Astrophysics, Cambridge, MA, USA; 3 Southwest Research Institute, Boulder, CO, USA; 4 Catholic University, Washington, DC, USA

Size: px
Start display at page:

Download "Astrophysics, Cambridge, MA, USA; 3 Southwest Research Institute, Boulder, CO, USA; 4 Catholic University, Washington, DC, USA"

Transcription

1 Solving the Coronal Heating Problem using X-ray Microcalorimeters S. Christe 1, S. Bandler 1, E. DeLuca 2, A. Caspi 3, L. Golub 2, R. Smith 2, J. Allred 1, J. W. Brosius 4, B. Dennis 1, J. Klimchuk 1 1 NASA Goddard Space Flight Center, Greenbelt, MD, USA; 2 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA; 3 Southwest Research Institute, Boulder, CO, USA; 4 Catholic University, Washington, DC, USA Even in the absence of resolved flares, the corona is heated to several million degrees. However, despite its importance for the structure, dynamics, and evolution of the solar atmosphere, the origin of this heating remains poorly understood. Several observational and theoretical considerations suggest that the heating is driven by small, impulsive energy bursts which could be Parker-style nanoflares (Parker 1988) that arise via reconnection within the tangled and twisted coronal magnetic field. The scale heights of coronal loops are clearly incompatible with static heating models (Petrie 2006). Recent models of the First Ionization Potential (FIP) effect where the ponderomotive force from Alfvén waves drives the fractionation (Laming 2009) strongly suggest the presence of impulsive events in the corona. The classical smoking gun (Klimchuk 2009; Cargill et al. 2013) for impulsive heating is the direct detection of widespread hot plasma (T > 6 MK) with a low emission measure. Tantalizing hints of hot plasma have been seen from the solar corona imaged in the light of Mg XII 8.42 Å (Zhitnik et al. 2006; Urnov et al. 2007), in emission measure analyses of spectra taken with Hinode/EIS (Patsourakos & Klimchuk 2009), with Hinode/XRT using different filter ratios (Reale et al. 2009; Schmelz et al. 2009) and/or in quiet sun observations with RHESSI (McTiernan 2009; Reale et al. 2009b) as well as two rocket-borne instruments (Brosius et al. 2014; Caspi et al. 2015). Modeling suggests that nanoflares should be followed by episodes of evaporation from the chromosphere, following heat conduction downwards. This upflow is predicted to be 50 to 100 km s -1. To date, such upflows have generally only been convincingly detected during solar flares (Brosius & Phillips 2004), when shifts of the entire line profile have been observed (Brosius 2003, 2013) or as a shoulder on the blue wing of an otherwise stationary line profile (Milligan et al. 2006). Figure 1. Simulated spectrum of an active region from a single TES pixel integrated over 10 seconds. The spectrum consists of two isothermal plasmas. The majority component is at 2 MK (blue, cool only). A hotter component at 10 MK has an emission measure that is 1% of the cooler component. The addition of the hot component (red) shows strong signatures from a number of additional highly ionized Fe lines.

2 These results have been obtained using a variety of technologies. Recent solar missions (Hinode, SOHO, IRIS) have used extreme ultraviolet (EUV) slit spectrographs to measure the velocity, temperature, and density in active regions and flares. EUV instruments have the advantage of very high spectral resolution across a wide range of emission lines. However, these devices have significant disadvantages. They require several minutes to scan (raster) across an active region. Furthermore since the exposure time determines the raster speed, selecting the correct exposure time is challenging for measuring temporally-varying features such as those found in active regions. The same can be said of Bragg Crystal Spectrometers. For EUV imagers which do not raster such as AIA on SDO, filter bandpasses are relatively broad compared to the underlying lines and frequently include low temperature emission which is difficult to isolate from the hot plasma. Additionally, EUV line spectroscopy has limited sensitivity to the very hottest temperatures, >20 MK, due to a lack of spectral lines from ion species formed at these temperatures. Figure 2. (left) Prototype TES X-ray microcalorimeter array with 35 µm pitch in which <2 ev energy resolution has been demonstrated (Datesman 2016). (middle) Prototype kilo-pixel microcalorimeter array with 75 µm pitch. (right) Spectrum of Mn Ka X-rays with a FWHM energy resolution <2.3 ev, with 99.6% throughput for an input count rate of 100 cps. In recent years there has been great progress in the development of Transition Edge Sensor (TES) X-ray microcalorimeters that make them more ideal for studying the Sun. In this detector, a superconductor is biased at a temperature in-between its superconducting and normal-metal state, where it is extremely sensitive to small energy inputs such as absorption of X-ray photons. When combined with grazing-incidence focusing optics, they provide direct spectroscopic imaging over a broad energy band (0.5 to 10 kev), overcoming all of the issues described above. Close-packed arrays of pixels on pitches ranging from 35 to 75 µm have now been developed, as shown Fig. 2 (left, middle) allowing studies down to arcsecond angular scales (Bandler 2013; Datesman 2016). Extremely impressive energy resolution has been demonstrated in small pixels, as low as 0.7 ev (FWHM) at 1.5 kev (Lee 2015), and 1.56 ev (FWHM) at 6 kev (Smith 2012) -- two orders of magnitude better than the current best traditional solid state photon-counting spectrometers. Pixels have successfully operated at several hundred counts per second. Fig. 2 (right) shows a spectrum of Mn Ka X-rays collected at 100 counts per second, all around 6 kev, with an energy resolution of 2.3 ev FWHM. Kilopixel arrays have already been fabricated as shown in Fig. 2 (middle). Several abutted kilopixels arrays at the focal plane can provide an appropriate field of view. The technology needed

3 for the multiplexed readout of large arrays has continued to develop and is now ready for flight. Most recently, code-division multiplexing demonstrated the multiplexed readout of 32 TESs without any significant energy resolution degradation (Morgan 2016). Progress has also been made in another promising readout technology called microwave SQUID multiplexing, which has the promise of being able to read out hundreds of pixels on a single readout channel (Bennett 2015). The simultaneous combination of high resolution direct spectroscopic imaging observations across this entire energy range is new and tremendously powerful. The improved capabilities of a pixelated microcalorimeter, relative to EUV instruments, include: sensitivity to plasma temperatures from <0.7 MK to ~100 MK the ability to detect signatures of non-thermal electrons and flows with velocities down to <50 km s -1 the ability to directly observe 2-D images rather than constructing them from a series of 1-D images photon-counting capability to provide millisecond or better time resolution, as well as achieving imaging times down to a few seconds. The unique capabilities of these new detectors will allow us to study how magnetic energy is released in small scale magnetic reconnection events such as nanoflare heating in active regions and the quiet Sun. An instrument optimized to be sensitive to the accurate detection of faint hot coronal plasma and plasma flows can make important contributions beyond the coronal heating problem if combined with other observations. These include but are not limited to: Identifying and characterizing the physics of interchange reconnections between open and closed fields which has been observed by AIA near coronal holes Characterizing the energetics of CME heating during eruptions which may represent a significant fraction of its energy budget (Akmal et al. 2001; Ciaravella et al. 2001; Rakowski et al. 2007; Lee et al. 2009; Landi et al. 2010) Investigate the density structures in solar flares which may influence the energetics of nonthermal electrons, using diagnostic line ratios in Fe XXI and Fe XXII (Phillips et al. 1996). Decisive observations of the hot plasma associated with nanoflare models of coronal heating can be provided by new solar microcalorimeters. These measurements will cover the most important part of the coronal spectrum for searching for the nanoflare-related hot plasma and will characterize how much nanoflares can heat the corona both in active regions and the quiet Sun. Such measurements can also make great contributions to the study of the FIP effect by measuring relative abundances of a large number of important elements (e.g. Fe, Ca, Si, Mg, S, Ar, C, Ne, and O) at the same time. In addition, microcalorimeters will enable to study all of this as a function of time and space in each pixel simultaneously. NASA and JAXA have already collaborated successfully on microcalorimeters and would make ideal partners to apply them to solar observations.

4 References A. Caspi, T. N. Woods, and H. P. Warren, New Observations of the Solar kev Soft X-Ray Spectrum, ApJ, vol. 802, no. 1, p. L2, Mar S.R. Bandler et al., Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for Solar Physics and Astrophysics, IEEE Trans on Appl. Sup., 23, (3), (2013); doi: /TASC J. W. Brosius, A. N. Daw, and D. M. Rabin, Pervasive Faint Fe XIX Emission from a Solar Active Region Observed with EUNIS-13: Evidence for Nano are Heating, vol. 790, no. 2, p. 112, Aug P. Cargill, From ares to nano ares: magnetic reconnection on the Sun, Astronomy & Geophysics, vol. 54, no. 3, pp , Jun J. W. Brosius, Chromospheric Evaporation in Solar Flare Loop Strands Observed with the Extreme-ultraviolet Imaging Spectrometer on Board Hinode, The Astrophysical Journal, vol. 762, no. 2, p. 133, Jan J. A. Klimchuk, Coronal Loop Models and Those Annoying Observations! (Keynote), The Second Hinode Science Meeting: Beyond Discovery-Toward Understanding ASP Conference Series, vol. 415, pp. 221, Dec J. T. Schmelz, V. Kashyap, S. H. Saar, B. R. Dennis, P. C. Grigis, R. P. Lin, E. E. De Luca, G. D. Holman, L. Golub, and M. A. Weber, Some Like It Hot: Coronal Heating Observations from Hinode X-ray Telescope and RHESSI, The Astrophysical Journal, vol. 704, no. 1, pp , Oct F. Reale, J. M. McTiernan, and P. Testa, Comparison of Hinode/XRT and RHESSI Detection of Hot Plasma in the Non-Flaring Solar Corona, ApJ, vol. 704, no. 1, pp. L58 L61, Oct F. Reale, P. Testa, J. A. Klimchuk, and S. Parenti, Evidence of Widespread Hot Plasma in a Non aring Coronal Active Region from Hinode/X-Ray Telescope, The Astrophysical Journal, vol. 698, no. 1, pp , Jun S. Patsourakos and J. A. Klimchuk, Spectroscopic Observations of Hot Lines Constraining Coronal Heating in Solar Active Regions, The Astrophysical Journal, vol. 696, no. 1, pp , May J. M. McTiernan, RHESSI/GOES Observations of the Non aring Sun from 2002 to 2006, The Astrophysical Journal, vol. 697, no. 1, pp , May J. M. Laming, Non-Wkb Models of the First Ionization Potential Effect: Implications for Solar Coronal Heating and the Coronal Helium and Neon Abundances, The Astrophysical Journal, vol. 695, no. 2, pp , Apr A. M. Urnov, S. V. Shestov, S. A. Bogachev, F. F. Goryaev, I. A. Zhitnik, and S. V. Kuzin, On the spatial and temporal characteristics and formation mechanisms of soft X- ray emission in the solar corona, Astron. Lett., vol. 33, no. 6, pp , Jun G. J. D. Petrie, Coronal Loop Widths and Pressure Scale Heights, ApJ, vol. 649, no. 2, pp , Oct I. A. Zhitnik, S. V. Kuzin, A. M. Urnov, S. A. Bogachev, F. F. Goryaev, and S. V. Shestov, X-ray and EUV diagnostics of active plasma structures with the RES spectroheliograph in the SPIRIT experiment onboard the CORONAS-F satellite, Sol Syst Res, vol. 40, no. 4, pp , Jul

5 R. O. Milligan, P. T. Gallagher, M. Mathioudakis, and F. P. Keenan, Observational Evidence of Gentle Chromospheric Evaporation during the Impulsive Phase of a Solar Flare, The Astrophysical Journal, vol. 642, no. 2, pp. L169 L171, May J. W. Brosius and K. J. H. Phillips, Extreme-Ultraviolet and X-Ray Spectroscopy of a Solar Flare Loop Observed at High Time Resolution: A Case Study in Chromospheric Evaporation, The Astrophysical Journal, vol. 613, no. 1, pp , Sep J. W. Brosius, Chromospheric Evaporation and Warm Rain during a Solar Flare Observed in High Time Resolution with the Coronal Diagnostic Spectrometer aboard the Solar and Heliospheric Observatory, The Astrophysical Journal, vol. 586, no. 2, pp , Apr E. N. Parker, Nano ares and the solar X-ray corona, Astrophysical Journal, vol. 330, pp , Jul A.M. Datesman et al., "Reduced-Scale Transition-Edge Sensor Detectors for Solar and X-ray Astrophysics", accepted for publication in the IEEE Trans. on Appl. Sup., S.-J. Lee et al., Fine pitch transition-edge sensor X-ray microcalorimeters with sub-ev energy resolution at 1.5 kev, App. Phys. Lett. 107, (2015); doi: / S. J. Smith et al., Small pitch transition1-edge sensors with broadband high spectral resolution for solar physics, J. Low. Temp. Phys. vol.167, pp , February K.M. Morgan et al., "Code-division-multiplexed readout of large arrays of TES microcalorimeters", Applied Physics Letters 109, (2016); doi: / D.A. Bennett et al., "Integration of TES Microcalorimeters With Microwave SQUID Multiplexed Readout", IEEE Trans. on Appl. Sup., 25, 3, (2015).

Science Objectives for an X-Ray Microcalorimeter Observing the Sun

Science Objectives for an X-Ray Microcalorimeter Observing the Sun Science Objectives for an X-Ray Microcalorimeter Observing the Sun J. Martin Laming 1, J. Adams 3, D. Alexander 8, M Aschwanden 12, C. Bailey 3, S. Bandler 3, J. Bookbinder 2, S. Bradshaw 8, N. Brickhouse

More information

Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center

Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center Total Solar Eclipse Aug. 1, 2008 M. Druckmuller Coronal Soft X-rays Yohkoh / SXT Surface Magnetic

More information

Phillip Chamberlin NASA Goddard Space Flight Center Solar Physics Laboratory Greenbelt, MD USA

Phillip Chamberlin NASA Goddard Space Flight Center Solar Physics Laboratory Greenbelt, MD USA Phillip Chamberlin NASA Goddard Space Flight Center Solar Physics Laboratory Greenbelt, MD USA Phillip.C.Chamberlin@NASA.gov With important contributions from Ryan Milligan (QUB), Daniel Ryan (ROB), Jan

More information

Recent Highlights on Solar Coronal Abundances from Hinode

Recent Highlights on Solar Coronal Abundances from Hinode Recent Highlights on Solar Coronal Abundances from Hinode David H. Brooks George Mason University Honolulu, August 10, 2015 Ignacio Ugarte-Urra/GMU Harry Warren/NRL First Ionization Potential (FIP) Effect

More information

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University Solar-B Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University The mission overview Japanese mission as a follow-on to Yohkoh. Collaboration with USA

More information

Supporting Calculations for NASA s IRIS Mission. I. Overview

Supporting Calculations for NASA s IRIS Mission. I. Overview Supporting Calculations for NASA s IRIS Mission. I. Overview Eugene Avrett Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Understanding the solar chromosphere continues

More information

Overview of observational methods and instruments: spectrographs. Sergei Shestov

Overview of observational methods and instruments: spectrographs. Sergei Shestov Overview of observational methods and instruments: spectrographs Sergei Shestov 7 Feb 2018 SIDC seminar: spectrographs 2 Outline Scientific importance of spectroscopic observations Solar spectra Methods

More information

Downflow as a Reconnection Outflow

Downflow as a Reconnection Outflow The Solar-B Mission and the Forefront of Solar Physics ASP Conference Series, Vol. 325, 2004 T. Sakurai and T. Sekii, eds. Downflow as a Reconnection Outflow Ayumi Asai and Kazunari Shibata Kwasan and

More information

Coronal Loop Models and Those Annoying Observations (!) James A. Klimchuk NASA / GSFC

Coronal Loop Models and Those Annoying Observations (!) James A. Klimchuk NASA / GSFC Coronal Loop Models and Those Annoying Observations (!) James A. Klimchuk NASA / GSFC Pieces of the Coronal Loops Puzzle Lifetime Density Thermal Structure* Flows Intensity Profile** * Over cross section

More information

DETERMINATION OF THE FORMATION TEMPERATURE OF Si IV IN THE SOLAR TRANSITION REGION

DETERMINATION OF THE FORMATION TEMPERATURE OF Si IV IN THE SOLAR TRANSITION REGION THE ASTROPHYSICAL JOURNAL, 477 : L119 L122, 1997 March 10 1997. The American Astronomical Society. All rights reserved. Printed in U.S.A. DETERMINATION OF THE FORMATION TEMPERATURE OF Si IV IN THE SOLAR

More information

X-ray observations of Solar Flares. Marina Battaglia Fachhochschule Nordwestschweiz (FHNW)

X-ray observations of Solar Flares. Marina Battaglia Fachhochschule Nordwestschweiz (FHNW) X-ray observations of Solar Flares Marina Battaglia Fachhochschule Nordwestschweiz (FHNW) marina.battaglia@fhnw.ch 2 3 The solar corona Close by astrophysical laboratory allows us to study: Release of

More information

Dynamic 10 MK plasma structures observed in monochromatic full-sun images by the SPIRIT spectroheliograph on the CORONAS-F mission

Dynamic 10 MK plasma structures observed in monochromatic full-sun images by the SPIRIT spectroheliograph on the CORONAS-F mission Mon. Not. R. Astron. Soc. 338, 67 71 (2003) Dynamic 10 MK plasma structures observed in monochromatic full-sun images by the SPIRIT spectroheliograph on the CORONAS-F mission I. A. Zhitnik, 1 O. I. Bugaenko,

More information

Solar Orbiter/SPICE: composition studies

Solar Orbiter/SPICE: composition studies Solar Orbiter/SPICE: composition studies Alessandra Giunta 1-2/10/2015 - ADAS workshop 1 Solar Orbiter/SPICE Door Mechanism Grating Assembly Particle Deflector SPICE Slit Change Mechanism Mirror & Scan

More information

Large Solar Flares. Albert Y. Shih NASA/GSFC 2014 Oct 21

Large Solar Flares. Albert Y. Shih NASA/GSFC 2014 Oct 21 Large Solar Flares Albert Y. Shih NASA/GSFC 2014 Oct 21 The Carrington event 1859 Sep 1: First observation of a flare Compared to other flares (Carrington 1859) (Cliver& Dietrich 2013) 2014 Oct 19, X1.1

More information

Temperature Reconstruction from SDO:AIA Filter Images

Temperature Reconstruction from SDO:AIA Filter Images Temperature Reconstruction from SDO:AIA Filter Images A report by Chris Gilbert Astrophysical and Planetary Sciences, University of Colorado Boulder ASTR 5700; Stellar Astrophysics, Spring 2016 Abstract

More information

TRACE DOWNFLOWS AND ENERGY RELEASE

TRACE DOWNFLOWS AND ENERGY RELEASE TRACE DOWNFLOWS AND ENERGY RELEASE Ayumi Asai (1), T. Yokoyama (2), M. Shimojo (3), R. TanDokoro (4), M. Fujimoto (4), and K. Shibata (1) (1 ) Kwasan and Hida Observatories, Kyoto University, Kyoto, 607-8471

More information

Response of Hinode XRT to quiet Sun, active region and flare plasma. B. O Dwyer, G. Del Zanna, and H. E. Mason

Response of Hinode XRT to quiet Sun, active region and flare plasma. B. O Dwyer, G. Del Zanna, and H. E. Mason DOI: 10.1051/0004-6361/201016346 c ESO 2013 Astronomy & Astrophysics Response of Hinode XRT to quiet Sun, active region and flare plasma B. O Dwyer, G. Del Zanna, and H. E. Mason Department of Applied

More information

Investigating Molecular Hydrogen in Active Regions with IRIS

Investigating Molecular Hydrogen in Active Regions with IRIS Investigating Molecular Hydrogen in Active Regions with IRIS Sarah A. Jaeggli1, Philip G. Judge2, Steven H. Saar3, Adrian N. Daw4, & The IRIS Team 1 Montana State University Altitude Observatory 3 Harvard-Smithsonian

More information

2 The solar atmosphere

2 The solar atmosphere 1 The solar atmosphere 1.1 Introduction The solar atmosphere may be broadly defined as that part of the Sun extending outwards from a level known as the photosphere where energy generated at the Sun s

More information

Solar Astrophysics with ALMA. Sujin Kim KASI/EA-ARC

Solar Astrophysics with ALMA. Sujin Kim KASI/EA-ARC Solar Astrophysics with ALMA Sujin Kim KASI/EA-ARC Contents 1. The Sun 2. ALMA science targets 3. ALMA capabilities for solar observation 4. Recent science results with ALMA 5. Summary 2 1. The Sun Dynamic

More information

Full-sun temperature distribution and classification of coronal structures

Full-sun temperature distribution and classification of coronal structures Full-sun temperature distribution and classification of coronal structures Noriyuki Narukage, 1 Masumi Shimojo, 2 Taro Sakao, 1 Ryouhei Kano, 3 Kiyoto Shibasaki, 2 Edward E. DeLuca, 4 Mark A. Weber, 4

More information

Nanoflare Heating: Observations and Theory 1. James A. Klimchuk NASA-GSFC

Nanoflare Heating: Observations and Theory 1. James A. Klimchuk NASA-GSFC Nanoflare Heating: Observations and Theory 1 James A. Klimchuk NASA-GSFC Understanding how the solar corona is heated to multi-million degree temperatures, three orders of magnitude hotter than the underlying

More information

arxiv: v1 [astro-ph.sr] 3 Mar 2016

arxiv: v1 [astro-ph.sr] 3 Mar 2016 Draft version October 1, 218 Preprint typeset using L A TEX style emulateapj v. 5/2/11 THE FIRST X-RAY IMAGING SPECTROSCOPY OF QUIESCENT SOLAR ACTIVE REGIONS WITH NUSTAR Iain G. Hannah 1, Brian W. Grefenstette

More information

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars centre for fusion, space and astrophysics Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars Presented by: On behalf of: Jennifer Harris Claire Foullon, E. Verwichte, V. Nakariakov

More information

arxiv: v1 [astro-ph.sr] 13 Jan 2019

arxiv: v1 [astro-ph.sr] 13 Jan 2019 Draft version January 15, 2019 Typeset using LATEX default style in AASTeX61 QUANTIFYING THE INFLUENCE OF KEY PHYSICAL PROCESSES ON THE FORMATION OF EMISSION LINES OBSERVED BY IRIS: I. NON-EQUILIBRIUM

More information

CORONAL HEATING ORIGINS OF SOLAR SPECTRAL IRRADIANCE

CORONAL HEATING ORIGINS OF SOLAR SPECTRAL IRRADIANCE CORONAL HEATING ORIGINS OF SOLAR SPECTRAL IRRADIANCE Jim Klimchuk (GSFC) Spiros Patsourakos (NRL-GMU) Judy Karpen (GSFC) Rick DeVore (NRL) Russ Dahlburg (NRL) Jon Linker (SAIC) Karel Schrijver (LMSAL)

More information

Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments

Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments Tomasz Mrozek 1,2 1 Space Research Centre, Polish Academy of Sciences, Solar Physics Division 2 Astronomical Institute, University

More information

Solar UV Spectroscopy and Coronagraphy

Solar UV Spectroscopy and Coronagraphy Solar UV Spectroscopy and Coronagraphy Werner Curdt Outline motivation the Sun s electromagnetic spectrum spectroscopic methods observational examples instrumental aspects optical design detectors others

More information

Multi-wavelength VLA and Spacecraft Observations of Evolving Coronal Structures Outside Flares

Multi-wavelength VLA and Spacecraft Observations of Evolving Coronal Structures Outside Flares Multi-Wavelength Investigations of Solar Activity Proceedings of IAU Symposium No. 223, 2004 A.V. Stepanov, E.E. Benevolenskaya & A.G. Kosovichev, eds. Multi-wavelength VLA and Spacecraft Observations

More information

Patterns of Nanoflare Storm Heating Exhibited by an. Active Region Observed with SDO/AIA

Patterns of Nanoflare Storm Heating Exhibited by an. Active Region Observed with SDO/AIA Patterns of Nanoflare Storm Heating Exhibited by an Active Region Observed with SDO/AIA Nicholeen M. Viall and James A. Klimchuk NASA Goddard Space Flight Center, Greenbelt, MD Abstract It is largely agreed

More information

New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer CubeSat

New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer CubeSat New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer CubeSat Thomas N. Woods 1, Amir Caspi 2, Phillip C. Chamberlin 3, Andrew Jones 1, Richard Kohnert 1, James Paul Mason 1, Christopher

More information

Received ; accepted ; published

Received ; accepted ; published THE ASTROPHYSICAL JOURNAL LETTERS, MANUAL EMULATION TEMPLATE doi: 1.188/241-825/XXX/X/LXX HARD X-RAY IMAGING OF INDIVIDUAL SPECTRAL COMPONENTS IN SOLAR FLARES AMIR CASPI 1, ALBERT Y. SHIH 2, JAMES M. MCTIERNAN

More information

Solar Gamma-Ray Line Spectroscopy Physics of a Flaring Star

Solar Gamma-Ray Line Spectroscopy Physics of a Flaring Star **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Solar Gamma-Ray Line Spectroscopy Physics of a Flaring Star Gerald H. Share and Ronald J. Murphy E.O. Hulburt

More information

Hinode EIS Observations of a Limb Active Region

Hinode EIS Observations of a Limb Active Region Astronomy & Astrophysics manuscript no. 12701 c ESO 2010 August 9, 2010 Hinode EIS Observations of a Limb Active Region B. O Dwyer 1, G. Del Zanna 1, H. E. Mason 1, Alphonse C. Sterling 2, D. Tripathi

More information

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT SDO SUMMER SCHOOL ~ August 2010 ~ Yunnan, China Marc DeRosa (LMSAL) ~ derosa@lmsal.com WHAT IS SDO? The goal of Solar Dynamics Observatory (SDO) is to understand:

More information

pre Proposal in response to the 2010 call for a medium-size mission opportunity in ESA s science programme for a launch in 2022.

pre Proposal in response to the 2010 call for a medium-size mission opportunity in ESA s science programme for a launch in 2022. Solar magnetism explorer (SolmeX) Exploring the magnetic field in the upper atmosphere of our closest star preprint at arxiv 1108.5304 (Exp.Astron.) or search for solmex in ADS Hardi Peter & SolmeX team

More information

High-temperature solar flare plasma behaviour from crystal spectrometer observations

High-temperature solar flare plasma behaviour from crystal spectrometer observations Solar and Stellar Flares and their Effects on Planets Proceedings IAU Symposium No. 0, 05 International Astronomical Union 06 A.G. Kosovichev, S.L. Hawley & P. Hemzel, eds. doi:0.07/s7960000 High-temperature

More information

Observations of Solar Jets

Observations of Solar Jets Observations of Solar Jets Coronal Jets X-ray and EUV images Davina Innes Transition Region Jets explosive events UV spectra and since IRIS images Active Region jets Coronal hole jets Everywhere about

More information

Future X-rayX Spectroscopy Missions. Jan-Willem den Herder

Future X-rayX Spectroscopy Missions. Jan-Willem den Herder Future X-rayX Spectroscopy Missions Jan-Willem den Herder contents Plasma diagnostics in the 0.1 to 10 kev band with resolution > 100 X-ray spectrometers: instrumental promises Future missions (a dream)

More information

Solar Wind Ion Composition Measurements: Direct Measurements of Properties of the Corona

Solar Wind Ion Composition Measurements: Direct Measurements of Properties of the Corona Solar Wind Ion Composition Measurements: Direct Measurements of Properties of the Corona White Paper Submitted to the Decadal Survey Panel on Solar and Heliospheric Physics November 12, 2010 Stefano A.

More information

The Frequency Agile Solar Radiotelescope

The Frequency Agile Solar Radiotelescope The Frequency Agile Solar Radiotelescope Associated Universities, Inc. National Radio Astronomy Observatory University of California, Berkeley California Institute of Technology New Jersey Institute of

More information

Astronomy. Astrophysics. Multi-wavelength observations and modelling of a canonical solar flare

Astronomy. Astrophysics. Multi-wavelength observations and modelling of a canonical solar flare A&A 494, 1127 1136 (2009) DOI: 10.1051/0004-6361:200810437 c ESO 2009 Astronomy & Astrophysics Multi-wavelength observations and modelling of a canonical solar flare C. L. Raftery 1,2,P.T.Gallagher 1,

More information

Phillip Chamberlin. Frank Eparvier, Tom Woods. NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD

Phillip Chamberlin. Frank Eparvier, Tom Woods. NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD Phillip Chamberlin Phillip.C.Chamberlin@nasa.gov NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD Frank Eparvier, Tom Woods University of Colorado, LASP, Boulder, CO LPW/EUV channels

More information

Solar Energetic Particles measured by AMS-02

Solar Energetic Particles measured by AMS-02 Solar Energetic Particles measured by AMS-02 Physics and Astronomy Department, University of Hawaii at Manoa, 96822, HI, US E-mail: bindi@hawaii.edu AMS-02 collaboration The Alpha Magnetic Spectrometer

More information

Temporal evolution of differential emission measure and electron distribution function in solar flares based on joint RHESSI and SDO observations

Temporal evolution of differential emission measure and electron distribution function in solar flares based on joint RHESSI and SDO observations Temporal evolution of differential emission measure and electron distribution function in solar flares based on joint RHESSI and SDO observations Galina G. Motorina 1 and Eduard P. Kontar 2 1 Pulkovo Observatory,

More information

Solar Flares - Hinode Perspec.ve -

Solar Flares - Hinode Perspec.ve - Solar Flares - Hinode Perspec.ve - EIS SOT XRT Coupling and Dynamics of the Solar Atmosphere 2014 Nov 10 14 @IUCAA, Pune, India Hirohisa Hara NAOJ Solar Flare Research by Hinode Solar flares: explosive

More information

Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17

Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17 Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17 Kundu, M R., Schmahl, E J, and White, S M Introduction We discuss one large flare using simultaneous

More information

LINE INTENSITY RATIOS IN THE EIS RANGE SENSITIVE TO ELECTRON DENSITIES IN 10 7 K PLASMAS

LINE INTENSITY RATIOS IN THE EIS RANGE SENSITIVE TO ELECTRON DENSITIES IN 10 7 K PLASMAS The Astrophysical Journal, 679:843Y847, 2008 May 20 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. LINE INTENSITY RATIOS IN THE EIS RANGE SENSITIVE TO ELECTRON DENSITIES

More information

OBSERVATIONS OF THE THERMAL AND DYNAMIC EVOLUTION OF A SOLAR MICROFLARE

OBSERVATIONS OF THE THERMAL AND DYNAMIC EVOLUTION OF A SOLAR MICROFLARE The Astrophysical Journal, 692:492 501, 2009 February 10 c 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637x/692/1/492 OBSERVATIONS OF THE THERMAL

More information

1. INTRODUCTION 2. OBSERVATIONS AND DATA REDUCTION. The Astrophysical Journal, 502:L85 L90, 1998 July 20

1. INTRODUCTION 2. OBSERVATIONS AND DATA REDUCTION. The Astrophysical Journal, 502:L85 L90, 1998 July 20 The Astrophysical Journal, 502:L85 L90, 1998 July 20 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. FLOWS IN SUNSPOT PLUMES DETECTED WITH THE SOLAR AND HELIOSPHERIC OBSERVATORY

More information

Post CME events: cool jets and current sheet evolution

Post CME events: cool jets and current sheet evolution Proceedings Coronal and Stellar Mass Ejections Proceedings IAU Symposium No. 226, 2004 A.C. Editor, B.D. Editor & C.E. Editor, eds. c 2004 International Astronomical Union DOI: 00.0000/X000000000000000X

More information

Hinode: ANewSolar Observatory in Space

Hinode: ANewSolar Observatory in Space Hinode: ANewSolar Observatory in Space Hirohisa HARA National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Received 7 December 2006 / Accepted 2 July 2007) The third Japanese solar observing

More information

Solar and Stellar Flares - nanoflares to superflares -

Solar and Stellar Flares - nanoflares to superflares - MFUIII, 2011 Aug 22-25, Zakopane, Poland Magnetic Field in the Universe, III. Invited talk (25min) Solar and Stellar Flares - nanoflares to superflares - Kazunari Shibata Kyoto University, Kyoto, Japan

More information

Spectroscopic analysis of the solar flare event on 2002 August 3 with the use of RHESSI and RESIK data

Spectroscopic analysis of the solar flare event on 2002 August 3 with the use of RHESSI and RESIK data Available online at www.sciencedirect.com Advances in Space Research 42 (2008) 822 827 www.elsevier.com/locate/asr Spectroscopic analysis of the solar flare event on 2002 August 3 with the use of RHESSI

More information

Next Generation UV Coronagraph Instrumentation for Solar Cycle-24

Next Generation UV Coronagraph Instrumentation for Solar Cycle-24 J. Astrophys. Astr. (2008) 29, 321 327 Next Generation UV Coronagraph Instrumentation for Solar Cycle-24 John L. Kohl 1,, Rajmal Jain 2, Steven R. Cranmer 1, Larry D. Gardner 1, Anil K. Pradhan 3, John

More information

Solar Physics with Radio Observations, Proceedings of Nobeyama Symposium 1998, NRO Report 479. Flare Loop Geometry. Nariaki Nitta

Solar Physics with Radio Observations, Proceedings of Nobeyama Symposium 1998, NRO Report 479. Flare Loop Geometry. Nariaki Nitta Solar Physics with Radio Observations, Proceedings of Nobeyama Symposium 1998, NRO Report 479 Flare Loop Geometry Nariaki Nitta Lockheed Martin Solar and Astrophysics Laboratory O/H1-12, B/252, 3251 Hanover

More information

Janusz Sylwester & Barbara Sylwester Space Research Centre Polish Academy of Sciences, Wrocław, Poland

Janusz Sylwester & Barbara Sylwester Space Research Centre Polish Academy of Sciences, Wrocław, Poland Janusz Sylwester & Barbara Sylwester Space Research Centre Polish Academy of Sciences, Wrocław, Poland Ken Phillips Mullard Space Science Laboratory University College London and V.D. Kuznetsov Pushkov

More information

Exploring the Solar Wind with Ultraviolet Light

Exploring the Solar Wind with Ultraviolet Light Timbuktu Academy Seminar, Southern University and A&M College, November 19, 2003 Exploring the Solar Wind with Ultraviolet Light Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics, Cambridge,

More information

Flare Energy Release in the Low Atmosphere

Flare Energy Release in the Low Atmosphere Flare Energy Release in the Low Atmosphere Alexander G. Kosovichev, Viacheslav M. Sadykov New Jersey Institute of Technology Ivan N. Sharykin, Ivan V. Zimovets Space Research Institute RAS Santiago Vargas

More information

Sun Earth Connection Missions

Sun Earth Connection Missions Sun Earth Connection Missions ACE Advanced Composition Explorer The Earth is constantly bombarded with a stream of accelerated particles arriving not only from the Sun, but also from interstellar and galactic

More information

Date of delivery: 5 May 2016 Journal and vol/article ref: IAU Number of pages (not including this page): 3

Date of delivery: 5 May 2016 Journal and vol/article ref: IAU Number of pages (not including this page): 3 Proof Delivery Form Proceedings of the International Astronomical Union Date of delivery: 5 May 2016 Journal and vol/article ref: IAU 1600209 Number of pages (not including this page): 3 This proof is

More information

arxiv: v1 [astro-ph] 28 Oct 2008

arxiv: v1 [astro-ph] 28 Oct 2008 New EUV Fe IX emission line identifications from Hinode/EIS P. R. Young Space Science Division, Naval Research Laboratory, Washington, DC 20375 arxiv:0810.5028v1 [astro-ph] 28 Oct 2008 George Mason University,

More information

A STUDY OF TRANSITION REGION AND CORONAL DOPPLER SHIFTS IN A SOLAR CORONAL HOLE. M. D. Popescu 1,2 and J. G. Doyle 1

A STUDY OF TRANSITION REGION AND CORONAL DOPPLER SHIFTS IN A SOLAR CORONAL HOLE. M. D. Popescu 1,2 and J. G. Doyle 1 A STUDY OF TRANSITION REGION AND CORONAL DOPPLER SHIFTS IN A SOLAR CORONAL HOLE M. D. Popescu 1,2 and J. G. Doyle 1 1 Armagh Observatory, College Hill, Armagh BT61 9DG, N. Ireland 2 Astronomical Institute

More information

Study of Electron Energy and Angular Distributions and Calculations of X-ray, EUV Line Flux and Rise Times

Study of Electron Energy and Angular Distributions and Calculations of X-ray, EUV Line Flux and Rise Times J. Astrophys. Astr. (1987) 8, 263 270 Study of Electron Energy and Angular Distributions and Calculations of X-ray, EUV Line Flux and Rise Times Ranjna Bakaya, Sunil Peshin, R. R. Rausaria & P. N. Khosa

More information

Flare Irradiance Spectral Model (FISM) use for space weather applications

Flare Irradiance Spectral Model (FISM) use for space weather applications Flare Irradiance Spectral Model (FISM) use for space weather applications P. C. Chamberlin, T. N. Woods and F. G. Eparvier Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation

More information

arxiv: v1 [astro-ph.sr] 10 Nov 2014

arxiv: v1 [astro-ph.sr] 10 Nov 2014 Imaging and spectroscopic observations of magnetic reconnection and chromospheric evaporation in a solar flare arxiv:4.30v [astro-ph.sr] 0 Nov 04 Hui Tian, Gang Li, Katharine K. Reeves, John C. Raymond,

More information

Energy-Dependent Timing of Thermal Emission in Solar Flares Rajmal Jain, Arun Kumar Awasthi, Arvind Singh Rajpurohit,

Energy-Dependent Timing of Thermal Emission in Solar Flares Rajmal Jain, Arun Kumar Awasthi, Arvind Singh Rajpurohit, Energy-Dependent Timing of Thermal Emission in Solar Flares Rajmal Jain, Arun Kumar Awasthi, Arvind Singh Rajpurohit, Physical Research Laboratory (Dept. of Space, Govt. of India), Navrangpura, Ahmedabad

More information

On Fine Structure in Solar Flares from SDO, RHESSI and TRACE Observations

On Fine Structure in Solar Flares from SDO, RHESSI and TRACE Observations On Fine Structure in Solar Flares from SDO, RHESSI and TRACE Observations G. A. Porfir eva and G. V. Yakunina Moscow State University, Sternberg Astronomical Institute, Moscow, Russia, E-mail: yakunina@sai.msu.ru

More information

ARE CHROMOSPHERIC NANOFLARES A PRIMARY SOURCE OF CORONAL PLASMA?

ARE CHROMOSPHERIC NANOFLARES A PRIMARY SOURCE OF CORONAL PLASMA? 1 ARE CHROMOSPHERIC NANOFLARES A PRIMARY SOURCE OF CORONAL PLASMA? J. A. Klimchuk NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; James.A.Klimchuk@nasa.gov S. J. Bradshaw Department of Physics

More information

Photospheric and chromospheric polarimetry of solar flares

Photospheric and chromospheric polarimetry of solar flares Photospheric and chromospheric polarimetry of solar flares Lucia Kleint, Fachhochschule Nordwestschweiz Alberto Sainz Dalda, Stanford University Phil Judge, HAO/NCAR Kevin Reardon, National Solar Observatory

More information

Phonon-Mediated Distributed Transition- Edge-Sensor X-ray Detectors

Phonon-Mediated Distributed Transition- Edge-Sensor X-ray Detectors Phonon-Mediated Distributed Transition- Edge-Sensor X-ray Detectors Steven W. Leman Department of Physics, Stanford University TES 3 at Gainesville 18Aug06 Goals, applications and detector basics Energy

More information

X-ray Quantum Calorimeter (XQC)

X-ray Quantum Calorimeter (XQC) X-ray Quantum Calorimeter (XQC) ESS 490/590 Lecture 22 Feb 2005 Presenter: Jeff Morgenthaler Source: http://alum.mit.edu/www/jpmorgen/ppt/xqc.ppt 2/21/2005 ESS 490/590 22 Feb 2005 1 Credits University

More information

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy Thomas Niedermayr, I. D. Hau, S. Terracol, T. Miyazaki, S. E. Labov and S. Friedrich Former colleagues: M. F. Cunningham, J. N.

More information

Common SphinX & RHESSI observations of solar flares

Common SphinX & RHESSI observations of solar flares Common SphinX & RHESSI observations of solar flares Mrozek, T. 1,2, Sylwester, J. 1, Siarkowski, M. 1, Sylwester, B. 1, Gburek, S. 1, Kępa,A. 1 1 Solar Physics Division, Space Research Centre, Polish Academy

More information

Gelu M. Nita. New Jersey Institute of Technology

Gelu M. Nita. New Jersey Institute of Technology Gelu M. Nita New Jersey Institute of Technology Online documentation and solar-soft instalation instructions https://web.njit.edu/~gnita/gx_simulator_help/ Official introduction of GX Simulator: Nita et

More information

Why Go To Space? Leon Golub, SAO BACC, 27 March 2006

Why Go To Space? Leon Golub, SAO BACC, 27 March 2006 Why Go To Space? Leon Golub, SAO BACC, 27 March 2006 Solar Observation Observation of the Sun has a long and distinguished history Especially important as calendar where e.g. seasonal monsoons produced

More information

THEORETICAL PREDICTIONS OF X-RAY AND EXTREME-UV FLARE EMISSIONS USING A LOSS-OF-EQUILIBRIUM MODEL OF SOLAR ERUPTIONS

THEORETICAL PREDICTIONS OF X-RAY AND EXTREME-UV FLARE EMISSIONS USING A LOSS-OF-EQUILIBRIUM MODEL OF SOLAR ERUPTIONS The Astrophysical Journal, 668:1210Y1220, 2007 October 20 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. THEORETICAL PREDICTIONS OF X-RAY AND EXTREME-UV FLARE EMISSIONS

More information

EUV Blast Waves in Impulsive Solar Energetic Particle Events

EUV Blast Waves in Impulsive Solar Energetic Particle Events EUV Blast Waves in Impulsive Solar Energetic Particle Events Radoslav Bučík D. E. Innes, L. Guo G.M. Mason (JHU/APL) M. E. Wiedenbeck (Caltech/JPL) X-ray: NASA/CXC/SAO/T.Temim et al. and ESA/XMM- Newton

More information

Astronomy. Astrophysics. Observations of solar flares with IRIS and SDO. D. Li 1,2,3,D.E.Innes 2, and Z. J. Ning 1. 1.

Astronomy. Astrophysics. Observations of solar flares with IRIS and SDO. D. Li 1,2,3,D.E.Innes 2, and Z. J. Ning 1. 1. A&A 587, A11 (16) DOI:.51/4-6361/1525642 c ESO 16 Astronomy & Astrophysics Observations of solar flares with IRIS and SDO D. Li 1,2,3,D.E.Innes 2, and Z. J. Ning 1 1 Key Laboratory of Dark Matter and Space

More information

J. Sylwester, B. Sylwester, Ken Phillips b, A. Kępa

J. Sylwester, B. Sylwester, Ken Phillips b, A. Kępa J. Sylwester, B. Sylwester, Ken Phillips b, A. Kępa Space Research Centre Polish Academy of Sciences, Wrocław, Poland and b Natural History Museum, London eheroes annual meeting, Leuven: 7-9 January 2015

More information

Modern observational techniques for coronal studies

Modern observational techniques for coronal studies Modern observational techniques for coronal studies Hardi Peter Kiepenheuer-Institut für Sonnenphysik Freiburg solar eclipse, 11.8.1999, Wendy Carlos and John Kern The spectrum of the Sun RADIO observing

More information

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

High energy particles from the Sun. Arto Sandroos Sun-Earth connections High energy particles from the Sun Arto Sandroos Sun-Earth connections 25.1.2006 Background In addition to the solar wind, there are also particles with higher energies emerging from the Sun. First observations

More information

Coronal Dynamo Spectroscopy. Rachel Osten STScI X-ray Vision Workshop Oct. 8, 2015

Coronal Dynamo Spectroscopy. Rachel Osten STScI X-ray Vision Workshop Oct. 8, 2015 Coronal Dynamo Spectroscopy Rachel Osten STScI X-ray Vision Workshop Oct. 8, 2015 From Simplicity to Complexity GOES light curve From Simplicity to Complexity GOES light curve From Simplicity to Complexity

More information

arxiv: v1 [astro-ph.sr] 3 Mar 2015

arxiv: v1 [astro-ph.sr] 3 Mar 2015 RESIK SOLAR X-RAY FLARE ELEMENT ABUNDANCES ON A NON-ISOTHERMAL ASSUMPTION arxiv:1503.00979v1 [astro-ph.sr] 3 Mar 2015 B. Sylwester 1, K. J. H. Phillips 2, J. Sylwester 1, and A. Kępa 1 1 Space Research

More information

Determination of Differential Emission Measure from Solar Extreme Ultraviolet Images

Determination of Differential Emission Measure from Solar Extreme Ultraviolet Images 2018. The American Astronomical Society. https://doi.org/10.3847/2041-8213/aab436 Determination of Differential Emission Measure from Solar Extreme Ultraviolet Images Yang Su 1,2, Astrid M. Veronig 3,

More information

Discovery of Emission Lines in the X-ray Spectrum of the Perseus Cluster

Discovery of Emission Lines in the X-ray Spectrum of the Perseus Cluster Discovery of Emission Lines in the X-ray Spectrum of the Perseus Cluster J. L. Culhane University College London Mullard Space Science Laboratory Summary Nature of the Solar Corona and properties of its

More information

DETERMINATION OF HOT PLASMA CHARACTERISTICS FROM TRACE IMAGES. S. Gburek 1 and T. Mrozek 2

DETERMINATION OF HOT PLASMA CHARACTERISTICS FROM TRACE IMAGES. S. Gburek 1 and T. Mrozek 2 DETERMINATION OF HOT PLASMA CHARACTERISTICS FROM TRACE IMAGES. S. Gburek 1 and T. Mrozek 2 1 Space Research Centre, Polish Academy of Sciences, Solar Physics Division, 51-622 Wroclaw, ul. Kopernika 11,

More information

arxiv: v1 [astro-ph.sr] 2 Sep 2013

arxiv: v1 [astro-ph.sr] 2 Sep 2013 arxiv:1309.0417v1 [astro-ph.sr] 2 Sep 2013 ISSN 1845 8319 SIMULTANEOUS YOHKOH /SXT AND TRACE OBSERVATIONS OF SOLAR PLASMA EJECTIONS E. CHMIELEWSKA 1, M. TOMCZAK 1, T. MROZEK 1,2 1 Astronomical Institute,

More information

OUTLINE: P. Kotrč (1), P. Heinzel (1) and O. Procházka (2)

OUTLINE: P. Kotrč (1), P. Heinzel (1) and O. Procházka (2) On measurements of continuum flux in solar flares. Instrument and first results. P. Kotrč (1), P. Heinzel (1) and O. Procházka (2) (1) - Astronomical Institute, AS CR, v.v.i. Ondřejov, Czech Republic (2)

More information

Variation of coronal line widths on and off the disk

Variation of coronal line widths on and off the disk A&A 400, 1065 1070 (2003) DOI: 10.1051/0004-6361:20030060 c ESO 2003 Astronomy & Astrophysics Variation of coronal line widths on and off the disk E. O Shea 1,D.Banerjee 2, and S. Poedts 2 1 Instituto

More information

Chapter 4: X-ray Imaging (Spectroscopic) Telescope

Chapter 4: X-ray Imaging (Spectroscopic) Telescope Chapter 4: X-ray Imaging (Spectroscopic) Telescope 4.1. X-ray Telescope for the Overall Solar-C/Plan-B Science In addition to its own scientific standpoint, the X-ray Imaging (Spectroscopic) Telescope

More information

Lynx and Exoplanet Science. Rachel Osten, STScI & JHU

Lynx and Exoplanet Science. Rachel Osten, STScI & JHU Lynx and Exoplanet Science Rachel Osten, STScI & JHU Lynx and Exoplanets What is Exoplanet Science? What is Lynx? How/what can we measure with Lynx? Potential exoplanet applications with Lynx What is Exoplanet

More information

What drives the solar wind and where does the coronal magnetic field originate from?

What drives the solar wind and where does the coronal magnetic field originate from? What drives the solar wind and where does the coronal magnetic field originate from? a remote-sensing perspective for on-disk observations Giulio Del Zanna Senior Research Associate DAMTP, University of

More information

The role of type II spicules in the upper solar atmosphere

The role of type II spicules in the upper solar atmosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012ja018170, 2012 The role of type II spicules in the upper solar atmosphere J. A. Klimchuk 1 Received 27 July 2012; revised 1 October 2012; accepted

More information

The Sun s Dynamic Atmosphere

The Sun s Dynamic Atmosphere Lecture 16 The Sun s Dynamic Atmosphere Jiong Qiu, MSU Physics Department Guiding Questions 1. What is the temperature and density structure of the Sun s atmosphere? Does the atmosphere cool off farther

More information

Observable consequences

Observable consequences Coronal Heating through braiding of magnetic field lines Solar eclipse, 11.8.1999, Wendy Carlos & John Kern Observable consequences 3D MHD model spectral synthesis results: Doppler shifts DEM variability

More information

X-ray Imaging & Spectral Statistics of Small Solar Flares Observed with RHESSI

X-ray Imaging & Spectral Statistics of Small Solar Flares Observed with RHESSI X-ray Imaging & Spectral Statistics of Small Solar Flares Observed with RHESSI Iain G. Hannah Steven Christe, Säm Krucker, Gordon Hurford, Hugh Hudson & Robert P. Lin Space Sciences Laboratory, University

More information

1.3j describe how astronomers observe the Sun at different wavelengths

1.3j describe how astronomers observe the Sun at different wavelengths 1.3j describe how astronomers observe the Sun at different wavelengths 1.3k demonstrate an understanding of the appearance of the Sun at different wavelengths of the electromagnetic spectrum, including

More information

Identifying Emission Lines in the Solar Extreme Ultraviolet (EUV) Irradiance Spectrum

Identifying Emission Lines in the Solar Extreme Ultraviolet (EUV) Irradiance Spectrum Identifying Emission Lines in the Solar Extreme Ultraviolet (EUV) Irradiance Spectrum Rachael L. Tomasino Advisors: Dr. Frank Eparvier and Rachel Hock University of Colorado, Boulder Laboratory for Atmospheric

More information

FIRST IMAGES OF A SOLAR FLARE AT MILLIMETER WAVELENGTHS

FIRST IMAGES OF A SOLAR FLARE AT MILLIMETER WAVELENGTHS THE ASTROPHYSICAL JOURNAL, 458 : L49 L52, 1996 February 10 1996. The American Astronomical Society. All rights reserved. Printed in U.S.A. FIRST IMAGES OF A SOLAR FLARE AT MILLIMETER WAVELENGTHS ADRIANA

More information