Studies of Super-Earth and Terrestrial Planet Atmospheres with JWST

Size: px
Start display at page:

Download "Studies of Super-Earth and Terrestrial Planet Atmospheres with JWST"

Transcription

1 Studies of Super-Earth and Terrestrial Planet Atmospheres with JWST Eliza Kempton (Formerly: Miller-Ricci) Assistant Professor of Physics Grinnell College + University of Maryland, College Park Image Credit: Zach Berta

2 Atmospheric characterization provides a window into the diverse bulk properties of low-mass exoplanets Hadden & Lithwick, AJ, 2017

3 Secondary Atmospheres Imagine the Possibilities... PLANET FORMATION EQUILIBRIUM CHEMISTRY OUTGASSING OF VOLATILES PHOTOCHEMISTRY MASS LOSS COOLING HISTORY CLUSTER ENVIRONMENT PARENT STAR SPECTRUM PLANET LOCATION PLANET TEMPERATURE PLANET SURFACE GRAVITY PLATE TECTONICS PLANET MAGNETIC FIELD

4 Secondary Atmospheres Imagine the Possibilities... PLANET FORMATION EQUILIBRIUM CHEMISTRY OUTGASSING OF VOLATILES PHOTOCHEMISTRY MASS LOSS COOLING HISTORY CLUSTER ENVIRONMENT PARENT STAR SPECTRUM PLANET LOCATION PLANET TEMPERATURE PLANET SURFACE GRAVITY PLATE TECTONICS PLANET MAGNETIC FIELD

5 Observational Results: GJ 1214b GJ 1214 system to scale GJ 1214b 1.4% transit depth GJ 1214b H 2 Planet is too big to be explained without the presence of a significant atmosphere! Lissauer et al., Nature, 2011 (modified c/o E. Lopez)

6 Observational Results: GJ 1214b Solar 30 x Solar 50 x Solar H 2O H2O - CO2 CO2 Transit Depth (%) No atmosphere Wavelength (microns) Miller-Ricci (Kempton) & Fortney, ApJL Mini-Neptune Scenario: Rock / ice interior + hydrogen-dominated atmosphere (mostly H2+ trace H2O, CH4, etc.) 2. Water World Scenario: Mostly H2O - ice/fluid interior + steam atmosphere (i.e. Rogers & Seager, ApJ, Nettelmann et al. 2011)

7 Observational Results: GJ 1214b Featureless spectrum aerosols! Kreidberg et al., Nature 2014 Berta et al., ApJ 2012

8 Observational Results: HD 97658b M pl = 7.9 M R pl = 2.3 R ρ = 3.4 g/cm P = 9.49 days T eq 700 K 3 Inconsistent w/ H2-rich cloud-free composition Knutson et al., ApJ, 2014

9 Observational Results: 55 Cnc e Spitzer phase curve Spitzer secondary eclipse Demory et al., Nature, 2016 Demory et al., ApJL, 2012 variability in dayside emission? Demory et al., MNRAS, 2016

10 Observational Results: TRAPPIST-1 Wang et al., ApJ, submitted DeWit et al., Nature, 2016

11 TESS yields: 100s of potential targets for JWST Sullivan et al., ApJ, 2015

12 Mass measurements are a necessity! Volatile-rich water world, water-rich atmosphere Rocky planet, outgassed H2-rich atmosphere R pl = 1.5 R T obs = 200 hr M4.5 host star (T = 3,000 K, R = 0.2 R ) J = 8 Natasha Batalha, Kempton, & Mbarek, ApJL, 2017

13 Wish List for Super-Earth and Terrestrial Planet Science w/ JWST

14 Identify the division between terrestrial planets and mini-neptunes, as it relates to planet formation and atmospheric evolution (i.e. mass loss) Evaporation valley Lack of Neptune-size planets 0-10 d Lopez, Fortney, & Miller, ApJ, 2012 Owen & Wu, ApJ, submitted

15 Gain a deeper understanding of aerosols in the lowmass planet regime H:O = 1.39 C:O = 0.18 H:O = 2.77 C:O = 0.66 Cloud composition in outgassed super-earth atmospheres H:O = 0.21 C:O = 0.41 H:O = 0.45 C:O = 0.87 Carbon-rich GJ 1214b analogs may host graphite clouds. Mbarek & Kempton, ApJ, 2016

16 Gain a deeper understanding of aerosols in the lowmass planet regime Carbon-Bearing Species CH4 photolysis formation of complex hydrocarbons hydrocarbon haze + sulfur hazes? (e.g. Zahnle et al. (2016), Gao et al. (2017)) Miller-Ricci Kempton, Zahnle, Fortney, ApJ Equilibrium Abundances Photochemical Abundances

17 Measure water abundances and tie this to planet formation and the frequency of water-worlds Water-rich super-earths Raymond et al., Icarus, 2006

18 Classify new types of exotic low-mass planets (i.e. lava worlds) Diversity of outgassed atmospheres Schaefer & Fegley, Icarus, 2009 Elkins-Tanton & Seager, ApJ, 2008

19 Classify new types of exotic low-mass planets (i.e. lava worlds) He-dominated atmospheres from diffusion-limited escape Hu et al., ApJ, 2015 Composition of lava-planet atmospheres Ito et al., ApJ, 2015

20 Earth-Sun system Biosignatures?? TRAPPIST planets 1 ppm 0 ppm O3 Kaltenegger et al., IJAsBio, 2012 Proxima Cen b 60 days co-added observations CH4 O3 JWST NIRSpec + MIRI JWST MIRI Kreidberg & Loeb., ApJL, 2016 Barstow et al., MNRAS, 2016

21 Wish List for Super-Earth and Terrestrial Planet Science w/ JWST Identify the division between terrestrial planets and mini-neptunes, as it relates to planet formation and atmospheric evolution (i.e. mass loss) Gain a deeper understanding of aerosols in the lowmass planet regime Measure water abundances and tie this to planet formation and the frequency of water-worlds Classify new types of exotic low-mass planets (i.e. lava worlds) Biosignatures??

22

Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy

Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy Eliza Kempton (Formerly: Miller-Ricci) Assistant Professor of Physics Grinnell College, Grinnell,

More information

Characterization of Transiting Planet Atmospheres

Characterization of Transiting Planet Atmospheres Characterization of Transiting Planet Atmospheres Heather Knutson Division of Geological and Planetary Sciences, Caltech A Bird s-eye View of Exoplanet Atmospheres Limited information available for individual

More information

Exoplanets and their Atmospheres. Josh Destree ATOC /22/2010

Exoplanets and their Atmospheres. Josh Destree ATOC /22/2010 Exoplanets and their Atmospheres Josh Destree ATOC 3500 4/22/2010 Outline What is an exoplanet? Why do we care? Detecting exoplanets Exoplanets compared to planets in the solar system Exoplanet atmospheres

More information

Measuring the Atmospheres of (the best!) Earth-sized Planets with JWST

Measuring the Atmospheres of (the best!) Earth-sized Planets with JWST Measuring the Atmospheres of (the best!) Earth-sized Planets with JWST Caroline Morley Sagan Fellow, Harvard University Laura Kreidberg Zafar Rustamkulov Ty Robinson Photo by C. Morley Top of Mt Whitney,

More information

Characterizing the Atmospheres of Extrasolar Planets. Julianne I. Moses (Space Science Institute)

Characterizing the Atmospheres of Extrasolar Planets. Julianne I. Moses (Space Science Institute) Characterizing the Atmospheres of Extrasolar Planets Julianne I. Moses (Space Science Institute) Intern Brown Bag, 18 June 2014 1795 Confirmed Exoplanets as of 16 June 2014 hot Jupiters Jupiter Super Earths

More information

Interior Structure of Rocky and Vapor Worlds

Interior Structure of Rocky and Vapor Worlds Interior Structure of Rocky and Vapor Worlds Diana Valencia, 4 April 2011 NASA Sagan Fellow, MIT Exploring Strange New Worlds: From Giant Planets to Super-Earths Super-Earths in the context of exoplanets

More information

Transit Spectroscopy Jacob Bean

Transit Spectroscopy Jacob Bean Transit Spectroscopy Jacob Bean University of Chicago Some recent reviews: Exoplanetary Atmospheres Chemistry, Forma6on Condi6ons, and Habitability Madhusudhan+ 2016 Observa6ons of Exoplanet Atmospheres

More information

Transiting Exoplanet Observations of GJ 1132b & LHS 1140b with JWST

Transiting Exoplanet Observations of GJ 1132b & LHS 1140b with JWST Transiting Exoplanet Observations of GJ 1132b & LHS 1140b with JWST Hannah Diamond-Lowe Harvard-Smithsonian Center for Astrophysics Enabling Transiting Exoplanet Observations with JWST Space Telescope

More information

3D MODELING OF GJ1214B S ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS

3D MODELING OF GJ1214B S ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS Draft version October 7, Preprint typeset using L A TEX style emulateapj v. // D MODELING OF GJB S ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS B. Charnay,,, V. Meadows,,

More information

Characterizing transi.ng planets with JWST spectra: Simula.ons and Retrievals

Characterizing transi.ng planets with JWST spectra: Simula.ons and Retrievals Characterizing transi.ng planets with JWST spectra: Simula.ons and Retrievals Tom Greene (NASA ARC) Michael Line (UCSC / Hubble Fellow / ARC), Jonathan Fortney (UCSC) October 15, 2015 Planet transmission

More information

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging Photometry of planetary atmospheres from direct imaging Exoplanets Atmospheres Planets and Astrobiology (2016-2017) G. Vladilo Example: planetary system detected with direct imaging HR 8799 b, c, d (Marois

More information

Observations of Gas-Giant Exoplanet Atmospheres

Observations of Gas-Giant Exoplanet Atmospheres Observations of Gas-Giant Exoplanet Atmospheres http://en.wikipedia.org/wiki/file:upsilonandromedae_d_moons.jpg Brian Jackson - NASA/GSFC Earliest Observations of a Jovian atmosphere From Rogers (1995)

More information

Proxima Cen b: theoretical spectral signatures for different atmospheric scenarios

Proxima Cen b: theoretical spectral signatures for different atmospheric scenarios Proxima Cen b: theoretical spectral signatures for different atmospheric scenarios A. Léger(1), D. Defrère(2), J.L. Grenfell(3), M. Godolt(3), A Garcia Munoz(3), H. Rauer(3), and F. Tian(4) (1) University

More information

Internal structure and atmospheres of planets

Internal structure and atmospheres of planets Internal structure and atmospheres of planets SERGEI POPOV 1312.3323 Sizes and masses Radius vs. mass Results of modeling. Old (relaxed) planets. Colors correspond to different fractions of light elements.

More information

Mass-Radius Relationships for Solid Exoplanets

Mass-Radius Relationships for Solid Exoplanets Mass-Radius Relationships for Solid Exoplanets Sara Seager Massachusetts Institute of Technology See Seager, Kuchner, HierMichelson Summer Workshop 2007 Image credit: NASA/JPL-Caltech/R. Hurt (SSC) Majumder,

More information

Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with

Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with Characterizing Small Planets via Spectroscopy of their Host Stars Johanna Teske in collaboration with Robert Wilson, Steven Majewski, Katia Cunha, Verne Smith, Diogo Souto, Chad Bender, Suvrath Mahadevan,

More information

The Direct Study of Exoplanet Atmospheres

The Direct Study of Exoplanet Atmospheres The Direct Study of Exoplanet Atmospheres David Charbonneau (Harvard-Smithsonian Center for Astrophysics) Symposium in Honor of Giovanni Fazio 27 May 2008 Statement about the Astronomy & Astrophysics 2010

More information

CHARACTERIZING EXOPLANET ATMOSPHERES USING GENERAL CIRCULATION MODELS

CHARACTERIZING EXOPLANET ATMOSPHERES USING GENERAL CIRCULATION MODELS CHARACTERIZING EXOPLANET ATMOSPHERES USING GENERAL CIRCULATION MODELS Tiffany Kataria 3 July, 5 With thanks to collaborators David Sing, Adam Showman, Hannah Wakeford, Thomas Evans, Nikolay Nikolov, Jonathan

More information

Characterizing Exoplanet Atmospheres: a new frontier

Characterizing Exoplanet Atmospheres: a new frontier Characterizing Exoplanet Atmospheres: a new frontier Mark Swain Jet Propulsion Laboratory, California Institute of Technology Collaborators: Jeroen Bouman, Gautam Vasisht, Giovanna Tinetti, & Angelle Tanner

More information

The Atmospheric Signatures of Super-Earths: How to Distinguish Between Hydrogen-Rich and Hydrogen-Poor Atmospheres

The Atmospheric Signatures of Super-Earths: How to Distinguish Between Hydrogen-Rich and Hydrogen-Poor Atmospheres The Atmospheric Signatures of Super-Earths: How to Distinguish Between Hydrogen-Rich and Hydrogen-Poor Atmospheres Eliza Miller-Ricci Harvard-Smithsonian Center for Astrophysics, 60 Garden St. Cambridge,

More information

The James Webb Space Telescope: Capabilities for Transiting Exoplanet Observations

The James Webb Space Telescope: Capabilities for Transiting Exoplanet Observations The James Webb Space Telescope: Capabilities for Transiting Exoplanet Observations Mark Clampin Observatory Project Scientist mark.clampin@nasa.gov Goddard Space Flight Center : How It Works Integrated

More information

Key Atmospheric Chemistry in Rocky Planet Atmospheres

Key Atmospheric Chemistry in Rocky Planet Atmospheres Key Atmospheric Chemistry in Rocky Planet Atmospheres John Lee Grenfell Department of Exoplanets and Atmospheres (EPA) German Aerospace Centre (DLR) Berlin Overview Processes affecting Atmospheric Chemistry

More information

The Near-Infrared Spectrograph on JWST: Killer Science Enabled by Amazing Technology. Jason Tumlinson STScI Hubble Science Briefing Nov.

The Near-Infrared Spectrograph on JWST: Killer Science Enabled by Amazing Technology. Jason Tumlinson STScI Hubble Science Briefing Nov. The Near-Infrared Spectrograph on JWST: Killer Science Enabled by Amazing Technology Jason Tumlinson STScI Hubble Science Briefing Nov. 21, 2013 1.) Seek the first stars and galaxies that formed in the

More information

Optimal measures for characterizing water-rich super-earths

Optimal measures for characterizing water-rich super-earths International Journal of Astrobiology 14 (2): 177 189 (2015) doi:10.1017/s1473550414000421 Cambridge University Press 2014 Optimal measures for characterizing water-rich super-earths Nikku Madhusudhan

More information

The atmospheric chemistry of the warm Neptune GJ 3470b: influence of metallicity and temperature on the CH 4

The atmospheric chemistry of the warm Neptune GJ 3470b: influence of metallicity and temperature on the CH 4 Astronomy & Astrophysics manuscript no. gj3470b article V4 c ESO 2017 May 1, 2017 The atmospheric chemistry of the warm Neptune GJ 3470b: influence of metallicity and temperature on the / ratio Olivia

More information

Comparative Planetology: Transiting Exoplanet Science with JWST

Comparative Planetology: Transiting Exoplanet Science with JWST Comparative Planetology: Transiting Exoplanet Science with JWST Mark Clampin, JWST Science Working Group, JWST Transits Working Group, Drake Deming, and Don Lindler MarkClampin JWSTObservatoryProjectScientist

More information

Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations

Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations Dr. Katja Poppenhaeger Sagan Fellow Harvard-Smithsonian Center for Astrophysics Exoplanets Exoplanets in 2005 (from the

More information

Exo-Planetary atmospheres and host stars. G. Micela INAF Osservatorio Astronomico di Palermo

Exo-Planetary atmospheres and host stars. G. Micela INAF Osservatorio Astronomico di Palermo Exo-Planetary atmospheres and host stars G. Micela INAF Osservatorio Astronomico di Palermo Thousands of exoplanets discovered. Huge range of masses, sizes and orbits. Jupiters Neptunes Super-Earths Earths

More information

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009 Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets PHY 688, Lecture 24 Mar 23, 2009 Outline Review of previous lecture: atmospheric temperature structure of irradiated planets isothermal

More information

Planetary Habitability in and outside the Solar System

Planetary Habitability in and outside the Solar System Planetary Habitability in and outside the Solar System Robin Wordsworth HBS Workshop on the Business and Economics of Space 11/4/2017 Talk Outline Mars climate and habitability research The Faint Young

More information

A dozen years of hot exoplanet atmospheric investigations. Results from a large HST program. David K. Sing. #acrosshr Cambridge.

A dozen years of hot exoplanet atmospheric investigations. Results from a large HST program. David K. Sing. #acrosshr Cambridge. A dozen years of hot exoplanet atmospheric investigations Results from a large HST program David K. Sing #acrosshr Cambridge ] 1 Aug 2014 Outline Introduction to Transit Spectroscopy Highlight 3 Science

More information

Origins of Stars and Planets in the VLT Era

Origins of Stars and Planets in the VLT Era Origins of Stars and Planets in the VLT Era Michael R. Meyer Institute for Astronomy, ETH-Zurich From Circumstellar Disks to Planets 5 November 2009, ESO/MPE Garching Planet Formation = Saving the Solids

More information

Habitable worlds: Giovanna Tinetti. Presented by Göran Pilbratt. Image&credit&Hanno&Rein

Habitable worlds: Giovanna Tinetti. Presented by Göran Pilbratt. Image&credit&Hanno&Rein Habitable worlds: Can we discriminate them from their atmospheric composition? Giovanna Tinetti Presented by Göran Pilbratt Image&credit&Hanno&Rein The search for exoplanets has often been driven by the

More information

Transiting Exoplanet Simulations with the James Webb Space Telescope

Transiting Exoplanet Simulations with the James Webb Space Telescope Transiting Exoplanet Simulations with the James Webb Space Telescope Natasha Batalha 1, Jason Kalirai 1, Jonathan Lunine 2, Mark Clampin 3, Don Lindler 3 1 Space Telescope Science Institute, 3700 San Martin

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Exoplanet Atmosphere Characterization & Biomarkers

Exoplanet Atmosphere Characterization & Biomarkers Giovanna Tinetti ESA/Institut d Astrophysique de Paris γ Exoplanet Atmosphere Characterization & Biomarkers Can we use Remote Sensing Spectroscopy, - Interaction between photon coming from the parent star

More information

Interior and evolution of Uranus and Neptune

Interior and evolution of Uranus and Neptune Interior and evolution of Uranus and Neptune N Nettelmann (UC Santa Cruz) collaborators: JJ Fortney (UCSC), R Redmer (U Rostock), M French (UR), S Hamel (LLNL), M Bethkenhagen, (LLNL), K Wang (CA-Castilleja

More information

COMPOSITIONS OF HOT SUPER-EARTH ATMOSPHERES: EXPLORING KEPLER CANDIDATES

COMPOSITIONS OF HOT SUPER-EARTH ATMOSPHERES: EXPLORING KEPLER CANDIDATES Draft version April 29, 2013 Preprint typeset using L A TEX style emulateapj v. 11/10/09 COMPOSITIONS OF HOT SUPER-EARTH ATMOSPHERES: EXPLORING KEPLER CANDIDATES Y. Miguel Max Planck Institut fuer Astronomie,

More information

Kevin France University of Colorado AXIS Science Workshop August 6 th 2018

Kevin France University of Colorado AXIS Science Workshop August 6 th 2018 Kevin France University of Colorado AXIS Science Workshop August 6 th 2018 Star-Planet Interactions at High-energies Introduction: In the solar system: Solar Influences, Living with a Star, etc. Afar:

More information

GLOBAL CLIMATE MODELS AND EXTREME HABITABILITY

GLOBAL CLIMATE MODELS AND EXTREME HABITABILITY GLOBAL CLIMATE MODELS AND EXTREME HABITABILITY François Forget, Martin Turbet, Jérémy Leconte, Ehouarn Millour, Maxence Lefèvre & the LMD team Laboratoire de Météorologie Dynamique, Paris Modelled surface

More information

Exoplanet Mass, Radius, and the Search for Habitable Worlds

Exoplanet Mass, Radius, and the Search for Habitable Worlds Sara Seager Exoplanet Mass, Radius, and the Search for Habitable Worlds O ur sun is one amongst hundreds of billions of stars in our galaxy. Based on the number of times the planetary dice must have been

More information

The Sun and Planets Lecture Notes 6.

The Sun and Planets Lecture Notes 6. The Sun and Planets Lecture Notes 6. Lecture 6 Venus 1 Spring Semester 2017 Prof Dr Ravit Helled Cover photo: Venus in true color (Courtesy of NASA) Venus Properties Venus is the second brightest natural

More information

Carbon- rich Exoplanets

Carbon- rich Exoplanets Carbon- rich Exoplanets Nikku Madhusudhan Princeton University Exploring Strange New Worlds: From Giant Planets to Super Earths Flagstaff, AZ. May 04, 2011 Overview 1. WASP-12b and the need for a second

More information

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009 Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets PHY 688, Lecture 23 Mar 20, 2009 Outline Review of previous lecture hot Jupiters; transiting planets primary eclipses and atmospheric

More information

EART193 Planetary Capstone. Francis Nimmo

EART193 Planetary Capstone. Francis Nimmo EART193 Planetary Capstone Francis Nimmo Atmospheres Atmospheres can preserve signatures of volcanism Atmospheres can influence volcanic activity Volcanic activity can have effects on climate Atmospheric

More information

SPICA Science for Transiting Planetary Systems

SPICA Science for Transiting Planetary Systems SPICA Science for Transiting Planetary Systems Norio Narita Takuya Yamashita National Astronomical Observatory of Japan 2009/06/02 SPICA Science Workshop @ UT 1 Outline For Terrestrial/Jovian Planets 1.

More information

Professor Sara Seager Publications

Professor Sara Seager Publications Professor Sara Seager Publications Papers Submitted to Refereed Journals (*= Student in Seager s Research Group) *Rogers, L. & Seager, S. Three Possible Origins for the Gas Layer on GJ 1214b, submitted

More information

arxiv: v1 [astro-ph.im] 10 Mar 2018

arxiv: v1 [astro-ph.im] 10 Mar 2018 A White Paper Submitted to The National Academy of Science s arxiv:1803.03730v1 [astro-ph.im] 10 Mar 2018 Committee on Exoplanet Science Strategy: Observing Exoplanets with the James Webb Space Telescope

More information

UV Surface Habitability of the TRAPPIST-1 System

UV Surface Habitability of the TRAPPIST-1 System Preprint 28 March 2017 1 UV Surface Habitability of the TRAPPIST-1 System Jack T. O'Malley-James 1* and L. Kaltenegger 1 1 Carl Sagan Institute, Cornell University, Ithaca, NY 14853, USA *jto28@cornell.edu

More information

Hands-on Session: Detection and Spectroscopic Characterization of Transiting Exoplanets with the James Webb Space Telescope

Hands-on Session: Detection and Spectroscopic Characterization of Transiting Exoplanets with the James Webb Space Telescope Hands-on Session: Detection and Spectroscopic Characterization of Transiting Exoplanets with the James Webb Space Telescope Nikole K. Lewis JWST Project Scientist Space Telescope Science Institute Why

More information

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets Lecture #11: Plan Terrestrial Planets (cont d) Jovian Planets Mercury (review) Density = 5.4 kg / liter.. ~ Earth s Rocky mantle + iron/nickel core Slow spin: 59 days (orbital period = 88 days) No satellites

More information

Exoplanet Forum: Transit Chapter

Exoplanet Forum: Transit Chapter Exoplanet Forum: Transit Chapter A condensed version of the Transits Chapter from the Exoplanet Forum Proceedings, made available to the Decadal Survey, Planetary Systems and Star Formation Panel Drake

More information

Observational Techniques: Ground-based Transits

Observational Techniques: Ground-based Transits Observational Techniques: Ground-based Transits Mercedes López-Morales Carnegie Institution of Washington 2009 Sagan Exoplanet Summer Workshop: Exoplanetary Atmospheres Work funded by: Why ground-based

More information

The Physics of Exoplanets

The Physics of Exoplanets The Physics of Exoplanets Heike Rauer Institut für Planetenforschung, DLR, Berlin-Adlershof, Zentrum für Astronomie und Astrophysik, TU Berlin Formation in protoplanetary disk, migration Loss of primary,

More information

arxiv: v1 [astro-ph.ep] 28 Nov 2018

arxiv: v1 [astro-ph.ep] 28 Nov 2018 Draft version November 0, 2018 Typeset using LATEX twocolumn style in AASTeX61 CONNECTING GIANT PLANET ATMOSPHERE AND INTERIOR MODELING: CONSTRAINTS ON ATMOSPHERIC METAL ENRICHMENT Daniel Thorngren 1 and

More information

arxiv: v1 [astro-ph.ep] 20 Sep 2018

arxiv: v1 [astro-ph.ep] 20 Sep 2018 Mon. Not. R. Astron. Soc. 000,?? (2002) Printed 25 September 20 (MN LATEX style file v2.2) arxiv:9.0230v [astro-ph.ep] 20 Sep 20 Observability of molecular species in a nitrogen dominated atmosphere for

More information

Exoplanet atmospheres

Exoplanet atmospheres Exoplanet atmospheres at high spectral resolution Matteo Brogi Hubble Fellow, CU-Boulder I. Snellen, R. de Kok, H. Schwarz (Leiden, NL) J. Birkby (CfA, USA), S. Albrecht (Aarhus, DK)! J. Bean (Chicago,

More information

Adam Burrows, Princeton April 7, KITP Public Lecture

Adam Burrows, Princeton April 7, KITP Public Lecture Adam Burrows, Princeton April 7, 2010 KITP Public Lecture The Ancient History of Comparative Planetology There are infinite worlds both like and unlike this world of ours...we must believe that in all

More information

arxiv: v1 [astro-ph.ep] 4 Oct 2016

arxiv: v1 [astro-ph.ep] 4 Oct 2016 Preprint 6 October 2016 Compiled using MNRAS LATEX style file v3.0 Born Dry in the Photo-Evaporation Desert: Kepler s Ultra-Short-Period Planets Formed Water-Poor. Eric D. Lopez, 1 1 SUPA, Institute for

More information

Exoplanet Atmospheres Observations. Mercedes López-Morales Harvard-Smithsonian Center for Astrophysics

Exoplanet Atmospheres Observations. Mercedes López-Morales Harvard-Smithsonian Center for Astrophysics Exoplanet Atmospheres Observations Mercedes López-Morales Harvard-Smithsonian Center for Astrophysics Planets versus Year of Discovery PSR-1257-12d PSR-1257-12c Earth PSR-1257-12b Total: 1849; Transiting:

More information

Transit spectrum of Venus as an exoplanet model prediction + HST programme Ehrenreich et al. 2012, A&A Letters 537, L2

Transit spectrum of Venus as an exoplanet model prediction + HST programme Ehrenreich et al. 2012, A&A Letters 537, L2 Transit spectrum of Venus as an exoplanet model prediction + HST programme Ehrenreich et al. 2012, A&A Letters 537, L2 exoplanet scientist planetary scientist David Ehrenreich Mathieu Barthélemy Jean Lilensten...IPAG,

More information

How Could Plato Serve Planetary Physics and. What can we Learn From Solar System Planets for Terrestrial Exoplanets?

How Could Plato Serve Planetary Physics and. What can we Learn From Solar System Planets for Terrestrial Exoplanets? How Could Plato Serve Planetary Physics and Leben und die Entwicklung der Planeten What can we Learn From Solar System Planets for Terrestrial Exoplanets? Tilman Spohn Tilman Spohn PLATO What we expect

More information

New Tools for Understanding Exoplanet Atmospheres from Spectroscopy. Caroline Morley 2016 Sagan Fellow Harvard University

New Tools for Understanding Exoplanet Atmospheres from Spectroscopy. Caroline Morley 2016 Sagan Fellow Harvard University New Tools for Understanding Exoplanet Atmospheres from Spectroscopy Caroline Morley 2016 Sagan Fellow Harvard University As a Sagan Fellow, I will use new techniques to retrieve planet compositions and

More information

Detection and characterization of exoplanets from space

Detection and characterization of exoplanets from space Detection and characterization of exoplanets from space Heike Rauer 1,2, 1:Institute for Planetary Research, DLR, Berlin 2:Center for Astronomy and Astrophysics, TU Berlin Exoplanet Space Missions and

More information

A Look at Our Solar System: The Sun, the planets and more. by Firdevs Duru

A Look at Our Solar System: The Sun, the planets and more. by Firdevs Duru A Look at Our Solar System: The Sun, the planets and more by Firdevs Duru Week 1 An overview of our place in the universe An overview of our solar system History of the astronomy Physics of motion of the

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 22:1 Where do planetary atmospheres come from? Three primary sources Primordial (solar

More information

Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST)

Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST) Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST) Charles Beichman NASA Exoplanet Science Institute, California Institute of Technology, Jet Propulsion Laboratory Bjoern

More information

HOW TO DISTINGUISH BETWEEN CLOUDY MINI- NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER- EARTHS

HOW TO DISTINGUISH BETWEEN CLOUDY MINI- NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER- EARTHS HOW TO DISTINGUISH BETWEEN CLOUDY MINI- NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER- EARTHS The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007)

The Earth s Hydrosphere. The volatile component of rocky planets (hydrospheres and atmospheres) Earth water reservoirs Rollins (2007) The Earth s Hydrosphere Oceans The volatile component of rocky planets (hydrospheres and atmospheres) Planets and Astrobiology (2017-2018) G. Vladilo The Earth is the only planet of the Solar System with

More information

Dr. Daniel Angerhausen (CSH, Uni Bern) SOFIA tele talk 31/1/2018

Dr. Daniel Angerhausen (CSH, Uni Bern) SOFIA tele talk 31/1/2018 Sniffing Alien Atmospheres Exoplanet Spectrophotometry from Ground-, Airborneand Space-based Observatories Dr. Daniel Angerhausen (CSH, Uni Bern) SOFIA tele talk 31/1/2018 @dan_anger 1 Credit: NICT My

More information

Earth s Atmosphere. Atmospheric Composition 78% Nitrogen 21% Oxygen 1 % Argon, 0.03% Carbon dioxide, Water. Recall the Electro-Magnetic (EM) Spectrum

Earth s Atmosphere. Atmospheric Composition 78% Nitrogen 21% Oxygen 1 % Argon, 0.03% Carbon dioxide, Water. Recall the Electro-Magnetic (EM) Spectrum Key Concepts: Lecture 11 Earth s Atmosphere and Greenhouse Effect Blackbody Radiation and Temperature Earth s Oceans Earth s Magnetic Field and Aurora The Green House Effect Temperature set by balancing

More information

From the first stars to planets

From the first stars to planets High precision stellar spectroscopy: From the first stars to planets Jorge Meléndez Departamento de Astronomia, IAG, Universidade de São Paulo My group: SAMPA Stellar Atmospheres, Planets & Abundances

More information

CHARACTERIZING EXOPLANETS SATELLITE

CHARACTERIZING EXOPLANETS SATELLITE JWST Transit Workshop Pasadena CHARACTERIZING EXOPLANETS SATELLITE David Ehrenreich! CHEOPS Mission Scientist s first small-class mission Mass-radius diagram Apparent continuity of masses for exoplanets

More information

The Terrestrial Planets

The Terrestrial Planets The Terrestrial Planets Large Bodies: Earth (1 R E, 1 M E ) Venus (0.95 R E, 0.82 M E ) Small Bodies: Mars (0.53 R E, 0.11 M E ) Mercury (0.38 R E, 0.055 M E ) Moon (0.27 R E, 0.012 M E ) The surfaces

More information

Forming habitable planets on the computer

Forming habitable planets on the computer Forming habitable planets on the computer Anders Johansen Lund University, Department of Astronomy and Theoretical Physics 1/9 Two protoplanetary discs (Andrews et al., 2016) (ALMA Partnership, 2015) Two

More information

Giant planets. Giant planets of the Solar System. Giant planets. Gaseous and icy giant planets

Giant planets. Giant planets of the Solar System. Giant planets. Gaseous and icy giant planets Giant planets of the Solar System Planets and Astrobiology (2016-2017) G. Vladilo Giant planets Effective temperature Low values with respect to the rocky planets of the Solar System Below the condensation

More information

Seeing another Earth: Detecting and Characterizing Rocky Planets with Extremely Large Telescopes

Seeing another Earth: Detecting and Characterizing Rocky Planets with Extremely Large Telescopes Seeing another Earth: Detecting and Characterizing Rocky Planets with Extremely Large Telescopes Image credit: NASA/JPL Caltech/T. Pyle SSC Philip M. Hinz 1 University of Arizona, Scott Kenyon Smithsonian

More information

Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability

Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability A white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy J. Lazio 1 (Jet Propulsion

More information

The Search For Life in the Universe. Lecture 27

The Search For Life in the Universe. Lecture 27 The Search For Life in the Universe Lecture 27 Our basic search technique: 1: Find the planets 2: Isolate the planets light from the stars light 3: Get a spectrum of the planet Its atmosphere, maybe is

More information

Science of extrasolar Planets A focused update

Science of extrasolar Planets A focused update Science of extrasolar Planets A focused update Raffaele Gratton, INAF Osservatorio Astronomico di Padova Extrasolar planets: a rapidly growing field of astronomy Top Tenz: Top 10 most important discoveries

More information

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU Lecture 23: Jupiter Solar System Jupiter s Orbit The semi-major axis of Jupiter s orbit is a = 5.2 AU Jupiter Sun a Kepler s third law relates the semi-major axis to the orbital period 1 Jupiter s Orbit

More information

Silicate cloud formation in the atmospheres of close-in super-earths and gas giants

Silicate cloud formation in the atmospheres of close-in super-earths and gas giants Silicate cloud formation in the atmospheres of close-in super-earths and gas giants by Gourav Mahapatra Student number: 4413385 in partial fulfillment of the requirements for the degree of Master of Science

More information

Clouds in the atmosphere of the super-earth exoplanet GJ 1214b

Clouds in the atmosphere of the super-earth exoplanet GJ 1214b Clouds in the atmosphere of the super-earth exoplanet GJ 1214b Laura Kreidberg 1, Jacob L. Bean 1, Jean-Michel Désert 2,3, Björn Benneke 4, Drake Deming 5, Kevin B. Stevenson 1, Sara Seager 4, Zachory

More information

Laboratory Simulations of Haze Formation in the Atmospheres of super-earths and mini-neptunes: Particle Color and Size Distribution

Laboratory Simulations of Haze Formation in the Atmospheres of super-earths and mini-neptunes: Particle Color and Size Distribution Laboratory Simulations of Haze Formation in the Atmospheres of super-earths and mini-neptunes: Particle Color and Size Distribution Chao He 1, Sarah M. Hörst 1, Nikole K. Lewis 1,2, Xinting Yu 1, Julianne

More information

CASE/ARIEL & FINESSE Briefing

CASE/ARIEL & FINESSE Briefing CASE/ARIEL & FINESSE Briefing Presentation to NRC Committee for Exoplanet Science Strategy including material from the ARIEL consortium Mark Swain - JPL 19 April 2019 2018 California Institute of Technology.

More information

Life in the Outer Solar System

Life in the Outer Solar System Life in the Outer Solar System Jupiter Big Massive R = 11R M = 300 M = 2.5 x all the rest Day about 10 Earth hours Year about 12 Earth years Thick Atmosphere, mostly H 2, He But also more complex molecules

More information

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute How Common Are Planets Around Other Stars? Transiting Exoplanets Kailash C. Sahu Space Tel. Sci. Institute Earth as viewed by Voyager Zodiacal cloud "Pale blue dot" Look again at that dot. That's here.

More information

Why Search for Extrasolar Planets?

Why Search for Extrasolar Planets? Why Search for Extrasolar Planets? What is the diversity of habitats for life in the universe? Are Earth-like planets common or rare in our region of the galaxy? We have an elaborate and self-consistent

More information

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley ASTR 200 : Lecture 6 Introduction to the Solar System 1 2004 Pearson Education Inc., publishing as Addison-Wesley Comparative Planetology Studying the similarities among and differences between the planets

More information

The SPIRou RV surveys. Étienne Artigau for the SPIRou collaboration

The SPIRou RV surveys. Étienne Artigau for the SPIRou collaboration + The SPIRou RV surveys Étienne Artigau for the SPIRou collaboration + SPIRou RV surveys n Two major surveys n Blind survey of selected stars n Very deep survey of nearest M dwarfs n Down to ~1 M earth

More information

The History of the Earth

The History of the Earth The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big

More information

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 1 2 Jovian Planets 3 Jovian Planets -- Basic Information Jupiter Saturn Uranus Neptune Distance 5.2 AU 9.5 AU 19 AU 30 AU Spin

More information

Atmospheric Study of Exoplanets by Transmission Spectroscopy (keynote talk)

Atmospheric Study of Exoplanets by Transmission Spectroscopy (keynote talk) Atmospheric Study of Exoplanets by Transmission Spectroscopy (keynote talk) Akihiko Fukui Okayama Astrophysical Observatory (OAO), NAOJ Main collaborators: ObservaDon: N. Narita, T. Hirano, N. Kusakabe,

More information

arxiv: v2 [astro-ph.ep] 29 Nov 2017

arxiv: v2 [astro-ph.ep] 29 Nov 2017 DRAFT VERSION NOVEMBER 3, 217 Preprint typeset using L A TEX style AASTeX6 v. 1. OBSERVING THE ATMOSPHERES OF KNOWN TEMPERATE EARTH-SIZED PLANETS WITH JWST CAROLINE V. MORLEY 1,2, LAURA KREIDBERG 1,3,

More information

Modeling the albedo of magma ocean planets

Modeling the albedo of magma ocean planets Modeling the albedo of magma ocean planets W. Pluriel 1, E. Marcq 1, M. Turbet 2, F. Forget 2, A. Salvador 3 1 LATMOS/IPSL/CNRS/UPMC/UVSQ, Guyancourt, France 2 LMD/IPSL/CNRS, Paris, France 3 GEOPS/IPSL/CNRS/UPSud,

More information

The Large UV Optical IR survey telescope. Debra Fischer

The Large UV Optical IR survey telescope. Debra Fischer The Large UV Optical IR survey telescope Debra Fischer Yale University How do we identify worlds that are most promising for life? Host star insolation determines the probability of retaining water. Habitable

More information

Atmospheric Chemistry on Substellar Objects

Atmospheric Chemistry on Substellar Objects Atmospheric Chemistry on Substellar Objects Channon Visscher Lunar and Planetary Institute, USRA UHCL Spring Seminar Series 2010 Image Credit: NASA/JPL-Caltech/R. Hurt Outline introduction to substellar

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 11:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Ruth Murray-Clay University of California, Santa Barbara

Ruth Murray-Clay University of California, Santa Barbara A Diversity of Worlds: Toward a Theoretical Framework for the Structures of Planetary Systems Ruth Murray-Clay University of California, Santa Barbara Strange New Worlds. Slide credit: Scott Gaudi ~1500

More information

Clouds in the atmosphere of the super-earth exoplanet GJ 1214b

Clouds in the atmosphere of the super-earth exoplanet GJ 1214b Clouds in the atmosphere of the super-earth exoplanet GJ 1214b Laura Kreidberg 1, Jacob L. Bean 1, Jean-Michel Désert 2,3, Björn Benneke 4, Drake Deming 5, Kevin B. Stevenson 1, Sara Seager 4, Zachory

More information