19 The Sun Introduction. Name: Date:

Size: px
Start display at page:

Download "19 The Sun Introduction. Name: Date:"

Transcription

1 Name: Date: 19 The Sun 19.1 Introduction The Sun is a very important object for all life on Earth. The nuclear reactions that occur in its core produce the energy required by plants and animals for survival. We schedule our lives around the rising and setting of the Sun in the sky. During the summer, the Sun is higher in the sky and thus warms us more than during the winter, when the Sun stays low in the sky. But the Sun s effect on Earth is even more complicated than these simple examples. The Sun is the nearest star to us, which is both an advantage and a disadvantage for astronomers who study stars. Since the Sun is very close, and very bright, we know much more about the Sun than we know about other distant stars. This complicates the picture quite a bit since we need to better understand the physics going on in the Sun in order to comprehend all of our detailed observations. This difference makes the job of solar astronomers in some ways more difficult than the job of stellar astronomers, and in some ways easier! It s a case of having lots of incredibly detailed data. But all of the phenomena associated with the Sun are occuring on other stars, so understanding the Sun s behavior provides insights to how other stars might behave. Figure 19.1: A diagram of the various layers/components of the Sun, as well as the appearance and location of other prominent solar features. 209

2 Goals: to discuss the layers of the Sun and solar phenomena; to use these concepts in conjunction with pictures to deduce characteristics of solar flares, prominences, sunspots, and solar rotation Materials: You will be given a Sun image notebook, a bar magnet with iron filings and a plastic tray. You will need paper to write on, a ruler, and a calculator 19.2 Layers of the Sun One of the things we know best about the Sun is its overall structure. Figure 19.1 is a schematic of the layers of the Sun s interior and atmosphere. The interior of the Sun is made up of three distinct regions: the core, the radiative zone, and the convective zone. The core of the Sun is very hot and dense. This is the only place in the Sun where the temperature and pressure are high enough to support nuclear reactions. The radiative zone is the region of the sun where the energy is transported through the process of radiation. Basically, the photons generated by the core are absorbed and emitted by the atoms found in the radiative zone like cars in stop and go traffic. This is a very slow process. The convective zone is the region of the Sun where energy is transported by rising bubbles of material. This is the same phenomenon that takes place when you boil a pot of water. The hot bubbles rise to the top, cool, and fall back down. This gives the the surface of the Sun a granular look. Granules are bright regions surrounded by darker narrow regions. These granules cover the entire surface of the Sun. The atmosphere of the Sun is also comprised of three layers: the photosphere, the chromosphere, and the corona. The photosphere is a thin layer that forms the visible surface of the Sun. This layer acts as a kind of insulation, and helps the Sun retain some of its heat and slow its consumption of fuel in the core. The chromosphere is the Sun s lower atmosphere. This layer can only be seen during a solar eclipse since the photosphere is so bright. The corona is the outer atmosphere of the Sun. It is very hot, but has a very low density, so this layer can only be seen during a solar eclipse. More information on the layers of the Sun can be found in your textbook Sunspots Sunspots appear as dark spots on the photoshere (surface) of the Sun (see Figure 19.2). They last from a few days to over a month. Their average size is about the size of the Earth, although they have been observed to be over twice the size of the Earth! Sunspots are commonly found in pairs. How do these spots form? The formation of sunspots is attributed to the Sun s differential rotation. The Sun is a ball of gas, and therefore does not rotate like the Earth or any other solid object. The Sun s equator rotates faster than its poles. It takes roughly 25 days for something to travel once around the equator, but about 35 days for it to travel once around the north or south pole. This differential rotation acts to twist up the magnetic field lines inside the Sun. At times, the lines can get so twisted that they pop out of the photosphere. Figure 19.3 illustrates this concept. When a magnetic field loop pops out, the places where it leaves and re-enters the 210

3 Figure 19.2: A large, complex group of sunspots. photosphere are cooler than the rest of the Sun s surface. These cool places appear darker, and therefore are called sunspots. Figure 19.3: Sunspots are a result of the Sun s differential rotation. The number of sunspots rises and falls over an 11 year period. This is the amount of time it takes for the magnetic lines to tangle up and then become untangled again. This is called the Solar Cycle. Look in your textbook for more information on sunspots and the solar cycle. 211

4 19.4 Solar Phenomenon The Sun is a very exciting place. All sorts of activity and eruptions take place in it and around it. We will now briefly discuss a few of these interesting phenomema. You will be analyzing pictures of prominences and flares during your lab. Prominences are huge loops of glowing gas protruding from the chromosphere. Charged particles spiral around the magnetic field lines that loop out over the surface of the Sun, and therefore we see bright loops above the Sun s surface. Very energetic prominences can break free from the magnetic field lines and shoot out into space. Flares are brief but bright eruptions of hot gas in the Sun s atmosphere. These eruptions occur near sunspot groups and are associated with the Sun s intertwined magnetic field lines. A large flare can release as much energy as 10 billion megatons of TNT! The charged particles that flares emit can disrupt communication systems here on Earth. Another result of charged particles bombarding the Earth is the Northern Lights. When the particles reach the Earth, they latch on to the Earth s magnetic field lines. These lines enter the Earth s atmosphere near the poles. The charged particles from the Sun then excite the molecules in Earth s atmosphere and cause them to glow. Your textbook will have more fascinating information about these solar phenomema Lab Exercises There are two main exercises in this lab. The first part consists of a series of stations in a three ring binder where you examine some pictures of the Sun and answer some questions about the images that you see. In the second exercise you will actually look at the Sun using a special telescope to see some of the phenomena that were detailed in the images in the first exercise of this lab. During this lab you will use your own insight and knowledge of basic physics and astronomy to obtain important information about the phenomena that we see on the Sun, just as solar astronomers do. If there is not sufficient room to write in your answers into this lab, do not hesitate to use additional sheets of paper. Do not try to squeeze your answers into the tiny blank spaces in this lab description if you need more space then provided! Don t forget to SHOW ALL OF YOUR WORK. One note of caution about the images that you see: the colors of the pictures (especially those taken by SOHO) are not true colors, but are simply colors used by the observatories image processing teams to best enhance the features shown in the image Exercise #1: Getting familiar with the Size and Appearance of the Sun Station 1: In this first station we simply present some images of the Sun to familiarize yourself with what you will be seeing during the remainder of this lab. Note that this station has no questions that you have to answer, but you still should take time to familiarize yourself with the various features visible on/near the Sun, and get comfortable with the specialized, filtered image shown here. The first image in this station is a simple white light picture of the Sun as it would appear to you if you were to look at it in a telescope that was designed for viewing the 212

5 Sun. Note the dark spots on the surface of the Sun. These are sunspots, and are dark because they are cooler than the rest of the photosphere. When we take a very close-up view of the Sun s photosphere we see that it is broken up into much smaller cells. This is the solar graunulation, and is shown in picture #2. Note the size of these granules. These convection cells are about the size of New Mexico! To explore what is happening on the Sun more fully requires special tools. If you have had the spectroscopy lab, you will have seen the spectral lines of elements. By choosing the right element, we can actually probe different regions in the Sun s atmosphere. In our first example, we look at the Sun in the light of the hydrogen atom ( H-alpha ). This is the red line in the spectrum of hydrogen. If you have a daytime lab, and the weather is good, you will get to see the Sun just like it appears in picture #3. The dark regions in this image is where cool gas is present (the dark spot at the center is a sunspot). The dark linear, and curved features are prominences, and are due to gas caught in the magnetic field lines of the underlying sunspots. They are above the surface of the Sun, so they are a little bit cooler than the photosphere, and therefore darker. Picture #4 shows a loop prominence located at the edge (or limb ) of the Sun (the disk of the Sun has been blocked out using a special telescope called a coronograph to allow us to see activity near its limb). If the Sun cooperates, you may be able to see several of these prominences with the solar telescope. Station 2: Here are two images of the Sun taken by the SOHO satellite several days apart (the exact times are at the top of the image). Look at the sunspot group just below center of the Sun in image 1, and then note that it has rotated to the western (right-hand) limb of the Sun in image 2. Since the sunspot group has moved from center to limb, you then know that the Sun has rotated by one quarter of a turn (90 ). Determine the precise time difference between the images. Use this information plus the fact that the Sun has turned by 90 degrees in that time to determine the rotation rate of the Sun. If the Sun turns by 90 degrees in time t, it would complete one revolution of 360 degrees in how much time? (5 points) 213

6 Does this match the rotation rate given in your textbook or in lecture? Show your work. (5 points) In the second set of photographs at this station are two different images of the Sun: the first one on is a photo of the Sun taken in normal light, and the second one on the right is a magnetogram (a picture of the magnetic field distribution on the surface of the Sun) taken at about the same time. (Note that black and white areas represent regions with different polarities, like the north and south poles of a bar magnet.) What do you notice about the location of sunspots in the photo and the location of the strongest magnetic fields, shown by the brightest or darkest colors in the magnetogram? (5 points) Based on this answer, what do you think causes sunspots to form? Why do you think they are dark? (5 points) Station 3: Here is a picture of the corona of the Sun, taken by the SOHO satellite in the extreme ultraviolet. (An image of the Sun has been superimposed at the center of the picture. The black ring surrounding it is a result of image processing and is not real.) Determine the diameter of the Sun, then measure the minimum extent of the corona (diagonally from upper left to lower right). (3 points) 214

7 If the photospheric diameter of the Sun is 1.4 million kilometers ( km), how big is the corona? (HINT: use unit conversion!) (7 points) How many times larger than the Earth is the corona? (Earth diameter=12,500 km) (5 points) Station 4: This image shows a time-series of exposures by the SOHO satellite showing an eruptive prominence. As in station 3, measure the diameter of the Sun and then measure the distance of the top of the prominence from the edge of the Sun in the first (earliest) image. Then measure the distance of the top of the prominence from the edge of the Sun in the last image. (3 points) Convert these values into real distances based on the linear scale of the images. The diameter of the Sun is kilometers. (7 points) The velocity of an object is the distance it travels in a certain amount of time (velocity=distance/time). Find the velocity of the prominence by subtracting the two 215

8 distances and dividing the answer by the amount of time between the two images. (5 points) In the most severe of solar storms, those that cause flares, and coronal mass ejections (and can disrupt communications on Earth), the material ejected in the prominence (or flare) can reach velocities of 2,000 kilometers per second. If the Earth is kilometers from the Sun, how long (hours or days) would it take for this ejected material to reach the Earth? (5 points) Station 5: This is a plot of where sunspots tend to occur on the Sun as a function of latitude (top plot) and time (bottom plot). What do you notice about the distribution sunspots? How long does it take the pattern to repeat? What does this length of time correspond to? (5 points) Exercise #2: Looking at the Sun The Sun is very bright, and looking at it with either the naked eye or any optical device is dangerous special precautions are necessary to enable you to actually look at the Sun. To make the viewing safe, we must eliminate % of the light from the Sun to reduce it to safe levels. In this exercise you will be using a very special telescope designed for viewing the Sun. This telescope is equipped with a hydrogen light filter. It only allows a tiny amount of light through, isolating a single emission line from hydrogen ( H-alpha ). In your lecture session you will learn about the emission spectrum of hydrogen, and in the spectroscopy lab you get to see this red line of hydrogen using a spectroscope. Several of the pictures in Exercise #1 were actually obtained using a similar filter system. This filter system gives 216

9 us a unique view of the Sun that allows us to better see certain types of solar phenomena, especially the prominences you encountered in Exercise #1. In the Solar Observation Worksheet below, draw what you see on and near the Sun as seen through the special solar telescope. (10 points) 217

10 Note: Kitt Peak Vacuum Telescope images are courtesy of KPNO/NOAO. SOHO Extreme Ultraviolet Imaging Telescope images courtesy of the SOHO/EIT consortium. SOHO Michelson Doppler Imager images courtesy of the SOHO/MDI consortium. SOHO is a project of international cooperation between the European Space Agency (ESA) and NASA. 218

11 Name: Date: 19.6 Summary (30 points) Summarize the important concepts discussed in this lab. Discuss the different types of phenomena and structures you looked at in the lab Explain how you can understand what causes a phenomenon to occur by looking at the right kind of data List the six layers of the Sun (in order). What are the temperatures of the core and photosphere. What causes the Northern (and Southern) Lights, also known as Aurorae? Use complete sentences and proofread your summary before turning it in. 219

12 220

Lab 11. Our Sun Introduction

Lab 11. Our Sun Introduction Lab 11 Name: Our Sun 11.1 Introduction The Sun is a very important object for all life on Earth. The nuclear reactions which occur in its core produce the energy which plants and animals need to survive.

More information

18 Our Sun Layers of the Sun. Name: Date:

18 Our Sun Layers of the Sun. Name: Date: Name: Date: 18 Our Sun The Sun is a very important object for all life on Earth. The nuclear reactions which occur in its core produce the energy which plants and animals need to survive. We schedule our

More information

Astronomy 210. Outline. Nuclear Reactions in the Sun. Neutrinos. Solar Observing due April 15 th HW 8 due on Friday.

Astronomy 210. Outline. Nuclear Reactions in the Sun. Neutrinos. Solar Observing due April 15 th HW 8 due on Friday. Astronomy 210 Outline This Class (Lecture 30): Solar Neutrinos Next Class: Stars: Physical Properties Solar Observing due April 15 th HW 8 due on Friday. The Sun Our closest star The Outer Layers of the

More information

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that

Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that Our sun is the star in our solar system, which lies within a galaxy (Milky Way) within the universe. A star is a large glowing ball of gas that generates energy through nuclear fusion in its core. The

More information

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky

The Sun as Our Star. Properties of the Sun. Solar Composition. Last class we talked about how the Sun compares to other stars in the sky The Sun as Our Star Last class we talked about how the Sun compares to other stars in the sky Today's lecture will concentrate on the different layers of the Sun's interior and its atmosphere We will also

More information

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned.

Outline. Astronomy: The Big Picture. Earth Sun comparison. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Nighttime observing is over, but a makeup observing session may be scheduled. Stay tuned. Next homework due Oct 24 th. I will not be here on Wednesday, but Paul Ricker will present the lecture! My Tuesday

More information

The Structure of the Sun. CESAR s Booklet

The Structure of the Sun. CESAR s Booklet How stars work In order to have a stable star, the energy it emits must be the same as it can produce. There must be an equilibrium. The main source of energy of a star it is nuclear fusion, especially

More information

The Project. National Schools Observatory

The Project. National Schools Observatory Sunspots The Project This project is devised to give students a good understanding of the structure and magnetic field of the Sun and how this effects solar activity. Students will work with sunspot data

More information

Astronomy 154 Lab 4: The Sun. NASA Image comparing the Earth with the Sun. Image from:

Astronomy 154 Lab 4: The Sun. NASA Image comparing the Earth with the Sun. Image from: Astronomy 154 Lab 3: The Sun NASA Image comparing the Earth with the Sun. Image from: http://www.universetoday.com/16338/the-sun/ The Sun at the center of our Solar System is a massive ball of Hydrogen,

More information

Chapter 24: Studying the Sun. 24.3: The Sun Textbook pages

Chapter 24: Studying the Sun. 24.3: The Sun Textbook pages Chapter 24: Studying the Sun 24.3: The Sun Textbook pages 684-690 The sun is one of the 100 billion stars of the Milky Way galaxy. The sun has no characteristics to make it unique to the universe. It is

More information

Learning Objectives. wavelengths of light do we use to see each of them? mass ejections? Which are the most violent?

Learning Objectives. wavelengths of light do we use to see each of them? mass ejections? Which are the most violent? Our Beacon: The Sun Learning Objectives! What are the outer layers of the Sun, in order? What wavelengths of light do we use to see each of them?! Why does limb darkening tell us the inner Sun is hotter?!

More information

Correction to Homework

Correction to Homework Today: Chapter 10 Reading Next Week: Homework Due March 12 Midterm Exam: March 19 Correction to Homework #1: Diameter of eye: 2.5 cm #10: See Ch. 11 Office Hours Monday. 11AM -2 PM Help Sessions Available:

More information

Astronomy 101 Lab: Solar Observing

Astronomy 101 Lab: Solar Observing Name: Astronomy 101 Lab: Solar Observing Pre-Lab Assignment: In this lab, you will determine the rotation rate of the Sun, determine the speed of material ejected from the Sun in a coronal mass ejection,

More information

8.2 The Sun pg Stars emit electromagnetic radiation, which travels at the speed of light.

8.2 The Sun pg Stars emit electromagnetic radiation, which travels at the speed of light. 8.2 The Sun pg. 309 Key Concepts: 1. Careful observation of the night sky can offer clues about the motion of celestial objects. 2. Celestial objects in the Solar System have unique properties. 3. Some

More information

Chapter 8 The Sun Our Star

Chapter 8 The Sun Our Star Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 8 The Sun

More information

Module 4: Astronomy - The Solar System Topic 2 Content: Solar Activity Presentation Notes

Module 4: Astronomy - The Solar System Topic 2 Content: Solar Activity Presentation Notes The Sun, the largest body in the Solar System, is a giant ball of gas held together by gravity. The Sun is constantly undergoing the nuclear process of fusion and creating a tremendous amount of light

More information

The Dancing Lights Program

The Dancing Lights Program The Sun Teacher Background: The Dancing Lights Program Margaux Krahe Many people think the Sun is just a fiery yellow ball. The Sun is not actually burning because fire requires oxygen. Really, the Sun

More information

The Magnetic Sun. CESAR s Booklet

The Magnetic Sun. CESAR s Booklet The Magnetic Sun CESAR s Booklet 1 Introduction to planetary magnetospheres and the interplanetary medium Most of the planets in our Solar system are enclosed by huge magnetic structures, named magnetospheres

More information

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc.

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc. Chapter 14 Lecture Chapter 14: Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE?

More information

The General Properties of the Sun

The General Properties of the Sun Notes: The General Properties of the Sun The sun is an average star with average brightness. It only looks bright because it s so close. It contains 99% of the mass of the solar system. It is made of entirely

More information

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun

The Sun Our Star. Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun The Sun Our Star Properties Interior Atmosphere Photosphere Chromosphere Corona Magnetism Sunspots Solar Cycles Active Sun General Properties Not a large star, but larger than most Spectral type G2 It

More information

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere.

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere. Guidepost The Sun is the source of light an warmth in our solar system, so it is a natural object to human curiosity. It is also the star most easily visible from Earth, and therefore the most studied.

More information

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere. Chapter 29 and 30 Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere. Explain how sunspots are related to powerful magnetic fields on the sun.

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 24 Studying the Sun 24.1 The Study of Light Electromagnetic Radiation Electromagnetic radiation includes gamma rays, X-rays, ultraviolet light, visible

More information

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery?

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery? Chapter 14 Our Star 14.1 A Closer Look at the Sun Our goals for learning Why was the Sun s energy source a major mystery? Why does the Sun shine? What is the Sun s structure? Why was the Sun s energy source

More information

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!!

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!! The Sun Introduction We will meet in class for a brief discussion and review of background material. We will then go outside for approximately 1 hour of telescope observing. The telescopes will already

More information

Astronomy 150: Killer Skies. Lecture 18, March 1

Astronomy 150: Killer Skies. Lecture 18, March 1 Assignments: Astronomy 150: Killer Skies HW6 due next Friday at start of class HW5 and Computer Lab 1 due Night Observing continues next week Lecture 18, March 1 Computer Lab 1 due next Friday Guest Lecturer:

More information

Stars and Galaxies. Content Outline for Teaching

Stars and Galaxies. Content Outline for Teaching Section 1 Stars A. Patterns of stars - constellations 1. Ancient cultures used mythology or everyday items to name constellations 2. Modern astronomy studies 88 constellations 3. Some constellations are

More information

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do.

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do. The Sun: Our Star The Sun is an ordinary star and shines the same way other stars do. Announcements q Homework # 4 is due today! q Units 49 and 51 Assigned Reading Today s Goals q Today we start section

More information

The Sun: Our Star. A glowing ball of gas held together by its own gravity and powered by nuclear fusion

The Sun: Our Star. A glowing ball of gas held together by its own gravity and powered by nuclear fusion Our Star, the Sun The Sun: Our Star A glowing ball of gas held together by its own gravity and powered by nuclear fusion Radius: 700,000 km (435,000 miles) Diameter: 1.392 million km (865,000 miles) Circumference:

More information

The Sun. The Sun Is Just a Normal Star 11/5/2018. Phys1411 Introductory Astronomy. Topics. Star Party

The Sun. The Sun Is Just a Normal Star 11/5/2018. Phys1411 Introductory Astronomy. Topics. Star Party Foundations of Astronomy 13e Seeds Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 8 The Sun Star Party This Friday November 9 weather permitting. See the flyer for updates in case of cancellations

More information

10/18/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

10/18/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline 10/18/17 Lecture Outline 11.1 A Closer Look at the Sun Chapter 11: Our Star Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on

More information

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc.

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc. Chapter 14 Lecture The Cosmic Perspective Seventh Edition Our Star 14.1 A Closer Look at the Sun Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is

More information

1.3j describe how astronomers observe the Sun at different wavelengths

1.3j describe how astronomers observe the Sun at different wavelengths 1.3j describe how astronomers observe the Sun at different wavelengths 1.3k demonstrate an understanding of the appearance of the Sun at different wavelengths of the electromagnetic spectrum, including

More information

The Sun is the nearest star to Earth, and provides the energy that makes life possible.

The Sun is the nearest star to Earth, and provides the energy that makes life possible. 1 Chapter 8: The Sun The Sun is the nearest star to Earth, and provides the energy that makes life possible. PRIMARY SOURCE OF INFORMATION about the nature of the Universe NEVER look at the Sun directly!!

More information

Chapter 10 Our Star. X-ray. visible

Chapter 10 Our Star. X-ray. visible Chapter 10 Our Star X-ray visible Radius: 6.9 10 8 m (109 times Earth) Mass: 2 10 30 kg (300,000 Earths) Luminosity: 3.8 10 26 watts (more than our entire world uses in 1 year!) Why does the Sun shine?

More information

Hydrogen Lines. What can we learn from light? Spectral Classification. Visible Hydrogen Spectrum Lines: Series. Actual Spectrum from SDSS

Hydrogen Lines. What can we learn from light? Spectral Classification. Visible Hydrogen Spectrum Lines: Series. Actual Spectrum from SDSS What can we learn from light? Hydrogen Lines Temperature Energy Chemical Composition Speed towards or away from us All from the! Lower E, Lower f, λ Visible! Higher E, Higher f, λ Visible Hydrogen Spectrum

More information

10/17/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

10/17/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline Lecture Outline 11.1 A Closer Look at the Sun Chapter 11: Our Star Our goals for learning: Why does the Sun shine? What is the Sun's structure? Why does the Sun shine? Is it on FIRE? Is it on FIRE? Chemical

More information

Student Instruction Sheet: Unit 4 Lesson 3. Sun

Student Instruction Sheet: Unit 4 Lesson 3. Sun Student Instruction Sheet: Unit 4 Lesson 3 Suggested time: 1.25 Hours What s important in this lesson: Sun demonstrate an understanding of the structure, and nature of our solar system investigate the

More information

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of Overview Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy source

More information

Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe

Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe Chapter Wrap-Up What makes up the universe and how does

More information

Astronomy Chapter 12 Review

Astronomy Chapter 12 Review Astronomy Chapter 12 Review Approximately how massive is the Sun as compared to the Earth? A. 100 times B. 300 times C. 3000 times D. 300,000 times E. One million times Approximately how massive is the

More information

The Sun. Chapter 12. Properties of the Sun. Properties of the Sun. The Structure of the Sun. Properties of the Sun.

The Sun. Chapter 12. Properties of the Sun. Properties of the Sun. The Structure of the Sun. Properties of the Sun. Chapter 12 The Sun, Our Star 1 With a radius 100 and a mass of 300,000 that of Earth, the Sun must expend a large amount of energy to withstand its own gravitational desire to collapse To understand this

More information

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest.

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest. Overview: The Sun Properties of the Sun Sun s outer layers Photosphere Chromosphere Corona Solar Activity Sunspots & the sunspot cycle Flares, prominences, CMEs, aurora Sun s Interior The Sun as an energy

More information

A Closer Look at the Sun

A Closer Look at the Sun Our Star A Closer Look at the Sun Our goals for learning Why was the Sun s energy source a major mystery? Why does the Sun shine? What is the Sun s structure? Why was the Sun s energy source a major mystery?

More information

Stars and Galaxies. The Sun and Other Stars

Stars and Galaxies. The Sun and Other Stars CHAPTER 22 Stars and Galaxies LESSON 2 The Sun and Other Stars What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you

More information

Teacher Background: The Dancing Lights Program

Teacher Background: The Dancing Lights Program Teacher Background: The Dancing Lights Program The Sun Many people think the Sun is just a fiery yellow ball. The Sun isn t actually burning because fire requires oxygen. Really, the Sun a giant ball of

More information

Lecture 6: Our star, the Sun

Lecture 6: Our star, the Sun Lecture 6: Our star, the Sun 1 Age = 4.6 x 10 9 years Mean Radius = 7.0x10 5 km = 1.1x10 2 R = 1R Volume = 1.4x10 18 km 3 = 1.3x10 6 R = 1V Mass = 2x10 30 kg = 3.3x10 5 M = 1M Surface Temperature = 5,778K

More information

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons

Radiation Zone. AST 100 General Astronomy: Stars & Galaxies. 5. What s inside the Sun? From the Center Outwards. Meanderings of outbound photons AST 100 General Astronomy: Stars & Galaxies 5. What s inside the Sun? From the Center Outwards Core: Hydrogen ANNOUNCEMENTS Midterm I on Tue, Sept. 29 it will cover class material up to today (included)

More information

Chapter 23. Light, Astronomical Observations, and the Sun

Chapter 23. Light, Astronomical Observations, and the Sun Chapter 23 Light, Astronomical Observations, and the Sun The study of light Electromagnetic radiation Visible light is only one small part of an array of energy Electromagnetic radiation includes Gamma

More information

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun

The Sun. The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x g = 330,000 M Earth = 1 M Sun The Sun The Sun is a star: a shining ball of gas powered by nuclear fusion. Mass of Sun = 2 x 10 33 g = 330,000 M Earth = 1 M Sun Radius of Sun = 7 x 10 5 km = 109 R Earth = 1 R Sun Luminosity of Sun =

More information

How the Sun Works. Presented by the

How the Sun Works. Presented by the How the Sun Works Presented by the The Sun warms our planet every day, provides the light by which we see and is absolutely necessary for life on Earth. In this presentation, we will examine the fascinating

More information

Spring 2001: The Sun. Equipment:! This write-up, calculator, lab notebook! Data you downloaded from the SOHO website

Spring 2001: The Sun. Equipment:! This write-up, calculator, lab notebook! Data you downloaded from the SOHO website Our Sun is a middle-aged, medium sized star, big enough to hold a million Earths. The ancient Greeks thought that the Sun was a perfect sphere of fire. Today we know that the Sun is a variable star that

More information

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered

Our sole source of light and heat in the solar system. A very common star: a glowing g ball of gas held together by its own gravity and powered The Sun Visible Image of the Sun Our sole source of light and heat in the solar system A very common star: a glowing g ball of gas held together by its own gravity and powered by nuclear fusion at its

More information

ASTRONOMY. Chapter 15 THE SUN: A GARDEN-VARIETY STAR PowerPoint Image Slideshow

ASTRONOMY. Chapter 15 THE SUN: A GARDEN-VARIETY STAR PowerPoint Image Slideshow ASTRONOMY Chapter 15 THE SUN: A GARDEN-VARIETY STAR PowerPoint Image Slideshow FIGURE 15.1 Our Star. The Sun our local star is quite average in many ways. However, that does not stop it from being a fascinating

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

The Sun ASTR /17/2014

The Sun ASTR /17/2014 The Sun ASTR 101 11/17/2014 1 Radius: 700,000 km (110 R ) Mass: 2.0 10 30 kg (330,000 M ) Density: 1400 kg/m 3 Rotation: Differential, about 25 days at equator, 30 days at poles. Surface temperature: 5800

More information

Weight of upper layers compresses lower layers

Weight of upper layers compresses lower layers Weight of upper layers compresses lower layers Gravitational equilibrium: Energy provided by fusion maintains the pressure Gravitational contraction: Provided energy that heated core as Sun was forming

More information

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6 The Sun the main show in the solar system 99.8% of the mass 99.9999...% of the energy 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Homework due next time - will count best 5 of 6 The

More information

Directed Reading. Section: Solar Activity SUNSPOTS. Skills Worksheet. 1. How do the gases that make up the sun s interior and atmosphere behave?

Directed Reading. Section: Solar Activity SUNSPOTS. Skills Worksheet. 1. How do the gases that make up the sun s interior and atmosphere behave? Skills Worksheet Directed Reading Section: Solar Activity 1. How do the gases that make up the sun s interior and atmosphere behave? 2. What causes the continuous rising and sinking of the sun s gases?

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 8 MULTIPLE CHOICE 1. Granulation is caused by a. sunspots. * b. rising gas below the photosphere. c. shock waves in the corona. d. the

More information

Lecture 17 The Sun October 31, 2018

Lecture 17 The Sun October 31, 2018 Lecture 17 The Sun October 31, 2018 1 2 Exam 2 Information Bring a #2 pencil! Bring a calculator. No cell phones or tablets allowed! Contents: Free response problems (2 questions, 10 points) True/False

More information

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Announcements - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11 Review for Test #2 Oct 11 Topics: The Solar System and its Formation The Earth and our Moon

More information

Name Date Per Teacher. Packet #4 The Sun

Name Date Per Teacher. Packet #4 The Sun Packet #4 The Sun Reading Guide: Chapter 29.1 (read text pages 755 760) STRUCTURE OF THE SUN 1e Students know the Sun is a typical star and is powered by nuclear reactions, primarily the fusion of hydrogen

More information

Summer 2013 Astronomy - Test 3 Test form A. Name

Summer 2013 Astronomy - Test 3 Test form A. Name Summer 2013 Astronomy - Test 3 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

CHAPTER 29: STARS BELL RINGER:

CHAPTER 29: STARS BELL RINGER: CHAPTER 29: STARS BELL RINGER: Where does the energy of the Sun come from? Compare the size of the Sun to the size of Earth. 1 CHAPTER 29.1: THE SUN What are the properties of the Sun? What are the layers

More information

Student s guide CESAR Science Case The differential rotation of the Sun and its Chromosphere

Student s guide CESAR Science Case The differential rotation of the Sun and its Chromosphere Student s guide CESAR Science Case The differential rotation of the Sun and its Chromosphere Name Date Introduction The Sun as you may already know, is not a solid body. It is a massive body of gas constantly

More information

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C.

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C. The Sun 1 The Sun A. Solar Atmosphere 2 B. Phenomena (Sunspots) Dr. Bill Pezzaglia C. Interior Updated 2006Sep18 A. The Solar Atmosphere 1. Photosphere 2. Chromosphere 3. Corona 4. Solar Wind 3 1a. The

More information

The Sun sends the Earth:

The Sun sends the Earth: The Sun sends the Earth: Solar Radiation - peak wavelength.visible light - Travels at the speed of light..takes 8 minutes to reach Earth Solar Wind, Solar flares, and Coronal Mass Ejections of Plasma (ionized

More information

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He Our sole source of light and heat in the solar system A common star: a glowing ball of plasma held together by its own gravity and powered by nuclear fusion at its center. Nuclear fusion: Combining of

More information

The Sun Our Extraordinary Ordinary Star

The Sun Our Extraordinary Ordinary Star The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

An Overview of the Details

An Overview of the Details The Sun Our Extraordinary Ordinary Star 1 Guiding Questions 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the

More information

Lesson 3 THE SOLAR SYSTEM

Lesson 3 THE SOLAR SYSTEM Lesson 3 THE SOLAR SYSTEM THE NATURE OF THE SUN At the center of our solar system is the Sun which is a typical medium sized star. Composed mainly of Hydrogen (73% by mass), 23% helium and the rest is

More information

Astronomy Exam 3 - Sun and Stars

Astronomy Exam 3 - Sun and Stars Astronomy Exam 3 - Sun and Stars Study online at quizlet.com/_4zgp6 1. `what are the smallest group of stars in the H-R diagram 2. A star has a parallax of 0.05". what is the distance from the earth? white

More information

Properties of Stars. Characteristics of Stars

Properties of Stars. Characteristics of Stars Properties of Stars Characteristics of Stars A constellation is an apparent group of stars originally named for mythical characters. The sky contains 88 constellations. Star Color and Temperature Color

More information

Using This Flip Chart

Using This Flip Chart Using This Flip Chart Sunspots are the first indicators that a storm from the Sun is a possibility. However, not all sunspots cause problems for Earth. By following the steps in this flip chart you will

More information

Name Date Period. 10. convection zone 11. radiation zone 12. core

Name Date Period. 10. convection zone 11. radiation zone 12. core 240 points CHAPTER 29 STARS SECTION 29.1 The Sun (40 points this page) In your textbook, read about the properties of the Sun and the Sun s atmosphere. Use each of the terms below just once to complete

More information

The Sun s Dynamic Atmosphere

The Sun s Dynamic Atmosphere Lecture 16 The Sun s Dynamic Atmosphere Jiong Qiu, MSU Physics Department Guiding Questions 1. What is the temperature and density structure of the Sun s atmosphere? Does the atmosphere cool off farther

More information

An Overview of the Details

An Overview of the Details Guiding Questions The Sun Our Extraordinary Ordinary Star 1. What is the source of the Sun s energy? 2. What is the internal structure of the Sun? 3. How can astronomers measure the properties of the Sun

More information

Some Good News. Announcements. Lecture 10 The Sun. How does the Sun shine? The Sun s Energy Source

Some Good News. Announcements. Lecture 10 The Sun. How does the Sun shine? The Sun s Energy Source Announcements Homework due today. Put your homework in the box NOW. Please STAPLE them if you have not done yet. Quiz#3 on Tuesday (Oct 5) Announcement at the end of this lecture. If you could not pick

More information

Final exam is Wednesday, December 14, in LR 1 VAN at 9:45 am.

Final exam is Wednesday, December 14, in LR 1 VAN at 9:45 am. Announcements Final exam is Wednesday, December 14, in LR 1 VAN at 9:45 am. Astronomy tutorial: Tuesday 3-5, 7-9 pm in 310 VAN Office hours: Tuesday 1 3 pm, Wednesday 10-11 am, or by appointment in 702

More information

CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle

CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle CESAR BOOKLET General Understanding of the Sun: Magnetic field, Structure and Sunspot cycle 1 Table of contents Introduction to planetary magnetospheres and the interplanetary medium... 3 A short introduction

More information

Name: Date: 2. The temperature of the Sun's photosphere is A) close to 1 million K. B) about 10,000 K. C) 5800 K. D) 4300 K.

Name: Date: 2. The temperature of the Sun's photosphere is A) close to 1 million K. B) about 10,000 K. C) 5800 K. D) 4300 K. Name: Date: 1. What is the Sun's photosphere? A) envelope of convective mass motion in the outer interior of the Sun B) lowest layer of the Sun's atmosphere C) middle layer of the Sun's atmosphere D) upper

More information

The Basics of Light. Sunrise from the Space Shuttle, STS-47 mission. The Basics of Light

The Basics of Light. Sunrise from the Space Shuttle, STS-47 mission. The Basics of Light The Basics of Light The sun as it appears in X-ray light (left) and extreme ultraviolet light (right). Light as energy Light is remarkable. It is something we take for granted every day, but it's not something

More information

Next quiz: Monday, October 24

Next quiz: Monday, October 24 No homework for Wednesday Read Chapter 8! Next quiz: Monday, October 24 1 Chapter 7 Atoms and Starlight Types of Spectra: Pictorial Some light sources are comprised of all colors (white light). Other light

More information

HELIOSTAT III - THE SOLAR CHROMOSPHERE

HELIOSTAT III - THE SOLAR CHROMOSPHERE HELIOSTAT III - THE SOLAR CHROMOSPHERE SYNOPSIS: In this lab you will observe, identify, and sketch features that appear in the solar chromosphere. With luck, you may have the opportunity to watch a solar

More information

The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE.

The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE. The Quiet Sun The sun is currently being studied by several spacecraft Ulysses, SOHO, STEREO, and ACE. Messenger also contains instruments that can do some solar studies. http://www.stereo.gsfc.nasa.gov

More information

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C.

The Sun. 1a. The Photosphere. A. The Solar Atmosphere. 1b. Limb Darkening. A. Solar Atmosphere. B. Phenomena (Sunspots) C. The Sun 1 The Sun A. Solar Atmosphere 2 B. Phenomena (Sunspots) Dr. Bill Pezzaglia C. Interior Updated 2014Feb08 A. The Solar Atmosphere 1. Photosphere 2. Chromosphere 3. Corona 4. Solar Wind & earthly

More information

Proton-proton cycle 3 steps PHYS 162 1

Proton-proton cycle 3 steps PHYS 162 1 Proton-proton cycle 3 steps PHYS 162 1 4 Layers of the Sun CORE : center, where fusion occurs RADIATION: energy transfer by radiation CONVECTION: energy transfer by convection PHOTOSPHERE: what we see

More information

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. Exterior Layers of the Sun: HW#5 due Friday by 5 pm!

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. Exterior Layers of the Sun: HW#5 due Friday by 5 pm! Stars, Galaxies & the Universe Announcements HW#5 due Friday by 5 pm! Lab Observing Trip Thursday planning to go Meet outside VAN East end (Linn/Jefferson) Wear warm clothes! 1 Stars, Galaxies & the Universe

More information

B B E D B E D A C A D D C

B B E D B E D A C A D D C B B A C E E E E C E D E B B A D B E E A E E B C C A B B E D B E D A C A D D C E D Assigned Reading Read Chapters 8.1 and 8.2 Colonel Cady Coleman, Astronaut: Lessons from Space Lead Straight Back to Earth,

More information

CHAPTER 9: STARS AND GALAXIES

CHAPTER 9: STARS AND GALAXIES CHAPTER 9: STARS AND GALAXIES Characteristics of the Sun 1. The Sun is located about 150 million kilometres from the Earth. 2. The Sun is made up of hot gases, mostly hydrogen and helium. 3. The size of

More information

The Sun. Nearest Star Contains most of the mass of the solar system Source of heat and illumination

The Sun. Nearest Star Contains most of the mass of the solar system Source of heat and illumination The Sun Nearest Star Contains most of the mass of the solar system Source of heat and illumination Outline Properties Structure Solar Cycle Energetics Equation of Stellar Structure TBC Properties of Sun

More information

Earth/Space/Physics Kristy Halteman.

Earth/Space/Physics Kristy Halteman. Earth/Space/Physics Kristy Halteman http://www.lesia.obspm.fr/~bonnin/fichiers/images/sun-soho011905-1919z.jpg A. Properties 1. 330,000 times more massive than the Earth. http://www.37signals.com/svn/images/sun_v_planets.jpg

More information

Chapter 14 Our Star Pearson Education, Inc.

Chapter 14 Our Star Pearson Education, Inc. Chapter 14 Our Star Basic Types of Energy Kinetic (motion) Radiative (light) Potential (stored) Energy can change type, but cannot be created or destroyed. Thermal Energy: the collective kinetic energy

More information

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14 The Sun Chapter 14 The Role of the Sun in the Solar System > 99.9% of the mass Its mass is responsible for the orderly orbits of the planets Its heat is responsible for warming the planets It is the source

More information

Lec 7: Classification of Stars, the Sun. What prevents stars from collapsing under the weight of their own gravity? Text

Lec 7: Classification of Stars, the Sun. What prevents stars from collapsing under the weight of their own gravity? Text 1 Astr 102 Lec 7: Classification of Stars, the Sun What prevents stars from collapsing under the weight of their own gravity? Text Why is the center of the Sun hot? What is the source of the Sun s energy?

More information

Exam #2 Review Sheet. Part #1 Clicker Questions

Exam #2 Review Sheet. Part #1 Clicker Questions Exam #2 Review Sheet Part #1 Clicker Questions 1) The energy of a photon emitted by thermonuclear processes in the core of the Sun takes thousands or even millions of years to emerge from the surface because

More information

Our Star: The Sun. Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun.

Our Star: The Sun. Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun. Goals: Our Star: The Sun Layers that make up the Sun. Understand the Solar cycle. Understand the process by which energy is generated by the Sun. Components of the Sun Solar Interior: Core: where energy

More information

UNIT 3: Astronomy Chapter 26: Stars and Galaxies (pages )

UNIT 3: Astronomy Chapter 26: Stars and Galaxies (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information