Introduction. Cosmology: the scientific study of the Universe. Structure History. Earth 4 Part 1 Opener

Size: px
Start display at page:

Download "Introduction. Cosmology: the scientific study of the Universe. Structure History. Earth 4 Part 1 Opener"

Transcription

1 Introduction Cosmology: the scientific study of the Universe. Structure History Earth 4 Part 1 Opener

2 What Is the Structure of the Universe? Universe is made up of matter and energy. Matter substance of the universe; takes up space. Mass Density Weight Energy the ability to do work. Heat Light Pull of gravity Fig. 1.2a

3 Stars and Galaxies Stars are immense balls of incandescent gas. Gravity binds stars together into vast galaxies. Over 100 billion galaxies exist in the visible universe. The Solar System is on an arm of the Milky Way galaxy. Our sun is one of 300 billion stars in the Milky Way. Fig. 1.2b, c

4 The Nature of Our Solar System Our sun is a medium-sized star, orbited by 8 planets. The sun accounts for 99.8% of our solar system mass. Planet a planet: Is a large solid body orbiting a star (the Sun). Has a nearly spherical shape. Has cleared its neighborhood of other objects (by gravity). Moon a solid body locked in orbit around a planet Millions of asteroids, trillions of icy bodies orbit the sun.

5 The Nature of Our Solar System Two groups of planets occur in the solar system. Terrestrial Planets small, dense, rocky planets Mercury, Venus, Earth, and Mars Giant Planets large, low-density, gas and ice giants Gas giants: Jupiter, Saturn (hydrogen and helium) Ice giants: Uranus, Neptune (frozen water, ammonia, methane) The Solar System is held together by gravity. Fig. 1.3a

6 The Solar System The terrestrial planets are the four most interior. The giant planets occupy the four outermost orbits. All but two planets have moons (Jupiter has 63!). The asteroid belt lies between Mars and Jupiter. Clouds of icy bodies lie beyond Neptune s orbit. Icy fragments pulled into the inner solar system become comets. Fig. 1.3b

7 Forming the Universe The vastness of the Universe is staggering. Earth is a planet orbiting a star on the arm of a galaxy. The sun and over 300 billion stars form the Milky Way. Over 100 billion galaxies exist in the visible universe. Where did all this stuff come from? The Big Bang initiated the expanding universe 13.7 billion years ago. Fig. 1.2a

8 The Doppler Effect A moving star displays Doppler-shifted light. Approaching starlight is compressed (higher frequency): Blue shift Receding starlight is expanded (lower frequency): Red shift This observer sees light waves compressed blue-shifted. This observer sees light waves spread out red-shifted. No Doppler shift Fig. 1.4c

9 The Expanding Universe Light from galaxies was observed to be red-shifted. Edwin Hubble recognized the red shift as a Doppler effect. He concluded that galaxies were moving away at great speed. No galaxies were found heading toward Earth. Hubble deduced that the whole Universe must be expanding (analogous to raisin-bread dough). The expanding Universe theory. Did expansion start at some time in the past? If so, how far back? How small was the Universe before expansion? Fig. 1.5a

10 The Big Bang Researchers have developed a model of the Big Bang. During the first instant, only energy no matter was present. Started as a rapid cascade of events. Hydrogen atoms within a few seconds At 3 minutes, hydrogen atoms fused to form helium atoms. Light nuclei (atomic no. < 5) by Big Bang nucleosynthesis The Universe expanded and cooled. Fig. 1.5b

11 After the Big Bang With expansion and cooling, atoms began to bond. Hydrogen formed H 2 molecules the fuel of stars. Atoms and molecules coalesced into gaseous nebulae. Gravity caused collapse of gaseous nebulae. Collapse resulted in increases in: Temperature. Density. Rate of rotation. Earth, 4th ed., Fig. 1.7

12 After the Big Bang Mass in nebulae was not equally distributed. An initially more massive region began to pull in gas. This region gained mass and density. Mass compacted into a smaller region and began to rotate. Rotation rate increased, developing a disk shape. The central ball of the disk became hot enough to glow. A protostar is born. Geology at a Glance

13 Birth of the First Stars The protostar continued to grow, pulling in more mass and creating a denser core. Temperatures soared to 10 million degrees. At these temps, hydrogen nuclei fused to create helium. With the start of nuclear fusion, the protostar ignited. Chapter 1 Opener

14 Birth of the First Stars Nebulae from which first-generation stars formed consisted entirely of light elements. These first-generation stars exhausted H 2 fuel rapidly. As the stars became H 2 -starved, they initiated: Collapse and heating. Catastrophic supernova. Where did heavy elements (atomic no. > 5) come from? Fig. 1.6a

15 Where Do Elements Come From? Big Bang nucleosynthesis formed the lightest elements. Atomic #s 1, 2, 3, 4, and 5 (H, He, Li, Be, and B) Heavier elements are from stellar nucleosynthesis. Atomic #s 6 26 (C to Fe) Stars are element factories. Elements with atomic #s >26 form during supernovae. Fig. 1.6b

16 Where Do Elements Come From? First-generation stars left a legacy of heavier elements. Second-generation stars repeated heavy element genesis. Succeeding generations contain more heavy elements. The sun may be a third-, fourth-, or fifth-generation star. The mix of elements found on Earth include: Primordial gas from the Big Bang. The disgorged contents of exploded stars. We really ARE all made out of stardust!

17 Nebular Theory of the Solar System The nebular theory of Solar System formation A third-, fourth-, or nth-generation nebula forms 4.56 Ga. Hydrogen and helium are left over from the Big Bang. Heavier elements are produced via: Stellar nucleosynthesis. Supernovae. The nebula condenses into a protoplanetary disk. Geology at a Glance

18 Solar System Formation The ball at the center grows dense and hot. Fusion reactions begin; the sun is born. Dust in the rings condenses into particles. Particles coalesce to form planetesimals. Fig. 1.7 Geology at a Glance

19 Differentiation of Earth Planetesimals clump into a lumpy protoplanet. The interior heats, softens, and forms a sphere. The interior differentiates into: A central iron-rich core, and A stony outer shell a mantle. Geology at a Glance

20 Formation of the Moon ~4.53 Ga, a Mars-sized protoplanet collides with Earth. The planet and a part of Earth s mantle are disintegrated. Collision debris forms a ring around Earth. The debris coalesces and forms the moon. The moon has a composition similar to Earth s mantle. Geology at a Glance

21 The Atmosphere and Oceans The atmosphere develops from volcanic gases. When Earth becomes cool enough: Moisture condenses and accumulates. The oceans come into existence. Geology at a Glance

22 Magnetic Field Space visitors would notice Earth s magnetic field. Earth s magnetic field is like a giant dipole bar magnet. The field has north and south ends. The field grows weaker with distance. The magnetic force is directional. It flows from S pole to N pole along the bar magnet. It flows from N to S along field lines outside the bar. Fig. 1.9a

23 Magnetic Field Earth s magnetic field is like a giant dipole bar magnet. The N pole of the bar is near Earth s geographic S pole. A compass needle aligns with the field lines. The N compass arrow points to the bar magnet S pole. Opposites attract. Magnetic field lines: Extend into space. Weaken with distance. Form a shield around Earth (magnetosphere). Fig. 1.9b

24 Magnetic Field The solar wind distorts the magnetosphere. Shaped like a teardrop Deflects most of the solar wind, protecting Earth The strong magnetic field of the Van Allen belts intercepts dangerous cosmic radiation. Fig. 1.9c

25 91.2% of Earth s mass comprises just four elements: Iron (Fe) 32.1% What is Earth Made Of? Oxygen (O) 30.1% Silicon (Si) 15.1% Magnesium (Mg) 13.9% The remaining 8.8% of Earth s mass consists of the remaining 88 elements. Fig. 1.12

26 A Layered Earth The first key to understanding Earth s interior: density. When scientists first determined Earth s mass they realized: Average density of Earth >> average density of surface rocks. Deduced that metal must be concentrated in Earth s center. These ideas led to a layered model: Earth is like an egg. Thin, light crust (eggshell) Thicker, more dense mantle (eggwhite) Innermost, very dense core (yolk) Fig. 1.13

27 A Layered Earth Earthquakes: seismic energy from fault motion Seismic waves provide insight into Earth s interior. Seismic wave velocities change with density. We can determine the depth of seismic velocity changes. Hence, we can tell where densities change in Earth s interior. Fig. 1.14a, b Essentials of Geology, 4th edition, by Stephen Marshak 2013, W. W. Norton Chapter 1: The Earth in Context

28 A Layered Earth Changes with depth Pressure (P) The weight of overlying rock increases with depth. Temperature (T) Heat is generated in Earth s interior. T increases with depth. Geothermal gradient The rate of T changes with depth. The geothermal gradient varies. ~ C per km in crust < 10 C per km at greater depths Earth s center may reach 4,700 C! Earth, 4 th ed., Fig. 2.13

29 The Crust The outermost skin of our planet is highly variable. Thickest under mountain ranges (70 km or 40 miles) Thinnest under mid-ocean ridges (7 km or 4 miles) Relatively as thick as the membrane of a toy balloon The Mohorovičić discontinuity (Moho) is the base. Seismic velocity change between crust and upper mantle The crust is the upper part of a tectonic plate. Fig. 1.15a

30 The Crust There are two kinds of crust: continental and oceanic. Continental crust underlies the continents. Average thickness km Felsic (granite) to intermediate in composition Oceanic crust underlies the ocean basins. Average thickness 7 10 km Mafic (basalt and gabbro) in composition More dense than continental crust Fig. 1.15a

31 Solid rock, 2,885 km thick, 82% of Earth s volume The mantle is entirely the ultra-mafic rock peridotite. Convection below ~ 100 km mixes the mantle. Like oatmeal on a stove: hot rises, cold sinks. Convection aids tectonic plate motion. Divided into two sub-layers: Upper Mantle Transitional zone Lower Mantle The Mantle Fig. 1.15b

32 The Core An iron-rich sphere with a radius of 3,471 km Seismic waves segregate two radically different parts. The outer core is liquid; inner core solid. Outer core Liquid iron alloy 2,255 km thick Liquid flows Inner core Solid iron-nickel alloy Radius of 1,220 km Greater pressure keeps solid Outer core flow generates Earth s magnetic field. Fig. 1.15b

33 Lithosphere-Asthenosphere We can also regard layering based on rock strength. Lithosphere the outermost km of Earth Behaves rigidly, as a nonflowing material Composed of two components: crust and upper mantle This is the material that makes up tectonic plates. Asthenosphere upper mantle below the lithosphere Shallow under oceanic lithosphere; deeper under continental Flows as a soft solid. Fig. 1.17

ESC102. Earth in Context

ESC102. Earth in Context ESC102 Earth in Context Scientific Method The scientific method is an orderly and logical approach that relies on data to inform our understanding of a problem or process. assumes that nature is consistent

More information

CHAPTER 01: The Earth in Context

CHAPTER 01: The Earth in Context CHAPTER 01: The Earth in Context MULTIPLE CHOICE 1. Our Sun belongs to a galaxy known as. a. Andromeda c. the Milky Way b. Cepheus d. the Stratosphere ANS: C DIF: Easy REF: 1.2 components. 2. The theory

More information

The History of the Earth

The History of the Earth The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big

More information

The Big Bang Theory (page 854)

The Big Bang Theory (page 854) Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called

More information

Universe Celestial Object Galaxy Solar System

Universe Celestial Object Galaxy Solar System ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

The Solar System consists of

The Solar System consists of The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

More information

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System Chapter 8 Lecture The Cosmic Perspective Seventh Edition Formation of the Solar System Formation of the Solar System 8.1 The Search for Origins Our goals for learning: Develop a theory of solar system

More information

ESS Mrs. Burkey FIRST SEMESTER STUDY GUIDE H/K

ESS Mrs. Burkey FIRST SEMESTER STUDY GUIDE H/K Name: Period: ESS Mrs. Burkey FIRST SEMESTER STUDY GUIDE H/K Answer the following questions on a separate sheet of paper and staple it to the back once you are done. If you still have the complete study

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 16 1 A Solar System Is Born SECTION Our Solar System California Science Standards 8.2.g, 8.4.b, 8.4.c, 8.4.d BEFORE YOU READ After you read this section, you should be able to answer these questions:

More information

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars.

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. They radiate energy (electromagnetic radiation) from a

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 07 Oct. 15, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

Pluto. Touring our Solar System. September 08, The Solar System.notebook. Solar System includes: Sun 8 planets Asteroids Comets Meteoroids

Pluto. Touring our Solar System. September 08, The Solar System.notebook. Solar System includes: Sun 8 planets Asteroids Comets Meteoroids Touring our Solar System Solar System includes: Sun 8 planets Asteroids Comets Meteoroids Jan 4 5:48 PM Jan 4 5:50 PM A planet's orbit lies in an inclined orbital plane Planes of seven planets lie within

More information

Formation of Planets and Earth Structure. Big Bang Theory. What is the shape of our solar system?

Formation of Planets and Earth Structure. Big Bang Theory. What is the shape of our solar system? Formation of Planets and Earth Structure From work of Einstein and Hubble Big Bang Theory ~14 Ga All matter in one point Exploded Expanding still Food for thought What is the shape of our solar system?

More information

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System Chapter Outline Earth and Other Planets The Formation of the Solar System Exploring the Solar System Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from

More information

http://eps.mcgill.ca/~courses/c201_winter/ http://eps.mcgill.ca/~courses/c201_winter/ Neutron Proton Nucleosynthesis neutron!! electron!+!proton!!=!!é!!+!h +!! t 1/2 =!12!minutes H + +!neutron!! Deuterium!(D)

More information

Formation of the Solar System Chapter 8

Formation of the Solar System Chapter 8 Formation of the Solar System Chapter 8 To understand the formation of the solar system one has to apply concepts such as: Conservation of angular momentum Conservation of energy The theory of the formation

More information

Origin of solar system. Origin of solar system. Geology of the Hawaiian Islands. Any Questions? Class 2 15 January 2004

Origin of solar system. Origin of solar system. Geology of the Hawaiian Islands. Any Questions? Class 2 15 January 2004 Geology of the Hawaiian Islands Class 2 15 January 2004 Any Questions? Origin of solar system Pick a theory, any theory, but it must be consistent with these facts: Planets all revolve around the Sun in

More information

Any Questions? 99.9 % of mass is in the Sun; 99 % of angular momentum is in the planets. Planets in two groups:

Any Questions? 99.9 % of mass is in the Sun; 99 % of angular momentum is in the planets. Planets in two groups: Geology of the Hawaiian Islands Class 2 15 January 2004 Any Questions? Origin of solar system Pick a theory, any theory, but it must be consistent with these facts: Planets all revolve around the Sun in

More information

Origins and Formation of the Solar System

Origins and Formation of the Solar System Origins and Formation of the Solar System 312-1 Describe theories on the formation of the solar system Smash, crash and bang The solar system is big, and big things have big origins A history of ideas

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from N.P.) Rotation Axes to orbit plane (Sun & most planets;

More information

Formation of the Universe The organization of Space

Formation of the Universe The organization of Space February 21, 2014 Formation of the Universe The organization of Space Theory: A theory is An example is cell Cell Theory Cell Theory states 1. All living organisms are composed of one or more cells 2.

More information

Formation of the Earth and Solar System

Formation of the Earth and Solar System Formation of the Earth and Solar System a. Supernova and formation of primordial dust cloud. NEBULAR HYPOTHESIS b. Condensation of primordial dust. Forms disk-shaped nubular cloud rotating counterclockwise.

More information

Nebular Hypothesis (Kant, Laplace 1796) - Earth and the other bodies of our solar system (Sun, moons, etc.) formed from a vast cloud of dust and

Nebular Hypothesis (Kant, Laplace 1796) - Earth and the other bodies of our solar system (Sun, moons, etc.) formed from a vast cloud of dust and Plate Tectonics Origin of Universe Big Bang model (Hubble, 1929) - The universe began with an explosive e expansion of matter, which later became what we know as stars, planets, moons, etc. This event

More information

Making a Solar System

Making a Solar System Making a Solar System Learning Objectives! What are our Solar System s broad features? Where are asteroids, comets and each type of planet? Where is most of the mass? In what direction do planets orbit

More information

2/24/2014. Early Earth (Hadean) Early Earth. Terms. Chondrule Chondrite Hadean Big Bang Nucleosynthesis Fusion Supernova

2/24/2014. Early Earth (Hadean) Early Earth. Terms. Chondrule Chondrite Hadean Big Bang Nucleosynthesis Fusion Supernova Early (Hadean) Early Terms Chondrule Chondrite Hadean Big Bang Nucleosynthesis Fusion Supernova Hadean Time Nucleosynthesis The elements H, He, and traces of Li were formed in the original Big Bang. Latest

More information

The History of the Solar System. From cloud to Sun, planets, and smaller bodies

The History of the Solar System. From cloud to Sun, planets, and smaller bodies The History of the Solar System From cloud to Sun, planets, and smaller bodies The Birth of a Star Twenty years ago, we knew of only one star with planets the Sun and our understanding of the birth of

More information

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher -Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher Formation Overview All explanations as to how the solar system was formed are only

More information

http://eps.mcgill.ca/~courses/c220/ Nucleosynthesis neutron electron + proton = é + H + t 1/2 = 12 minutes H + + neutron Deuterium (D) 2 H + + neutrons Helium (He) 3 H + + neutrons Lithium (Li) From: W.S.

More information

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If

More information

Today. Solar System Formation. a few more bits and pieces. Homework due

Today. Solar System Formation. a few more bits and pieces. Homework due Today Solar System Formation a few more bits and pieces Homework due Pluto Charon 3000 km Asteroids small irregular rocky bodies Comets icy bodies Formation of the Solar System How did these things come

More information

~15 GA. (Giga Annum: Billion Years) today

~15 GA. (Giga Annum: Billion Years) today ~15 GA (Giga Annum: Billion Years) today ~ 300,000 years after the Big Bang The first map of the Universe. Not homogeneous. Cosmic microwave background (CMB) anisotropy. First detected by the COBE DMR

More information

The Universe and Galaxies

The Universe and Galaxies The Universe and Galaxies 16.1 http://dingo.care-mail.com/cards/flash/5409/galaxy.swf Universe The sum of all matter and energy that exists, that has ever existed, and that will ever exist. We will focus

More information

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian Key Points of Chapter 13 HNRS 227 Fall 2006 Chapter 13 The Solar System presented by Prof. Geller 24 October 2006 Planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune Dwarf Planets Pluto,

More information

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus Fall 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

More information

Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System

Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23.1 The Solar System Terrestrial planets- Small Rocky

More information

Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years

Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years U238>Pb206 Halflife: 4.5 billion years Oldest earth rocks 3.96 billion years Meteors and Moon rocks 4.6 billion years This is the time they solidified The solar system is older than this. Radioactive Dating

More information

Comparative Planetology I: Our Solar System

Comparative Planetology I: Our Solar System Comparative Planetology I: Our Solar System Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon? 3. How do astronomers

More information

21/11/ /11/2017 Space Physics AQA Physics topic 8

21/11/ /11/2017 Space Physics AQA Physics topic 8 Space Physics AQA Physics topic 8 8.1 Solar System, Orbits and Satellites The eight planets of our Solar System Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune As well as the eight planets, the

More information

EES 1 Natural Disasters & Earth Resources Exam 1

EES 1 Natural Disasters & Earth Resources Exam 1 EES 1 Natural Disasters & Earth Resources Exam 1 September 24, 2008 1 Instructions The exam comprises 30 multiple choice questions, 10 short answers and 2 figures. All questions must be answered. It covers

More information

Chapter 12 Lecture. Earth: An Introduction to Physical Geology. Eleventh Edition. Earth s Interior. Tarbuck and Lutgens Pearson Education, Inc.

Chapter 12 Lecture. Earth: An Introduction to Physical Geology. Eleventh Edition. Earth s Interior. Tarbuck and Lutgens Pearson Education, Inc. Chapter 12 Lecture Earth: An Introduction to Physical Geology Eleventh Edition Earth s Interior Tarbuck and Lutgens Earth s Internal Structure Earth s interior can be divided into three major layers defined

More information

Nebular Hypothesis and Origin of Earth s Water

Nebular Hypothesis and Origin of Earth s Water Nebular Hypothesis and Origin of Earth s Water What is the shape of our solar system? A. Spherical: the Sun is in the center, the planets orbit in spherical shells. B. Disc shaped: fat in the center, tapering

More information

Earth s Interior Earth - Chapter 12 Stan Hatfield Southwestern Illinois College

Earth s Interior Earth - Chapter 12 Stan Hatfield Southwestern Illinois College Earth s Interior Earth - Chapter 12 Stan Hatfield Southwestern Illinois College Probing Earth s Interior Most of our knowledge of Earth s interior comes from the study of earthquake waves. Travel times

More information

1. Cosmology is the study of. a. The sun is the center of the Universe. b. The Earth is the center of the Universe

1. Cosmology is the study of. a. The sun is the center of the Universe. b. The Earth is the center of the Universe Section 1: The Universe 1. Cosmology is the study of. 2. Identify the type of cosmology a. The sun is the center of the Universe b. The Earth is the center of the Universe 3. The two most abundant gases

More information

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Instructor: L. M. Khandro 1. Relatively speaking, objects with high temperatures emit their peak radiation in short wavelengths

More information

Nebular Hypothesis and Origin of Earth s Water

Nebular Hypothesis and Origin of Earth s Water Nebular Hypothesis and Origin of Earth s Water What is the shape of our solar system? A. Spherical: the Sun is in the center, the planets orbit in spherical shells. B. Disc shaped: fat in the center, tapering

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

The History of the Earth

The History of the Earth The History of the Earth Origin of the Universe The universe began about 13.9 billion years ago According to Big Bang theory almost all matter was in the form of energy E = MC 2 E = energy, M = mass and

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Current Properties of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from North pole) Rotation

More information

Formation of the Solar System. What We Know. What We Know

Formation of the Solar System. What We Know. What We Know Formation of the Solar System Many of the characteristics of the planets we discussed last week are a direct result of how the Solar System formed Until recently, theories for solar system formation were

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

GG101 Dynamic Earth Dr. Fletcher, POST 802A Text Fletcher, WileyPLUS

GG101 Dynamic Earth Dr. Fletcher, POST 802A Text Fletcher, WileyPLUS GG101 Dynamic Earth Dr. Fletcher, POST 802A fletcher@soest.hawaii.edu 956-2582 Text Fletcher, 2011 WileyPLUS Three exams, 50% total 20 to 25 homeworks, 50% total All homeworks done on-line Assignments

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Session 2 THE EARTH Lecturer: Dr. Patrick Asamoah Sakyi Department of Earth Science, UG Contact Information: pasakyi@ug.edu.gh College of Education

More information

Evolution of the Atmosphere: The Biological Connection

Evolution of the Atmosphere: The Biological Connection Evolution of the Atmosphere: The Biological Connection The Earth s Four Spheres How It All Began Or At Least How We Think It Began O.k. it s a good guess Egg of energy The Big Bang splattered radiation

More information

Formation of the Universe

Formation of the Universe A. The Universe 1. 2. 3. How did the universe begin? Only one exists or are there more? Composed of space and 100 billion galaxies A galaxy is a grouping of millions or billions of stars kept together

More information

AP Environmental Science. Earth Systems: Part 1

AP Environmental Science. Earth Systems: Part 1 AP Environmental Science Earth Systems: Part 1 In the beginning. Our Universe began as a very hot, very dense cloud of high energy hydrogen plasma The Big Bang is the finite point, 13.7 BYA when for some

More information

Lesson 3 THE SOLAR SYSTEM

Lesson 3 THE SOLAR SYSTEM Lesson 3 THE SOLAR SYSTEM THE NATURE OF THE SUN At the center of our solar system is the Sun which is a typical medium sized star. Composed mainly of Hydrogen (73% by mass), 23% helium and the rest is

More information

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure.

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure. Standard 2: Students will understand Earth s internal structure and the dynamic nature of the tectonic plates that form its surface. Standard 2, Objective 1: Evaluate the source of Earth s internal heat

More information

outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets

outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets Earth s Place in the Universe outline 1. in the beginning. The Big Bang 2. galaxies -- different types 3. stars -- life cycle 4. the solar system -- sun and planets the big bang the universe is expanding

More information

Joy of Science Experience the evolution of the Universe, Earth and Life

Joy of Science Experience the evolution of the Universe, Earth and Life Joy of Science Experience the evolution of the Universe, Earth and Life Review Introduction Main contents Quiz Unless otherwise noted, all pictures are taken from wikipedia.org Review 1 The presence of

More information

Unit 2. Galaxies, Stars and the Solar System

Unit 2. Galaxies, Stars and the Solar System Strand K Astrophysics Unit 2 Galaxies, Stars and the Solar System Contents Page The Early Universe 2 The Life Cycle of Stars 4 Features of the Solar System 7 K21 The Early Universe Running the current

More information

THE STORY OF EARTH S FORMATION

THE STORY OF EARTH S FORMATION 0 Vocabulary tendencies differentiation rotating supernova cloud of gas/dust asteroid cloud of gas/dust gravity dense solar nebula planets accretion planetessimal protoplanets meteors moon rotation wobble

More information

Ag Earth Science Chapter 23

Ag Earth Science Chapter 23 Ag Earth Science Chapter 23 Chapter 23.1 Vocabulary Any of the Earth- like planets, including Mercury, Venus, and Earth terrestrial planet Jovian planet The Jupiter- like planets: Jupiter, Saturn, Uranus,

More information

Section 25.1 Exploring the Solar System (pages )

Section 25.1 Exploring the Solar System (pages ) Name Class Date Chapter 25 The Solar System Section 25.1 Exploring the Solar System (pages 790 794) This section explores early models of our solar system. It describes the components of the solar system

More information

TEACHER BACKGROUND INFORMATION

TEACHER BACKGROUND INFORMATION TEACHER BACKGROUND INFORMATION (The Universe) A. THE UNIVERSE: The universe encompasses all matter in existence. According to the Big Bang Theory, the universe was formed 10-20 billion years ago from a

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

EARTH TAKES SHAPE 1. Define all vocabulary words. Crust: The thin and solid outermost layer of the Earth above the mantle. Mantle: The layer of rock

EARTH TAKES SHAPE 1. Define all vocabulary words. Crust: The thin and solid outermost layer of the Earth above the mantle. Mantle: The layer of rock EARTH TAKES SHAPE 1. Define all vocabulary words. Crust: The thin and solid outermost layer of the Earth above the mantle. Mantle: The layer of rock between the Earth s crust and core Core: The central

More information

Chapter 23: Touring Our Solar System

Chapter 23: Touring Our Solar System Chapter 23: Touring Our Solar System The Sun The is the center of our solar system. The Sun makes up of all the mass of our solar system. The Sun s force holds the planets in their orbits around the Sun.

More information

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet

More information

Outline 9: Origin of the Earth: solids, liquids, and gases. The Early Archean Earth

Outline 9: Origin of the Earth: solids, liquids, and gases. The Early Archean Earth Outline 9: Origin of the Earth: solids, liquids, and gases The Early Archean Earth Origin of Earth s Matter The earth is made of recycled elements formed in stars that existed prior to our Sun. Supernova

More information

Lunar Eclipse. Solar Eclipse

Lunar Eclipse. Solar Eclipse Lunar Eclipse SUN Moon Solar Eclipse SUN SUN Moon Total solar eclipse Partial solar eclipse Moon Phases What does the moon look like from at each position? G H F A E B D C SUNLIGHT Refracting Telescopes

More information

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc.

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc. Review Clickers The Cosmic Perspective Seventh Edition Jovian Planet Systems If Jupiter was the size of a basketball, Earth would be the size of a(n) a) bacterium. b) grain of rice. c) marble. d) orange.

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

Outline 9: Origin of the Earth: solids, liquids, and gases

Outline 9: Origin of the Earth: solids, liquids, and gases Outline 9: Origin of the Earth: solids, liquids, and gases The Early Archean Earth Origin of Earth s Matter The earth is made of recycled elements formed in stars that existed prior to our Sun. Supernova

More information

Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

More information

What s in Our Solar System?

What s in Our Solar System? The Planets What s in Our Solar System? Our Solar System consists of a central star (the Sun), the main eight planets orbiting the sun, the dwarf planets, moons, asteroids, comets, meteors, interplanetary

More information

9.2 - Our Solar System

9.2 - Our Solar System 9.2 - Our Solar System Scientists describe our solar system as the Sun and all the planets and other celestial objects, such as moons, comets, and asteroids, that are held by the Sun s gravity and orbit

More information

The Earth in the Universe

The Earth in the Universe The Earth in the Universe (OCR) Evidence for the age of the Earth Scientists once thought that the Earth was only 6000 years old. Rocks have provided lots of evidence for the world being older. 1) Erosion

More information

HW #2. Solar Nebular Theory. Predictions: Young stars have disks. Disks contain gas & dust. Solar System should contain disk remnants

HW #2. Solar Nebular Theory. Predictions: Young stars have disks. Disks contain gas & dust. Solar System should contain disk remnants Astronomy 330: Extraterrestrial Life This class (Lecture 9): Next Class: Planet Formation Zachary Brewer Quinn Calvert Exoplanets Itamar Allali Brian Campbell-Deem HW #3 due Sunday night. Music: Another

More information

Exploring Our Solar System

Exploring Our Solar System Exploring Our Solar System Our Solar System What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement

More information

LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system

LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system Unit 2 Lesson 1 LESSON topic: formation of the solar system - Solar system formation - Star formation - Models of the solar system - Planets in our solar system Big bang theory Origin of the universe According

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Sep. 11, 2002 1) Introduction 2) Angular Momentum 3) Formation of the Solar System 4) Cowboy Astronomer Review Kepler s Laws empirical description of planetary motion Newton

More information

What is Earth Science?

What is Earth Science? What is Earth Science? A.EARTH SCIENCE: the study of Earth and its history B. Earth science is divided into 4 main branches: 1. Geology: study of the lithosphere 2. Oceanography: study of oceans 3. Meteorology:

More information

Class Announcements. Solar System. Objectives for today. Will you read Chap 32 before Wed. class? Chap 32 Beyond the Earth

Class Announcements. Solar System. Objectives for today. Will you read Chap 32 before Wed. class? Chap 32 Beyond the Earth Class Announcements Please fill out an evaluation for this class. If you release your name I ll I give you quiz credit. Will you read Chap 32 before Wed. class? a) Yes b) No Chap 32 Beyond the Earth Objectives

More information

EARTH AND UNIVERSE. Earth

EARTH AND UNIVERSE. Earth EARTH AND UNIVERSE Earth Earth is the third planet from the Sun and the only object in the Universe known to harbor life. According to radiometric dating and other sources of evidence, Earth formed over

More information

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 26: Planetary Geology [3/23/07] Announcements.

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 26: Planetary Geology [3/23/07] Announcements. ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 26: Planetary Geology [3/23/07] Announcements Planetary Geology Planetary

More information

Test Name: 09.LCW.0352.SCIENCE.GR Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: Date: 09/21/2017

Test Name: 09.LCW.0352.SCIENCE.GR Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: Date: 09/21/2017 Test Name: 09.LCW.0352.SCIENCE.GR7.2017.Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: 243920 Date: 09/21/2017 Section 1.1 - According to the Doppler Effect, what happens to the wavelength of light as galaxies

More information

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Planetary Interiors Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Isostasy Courtesy of U of Leeds Now apply this idea to topography

More information

Formation of the Solar System and Other Planetary Systems

Formation of the Solar System and Other Planetary Systems Formation of the Solar System and Other Planetary Systems 1 Questions to Ponder 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon?

More information

m V Density Formation of the Solar System and Other Planetary Systems Questions to Ponder

m V Density Formation of the Solar System and Other Planetary Systems Questions to Ponder Formation of the Solar System and Other Planetary Systems Questions to Ponder 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon?

More information

Edwin Hubble Discovered galaxies other than the milky way. Galaxy:

Edwin Hubble Discovered galaxies other than the milky way. Galaxy: Edwin Hubble Discovered galaxies other than the milky way. Galaxy: A collection of stars, planets, gas, and dust that are held together by gravity. Our sun and planets are in the Milky Way He noticed that

More information

Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th

Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th Moon Obs #1 Due! Moon visible: early morning through afternoon 6 more due June 13 th 15 total due June 25 th Final Report Due June 28th Our Solar System Objectives Overview of what is in our solar system

More information

Beyond the Solar System 2006 Oct 17 Page 1 of 5

Beyond the Solar System 2006 Oct 17 Page 1 of 5 I. Stars have color, brightness, mass, temperature and size. II. Distances to stars are measured using stellar parallax a. The further away, the less offset b. Parallax angles are extremely small c. Measured

More information

GraspIT Questions AQA GCSE Physics Space physics

GraspIT Questions AQA GCSE Physics Space physics A. Solar system: stability of orbital motions; satellites (physics only) 1. Put these astronomical objects in order of size from largest to smallest. (3) Fill in the boxes in the correct order. the Moon

More information

Where did the solar system come from?

Where did the solar system come from? Chapter 06 Part 2 Making the Planetary Donuts Where did the solar system come from? Galactic Recycling Elements that formed planets were made in stars and then recycled through interstellar space. Evidence

More information

Shape and Size of the Earth

Shape and Size of the Earth Planet Earth Shape and Size of the Earth Gravity is what gives Earth its spherical shape Only effective if the body is of a critical size Critical radius is about 350 km Shape and Size of the Earth Earth

More information

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star. 25.2 Stellar Evolution By studying stars of different ages, astronomers have been able to piece together the evolution of a star. Star Birth The birthplaces of stars are dark, cool interstellar clouds,

More information

Observational Astronomy - Lecture 6 Solar System I - The Planets

Observational Astronomy - Lecture 6 Solar System I - The Planets Observational Astronomy - Lecture 6 Solar System I - The Planets Craig Lage New York University - Department of Physics craig.lage@nyu.edu March 23, 2014 1 / 39 The Sun and the Earth The Sun is 23,000

More information

Your task for each planet...

Your task for each planet... Solar System Your task for each planet... Slide 1: What type of planet is it? (either rocky terrestrial world, gas giant or ice giant) What is it made of? Does it have any moons? What is its mass relative

More information