a typical medium sized star. Composed mainly of Hydrogen (73% by mass), 23% helium and the rest is
9.2 - Our Solar System
9.2 - Our Solar System Scientists describe our solar system as the Sun and all the planets and other celestial objects, such as moons, comets, and asteroids, that are held by the Sun s gravity and orbit
Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System
Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23.1 The Solar System Terrestrial planets- Small Rocky
They developed a graph, called the H-R diagram, that relates the temperature of a star to its absolute magnitude.
Ejnar Hertzsprung and Henry Russell noticed that stars with higher temperatures and large sizes also have brighter absolute magnitudes the actual amount of light given off by a star. (also referred to
Astronomy 3. Earth Movements Seasons The Moon Eclipses Tides Planets Asteroids, Meteors, Comets
Astronomy 3 Earth Movements Seasons The Moon Eclipses Tides Planets Asteroids, Meteors, Comets Earth s Movements Orbit- the path in which an object travels around another object in space Revolution the
Answers. The Universe. Year 10 Science Chapter 6
Answers The Universe Year 10 Science Chapter 6 p133 1 The universe is considered to be the whole of all matter, energy, planets, solar systems, galaxies, and space. Many definitions of the universe also
Stars. The composition of the star It s temperature It s lifespan
Stars Stars A star is a ball of different elements in the form of gases The elements and gases give off electromagnetic radiation (from nuclear fusion) in the form of light Scientists study the light coming
5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O
HW2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The polarization of light passing though the dust grains shows that: 1) A) the dust grains
The Solar System. Presented By; Rahul Chaturvedi
The Solar System Presented By; Rahul Chaturvedi What s in Our Solar System? Our Solar System consists of a central star (the Sun), the eight planets and their satellites (or moon), thousand of other smaller
Unit 12 Lesson 1 What Objects Are Part of the Solar System?
Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other
Earth Science 11 Learning Guide Unit Complete the following table with information about the sun:
Earth Science 11 Learning Guide Unit 2 Name: 2-1 The sun 1. Complete the following table with information about the sun: a. Mass compare to the Earth: b. Temperature of the gases: c. The light and heat
Earth Space Systems. Semester 1 Exam. Astronomy Vocabulary
Earth Space Systems Semester 1 Exam Astronomy Vocabulary Astronomical Unit- Aurora- Big Bang- Black Hole- 1AU is the average distance between the Earth and the Sun (93 million miles). This unit of measurement
Chapter 23 Earth Science 11
Chapter 23 Earth Science 11 Inner planets: Closest planets to the sun A.k.a. terrestrial planets All have a rocky crust, dense mantle layer, and a very dense core Mercury, Venus, Earth, and Mars Outer
The Solar System consists of
The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar
AST Section 2: Test 2
AST1002 - Section 2: Test 2 Date: 11/05/2009 Name: Equations: E = m c 2 Question 1: The Sun is a stable star because 1. gravity balances forces from pressure. (!) Miniquiz 7, Q3 2. the rate of fusion equals
Our Sun. The centre of our solar system
Our Sun The centre of our solar system Nicolaus Copernicus Our Sun The sun represents 99.86% of the mass in our solar system. It is ¾ hydrogen and ¼ helium. More than 1 million Earths can fit inside the
25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.
25.2 Stellar Evolution By studying stars of different ages, astronomers have been able to piece together the evolution of a star. Star Birth The birthplaces of stars are dark, cool interstellar clouds,
At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion?
At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? These small, rocky worlds orbit the sun generally between the orbits of
Stellar Astronomy Sample Questions for Exam 3
Stellar Astronomy Sample Questions for Exam 3 Chapter 7 1. A protostar is formed by a) the rapid expansion of gas from an exploding star. b) the gravitational collapse of a rotating interstellar cloud.
Daily Science 03/30/2017
Daily Science 03/30/2017 The atmospheres of different planets contain different gases. Which planet is most likely Earth? a. planet 1 b. planet 2 c. planet 3 d. planet 4 KeslerScience.com Can you name
Earth in the Universe Unit Notes
Earth in the Universe Unit Notes The Universe - everything everywhere, 15-20 billion years old Inside the universe there are billions of Galaxies Inside each Galaxy there are billions of Solar Systems
Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999
Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire
CHAPTER 29: STARS BELL RINGER:
CHAPTER 29: STARS BELL RINGER: Where does the energy of the Sun come from? Compare the size of the Sun to the size of Earth. 1 CHAPTER 29.1: THE SUN What are the properties of the Sun? What are the layers
Motion of the planets
Our Solar system Motion of the planets Our solar system is made up of the sun and the 9 planets that revolve around the sun Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto (maybe?)
Unit 1: The Earth in the Universe
Unit 1: The Earth in the Universe 1. The Universe 1.1. First ideas about the Universe 1.2. Components and origin 1.3. Sizes and distances 2. The Solar System 3. The planet Earth 3.1. Movements of the Earth
Meteorites. A Variety of Meteorite Types. Ages and Compositions of Meteorites. Meteorite Classification
Meteorites A meteor that survives its fall through the atmosphere is called a meteorite Hundreds fall on the Earth every year Meteorites do not come from comets First documented case in modern times was
Solar System. Eco-Meet Study Guide
Solar System Eco-Meet Study Guide Helpful Hints: This study guide will focus on our solar system. The Eco-Meet test may consist of multiple choice, true/false, fill in the blank, matching, identification,
Astronomy Unit Notes Name:
Astronomy Unit Notes Name: (DO NOT LOSE!) To help with the planets order 1 My = M 2 V = Venus 3 Eager = E 4 M = Mars 5 Just = J 6 Served = Saturn 7 Us = Uranus 8 N = N 1 Orbit: The path (usually elliptical)
Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)
When a planets orbit around the Sun looks like an oval, it s called a(n) - ellipse - circle - axis - rotation Which of the following planets are all made up of gas? - Venus, Mars, Saturn and Pluto - Jupiter,
Earth Science, 13e Tarbuck & Lutgens
Earth Science, 13e Tarbuck & Lutgens Beyond Our Solar System Earth Science, 13e Chapter 24 Stanley C. Hatfield Southwestern Illinois College Properties of stars Distance Distances to the stars are very
The Solar Nebula Theory. This lecture will help you understand: Conceptual Integrated Science. Chapter 28 THE SOLAR SYSTEM
This lecture will help you understand: Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 28 THE SOLAR SYSTEM Overview of the Solar System The Nebular Theory The Sun Asteroids, Comets, and
The Solar System. Tour of the Solar System
The Solar System Tour of the Solar System The Sun more later 8 planets Mercury Venus Earth more later Mars Jupiter Saturn Uranus Neptune Various other objects Asteroids Comets Pluto The Terrestrial Planets
OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC
OUR SOLAR SYSTEM James Martin Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC It s time for the human race to enter the solar system. -Dan Quayle Structure of the Solar System Our Solar System contains
Ag Earth Science Chapter 23
Ag Earth Science Chapter 23 Chapter 23.1 Vocabulary Any of the Earth- like planets, including Mercury, Venus, and Earth terrestrial planet Jovian planet The Jupiter- like planets: Jupiter, Saturn, Uranus,
Stellar Evolution Notes
Name: Block: Stellar Evolution Notes Stars mature, grow old and die. The more massive a star is, the shorter its life will be. Our Sun will live about 10 billion years. It is already 5 billion years old,
Ch. 29 The Stars Stellar Evolution
Ch. 29 The Stars 29.3 Stellar Evolution Basic Structure of Stars Mass effects The more massive a star is, the greater the gravity pressing inward, and the hotter and more dense the star must be inside
Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years
U238>Pb206 Halflife: 4.5 billion years Oldest earth rocks 3.96 billion years Meteors and Moon rocks 4.6 billion years This is the time they solidified The solar system is older than this. Radioactive Dating
Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars
Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars Composition & Temperature Scientists use the following tools to study stars Telescope Observation Spectral
The Formation of Stars
The Formation of Stars A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful objects in the sky. We are interested
Lecture 2: The Solar System
Lecture 2: The Solar System 1) WileyPLUS (online) registration? homework? 2) Final Exam scheduled Tuesday, December 15 (12-2) 3) iclickers assigned on Tuesday 4) Big Island Field Trip Fall 2015 Big Island
Astronomy 104: Second Exam
Astronomy 104: Second Exam Stephen Lepp October 29, 2014 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer A The Sun is powered by converting hydrogen to what?
Birth & Death of Stars
Birth & Death of Stars Objectives How are stars formed How do they die How do we measure this The Interstellar Medium (ISM) Vast clouds of gas & dust lie between stars Diffuse hydrogen clouds: dozens of
GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran
GALAXIES AND STARS 1. Compared with our Sun, the star Betelgeuse is A smaller, hotter, and less luminous B smaller, cooler, and more luminous C larger, hotter, and less luminous D larger, cooler, and more
ASTRONOMY SNAP GAME. with interesting facts
ASTRONOMY SNAP GAME with interesting facts Sun Sun The Sun is the largest object in the solar system The Sun's life expectancy is approximately 5 billion more years At its core, the Sun s temperature is
Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.
Galaxies and Stars 1. To an observer on Earth, the Sun appears brighter than the star Rigel because the Sun is A) hotter than Rigel B) more luminous than Rigel C) closer than Rigel D) larger than Rigel
1. Star: A object made of gas found in outer space that radiates.
1. Star: A object made of gas found in outer space that radiates. 2. Stars produce extremely great quantities of energy through the process of. The chemical formula for nuclear fusion looks like this:
Life Cycle of a Star - Activities
Name: Class Period: Life Cycle of a Star - Activities A STAR IS BORN STAGES COMMON TO ALL STARS All stars start as a nebula. A nebula is a large cloud of gas and dust. Gravity can pull some of the gas
The Solar System 6/23
6/23 The Solar System I. Earth A. Earth is the prototype terrestrial planet 1. Only planet in the solar system (we know of so far) with life 2. Temperature 290 K B. Physical Characteristics 1. Mass: 6
Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)
Chapter 12 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) As a main-sequence star, the Sun's hydrogen supply should last about 10 billion years from the zero-age
Chapter 23: Touring Our Solar System
Chapter 23: Touring Our Solar System The Sun The is the center of our solar system. The Sun makes up of all the mass of our solar system. The Sun s force holds the planets in their orbits around the Sun.
1/13/16. Solar System Formation
Solar System Formation 1 Your Parents Solar System 21 st Century Solar System 2 The 21 st Century Solar System Sun Terrestrial Planets Asteroid Belt Jovian Planets Kuiper Belt Oort Cloud The Solar System:
WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..
ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If
The Life Cycle of Stars. : Is the current theory of how our Solar System formed.
Life Cycle of a Star Video (5 min) http://www.youtube.com/watch?v=pm9cqdlqi0a The Life Cycle of Stars Solar Nebula Theory : Is the current theory of how our Solar System formed. This theory states that
Describe the lifecycle of a star in chronological order and explain the main stages, relating the stellar evolution to initial mass
Learning Objectives At the end of this unit you should be able to; Explain the major events in the evolution of the universe according to the Big Bang Theory, in chronological order, backing up your arguments
Solar System revised.notebook October 12, 2016 Solar Nebula Theory
Solar System revised.notebook The Solar System Solar Nebula Theory Solar Nebula was a rotating disk of dust and gas w/ a dense center dense center eventually becomes the sun start to condense b/c of gravity
The History of the Solar System. From cloud to Sun, planets, and smaller bodies
The History of the Solar System From cloud to Sun, planets, and smaller bodies The Birth of a Star Twenty years ago, we knew of only one star with planets the Sun and our understanding of the birth of
Chapter 23. Our Solar System
Chapter 23 Our Solar System Our Solar System 1 Historical Astronomy Wandering Stars Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths
Stars & Galaxies. Chapter 27 Modern Earth Science
Stars & Galaxies Chapter 27 Modern Earth Science Chapter 27, Section 1 27.1 Characteristics of Stars How do astronomers determine the composition and surface temperature of a star? Composition & Temperature
Dwarf Planets and Other Objects
Lesson 4 Dwarf Planets and Other Objects LA.8.2.2.3, SC.8.E.5.1, SC.8.E.5.3, SC.8.E.5.7, SC.8.N.3.1 Skim or scan the heading, boldfaced words, and pictures in the lesson. Identify or predict three facts
Chapter 15: The Origin of the Solar System
Chapter 15: The Origin of the Solar System The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites
STARS AND GALAXIES STARS
STARS AND GALAXIES STARS enormous spheres of plasma formed from strong gravitational forces PLASMA the most energetic state of matter; responsible for the characteristic glow emitted by these heavenly
23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System
23.1 The Solar System Orbits of the Planets The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus, Earth, and Mars. The Jovian planets are the huge gas giants
Ch. 16 & 17: Stellar Evolution and Death
Ch. 16 & 17: Stellar Evolution and Death Stars have lives: born, evolve, die Mass determines stellar evolution: Really Low Mass (0.08 to 0.4 M sun ) Low Mass: (0.4 to 4 M sun ) Long lives High Mass (4
Stars and Galaxies. Evolution of Stars
Stars and Galaxies Evolution of Stars What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement
The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects.
The Solar System Sun Center of the solar system About 150,000,000 km from the Earth An averaged sized, yellow star Spherical in shape due to gravity Made of about ¾ hydrogen and ¼ helium, both of which
Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents
Regents Earth Science Unit 5: Astronomy Models of the Universe Earliest models of the universe were based on the idea that the Sun, Moon, and planets all orbit the Earth models needed to explain how the
Galaxies Galore. Types of Galaxies: Star Clusters. Spiral spinning wit arms Elliptical roundish Irregular no set pattern
Stars Studying Stars Astronomers use a spectroscope to study the movement of stars Blue shift towards earth Red shift away from earth Change in a wavelength moving toward or away from earth is the Doppler
ASTRONOMY 1 EXAM 3 a Name
ASTRONOMY 1 EXAM 3 a Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) Multiple Choice (25 @ 2 points each = 50 pts.) Essays (choose 3 of 4 @ 10 points each = 30 pt 1.Luminosity D 8.White dwarf