Astronomy Ch. 8 The Moon and Mercury. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Size: px
Start display at page:

Download "Astronomy Ch. 8 The Moon and Mercury. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question."

Transcription

1 Name: Period: Date: Astronomy Ch. 8 The Moon and Mercury MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The best way to find the exact distance to the Moon is to: A) measure its exact size in the telescope. B) make parallax measurements from observatories on opposite sides of the Earth. C) bounce lasers off the retroreflectors left on the surface by the Apollo landings. D) use radar reflection times, about 2.56 second. E) use stellar occultations for precise timings of the moon's position. 1) 2) What is the reason that it is so difficult to view Mercury from Earth? A) Mercury is often hidden by the Moon. B) Mercury is very small. C) Mercury can't be seen at night. D) Mercury is very dim. E) Mercury is always very close to the Sun. 2) 3) Mercury is very hard to observe from Earth because: A) it always appears as only half lit from Earth. B) it never gets more than 28 degrees from the Sun's glare. C) its barren surface reflects too little sunlight; it is almost invisible always. D) its elliptical orbit causes it to change speed unpredictably. E) its very rugged surface does not allow radar to bounce back to Earth. 3) 4) From Earth, due to their motions and the fact that the Sun lights only a portion of each surface, both Mercury and the Moon: A) appear to go through phases. B) always have the same side facing Earth. C) always look full from Earth. D) pass through Earth's shadow. E) appear to be half-lit by the Sun. 4) 5) Mercury experiences extreme high and low temperatures between night and day because: A) its oceans are much hotter than ours. B) it has no atmosphere to moderate temperatures over the globe. C) it is so close to the Sun. D) its dense atmosphere creates a runaway greenhouse. E) Mercury has no axial tilt, with its equator always exposed to direct sunlight. 5) 6) In size, Mercury is intermediate between: A) Ceres and Pluto. B) Earth and Venus. C) Pluto and the Moon. D) Mars and Earth. E) the Moon and Mars. 6) 1

2 7) How do the atmospheres of the Moon and Mercury compare? A) They are about equal, each only 1% as dense as ours. B) As no spacecraft has yet landed there, no information exists about Mercury's. C) The cooler Moon retains a thicker nitrogen atmosphere. D) Mercury's is much denser, like Venus, with much carbon dioxide. E) Neither body has a permanent atmosphere. 7) 8) If the Earth's surface temperature were increased to that of Mercury's day side, then: A) we would lose most of our water vapor into space. B) little would happen, as the earth is still the same mass and surface gravity. C) the evaporating oceans would thicken the atmosphere greatly. D) the Earth would, like Mercury, lose all its atmospheric gases. E) the erupting volcanoes would greatly increase the carbon dioxide greenhouse. 8) 9) Which of the following is NOT a factor in determining whether a body in the solar system retains an atmosphere? A) axial tilt B) escape velocity C) rotation rate D) composition and weight of the gases E) distance from the Sun 9) 10) Comparing the densities of the Moon and Mercury, we find: A) that density increases as we go outward from the Sun. B) the Moon's is similar to Earth's crust, while Mercury's is similar to the entire Earth. C) the Moon is slightly denser than Mercury. D) similar in surface appearance, they are also similar in density. E) both are much denser than our water-covered planet. 10) 11) One of the effects of Mercury's very slow spin is A) extreme variations in its surface temperature. B) wind patterns that are slow, but global in size. C) large variations in the size of its polar cap. D) an intensely powerful magnetic field. E) tectonic activity. 11) 12) The lunar mare are found: A) almost entirely on Earth side, where the crust was thinner. B) almost entirely on the far side, which was more likely to be hit. C) anywhere large meteor impacts created deep basins. D) mainly in the south polar region, where the largest impact occurred. E) not at all, since no liquid water really exists on the Moon. 12) 13) The lunar highlands are: A) formed by volcanic eruptions, much like our Andes. B) made of lighter colored, younger rocks than the mare. C) brighter than the mare, since they are covered with reflective glass from the rays. D) formed by plate tectonics, like the Earth's Himalayas. E) more rugged, heavily cratered, and older than the lunar mare. 13) 2

3 14) The youngest features visible with telescopes on the Moon are: A) the bright polar caps of new ice. B) the darkest regions of the mare. C) the volcanoes seen erupting in the highlands. D) the scarps recently created by tectonic activity. E) the craters sitting atop the mare. 14) 15) What is true of the lunar highlands? A) They are the darker regions of the Moon seen with the naked eye. B) They are less heavily cratered than the mare. C) They are the oldest part of the lunar surface.. D) They are found on the Moon's northern hemisphere. E) They are younger than the darker mare. 15) 16) The lunar mare are radioactively dated at: A) billion years old, comparable to the adjacent highlands. B) billion years old, similar to the formation of our own oceans. C) less than a billion years old, the most recent additions to the Moon. D) 4.6 billion years old, forming first among the lunar features. E) billion years old, forming after most of the bombardment was over. 16) 17) To measure how Mercury spins, astronomers sent to Mercury and used the Doppler shift to determine how fast it was rotating. A) a satellite B) radar beams C) laser beams D) probes E) a single frequency radio signal 17) 18) What did radar astronomers find in the polar regions of Mercury? A) auroral displays much like Earth's B) polar caps of dry ice that vary seasonally, much like Mars C) water ice that never melts in the deep craters D) rift valleys E) large mare basins, such as near our Moon's south pole 18) 19) Which statement about the rotations of the Moon and Mercury is FALSE? A) On Mercury, three days exactly equal two years. B) On the Moon, each "day" lasts about 15 earth days of constant sunlight. C) Our Moon is in a 1:1 synch with the Earth, keeping the same side toward us. D) Like our Moon, Mercury does not rotate at all, keeping the same side facing the Sun. E) Mercury is in the 3:2 synch with the Sun, with the same side Sunward at perihelion. 19) 20) How does Mercury's rotation relate to the Sun? A) Its year is much shorter, only 88 days, than its slow rotation of 243 days on its axis. B) It always keeps one face tidally locked toward the Sun, as our Moon does with us. C) Its rotation rate is 2/3 as long as its year, due to tidal resonances. D) Its day is the same length as its year. E) It does not spin at all, being tidal stopped by the solar tides. 20) 3

4 21) What causes Mercury's 3:2 spin-orbit resonance? A) the planet's very eccentric orbit B) the planet's closeness to the Sun C) the planet's high density D) tidal torques operating on the planet E) All of the above are factors. 21) 22) Mercury presents the same side to the Sun A) all the time, just like our Moon. B) every other orbit. C) twice every orbit. D) every third orbit. E) every 12 hours. 22) 23) What is true of the Moon's orbital and rotational periods? A) The rotational period is longer. B) The rotational period varies with the Moon's phase. C) The orbital period is longer. D) They are equal. E) The orbital period is greatest at full moon. 23) 24) The chief erosive agent now on the Moon is: A) lava flows welling up in the mare. B) volcanic vents in the rugged highlands. C) rain from cometary debris melting as it enters the moon's atmosphere. D) lunar ice melting and refreezing in the polar regions. E) the rain of micrometeorites chewing up the regolith. 24) 25) The rate of cratering: A) has recently increased with more collisions in the asteroid belt. B) has remained constant over the last 4.6 billion years. C) fluctuates over time, with massive bodies occasionally coming in from the Oort Cloud. D) shows that most interplanetary debris was swept up soon after the formation of the solar system. E) shows that large asteroid impacts are more common now than in the past. 25) 26) The rate of cratering in the lunar highlands shows us that A) they range from billion years old, on average. B) the largest impacts are the youngest, such as Copernicus and Tycho. C) they must be younger than the older, darker mare. D) the oldest rocks are at least as old as the mare, but some craters are much younger. E) most of the asteroids must have hit the Moon, not the earth. 26) 27) The average rate of erosion on the Moon is far less than on Earth because A) the Moon's mare long ago dried up, so there is no more wave erosion there. B) the Moon's magnetic field protects it from the solar wind better than ours does. C) the Moon is much younger than the earth. D) the crust of the Moon is much denser than the earth's crust. E) the Moon lacks wind, water and an atmosphere. 27) 4

5 28) Which type of feature is the best evidence of lunar volcanism? A) vents seen erupting in the mountainous highlands B) rays around the latest eruptions C) the Orientale Basin D) craters all over the Moon E) rilles associated with lava flows accompanying the mare formation 28) 29) The spacecraft which reveal the possibility of lunar ice are: A) Lunar Orbiter and Rover. B) Lunar Ranger and Surveyor. C) Vikings 1 and 2. D) Apollos XI and XVII. E) Clementine and Lunar Prospector. 29) 30) Mercury's surface most resembles that of which other body? A) Mars B) Venus C) Earth D) Io E) Moon 30) 31) Which of these features is attributed to the shrinking of Mercury's core? A) rilles B) mare C) scarps D) rays E) craters 31) 32) Almost all we know about Mercury has come from: A) telescopic observations for Earth near greatest elongations. B) the Hubble Space Telescope's high resolution images. C) radar imaging of its rugged surface. D) the three flybys of Mariner 10. E) the messenger orbiter. 32) 33) Mercury and the Moon appear similar, but we note that: A) Mercury has "weird terrain" opposite its huge Caloris basin. B) Mercury does not always keep the same face toward the Sun, while the Moon does have the Earthside always facing us. C) the lunar mare are darker than Mercury's intercrater plains. D) Mercury has striking lobate scarps due to the shrinking of its core. E) All of the above are correct. 33) 34) The scarps on Mercury were probably caused by A) the interior cooling and shrinking. B) tectonic activity. C) volcanism. D) a tidal bulge. E) meteorite bombardment. 34) 5

6 35) Mercury's surface most resembles which of these? A) Venus' polar regions B) the earth's deserts C) the lunar far side D) Mars' deserts E) the lunar mare 35) 36) Mercury's Caloris basin is aptly named, since: A) it is the region on Mercury looking much like our own "painted desert". B) it is the largest impact basin found in the solar system. C) it is the hottest region, turning to face the Sun when Mercury is at perihelion. D) it is always pointed directly at the Sun. E) it is the only such large basin on Mercury. 36) 37) The Moon's huge Mare Orientale basin has a twin on Mercury named: A) Mare Marineris. B) Valhalla. C) Caloris. D) the weird terrain. E) Galileo. 37) 38) Moonquakes on the Moon were detected by: A) seismographs attached to the Russian Lunar rovers. B) telescopic observations of lunar landslides. C) the radar observations over time from earth. D) laser beams reflected off mirrors left on the Moon by Apollo missions. E) the seismographs left these by the Apollo astronauts. 38) 39) What do moonquakes reveal about the Moon? A) It has a differentiated core, displaced away from us by the Moon's rotation. B) Its small, partially molten core has been pulled toward us by tidal forces. C) The Moon has been geologically dead throughout its entire history. D) The Moon is quite active, almost as much so as Jupiter's moon Io. E) It has a strong magnetic field generated by a large molten core. 39) 40) How does Mercury's magnetic field compare to our own? A) Like Mars and the Earth, it too has undergone polarity reversals. B) It is amazingly strong, comparable to our own. C) Like Venus, Mercury has no detectable magnetic field. D) It was predicted from Mercury's rapid rotation and molten core. E) It is 1/100th as strong as ours, but does deflect the solar wind to some degree. 40) 41) What two properties of Mercury imply that it is differentiated? A) its large average density and its surface features B) its magnetic field and its surface features C) its surface features and its size D) its size and magnetic field E) its large average density and its magnetic field 41) 6

7 42) The presence of a Mercurian magnetic field surprised the planetary scientists on the Mariner 10 team because A) Mercury is low in iron. B) Mercury lacks an iron core. C) Mercury spins to rapidly to produce a stable dynamo. D) it's still too hot for its core to have differentiated. E) the dynamo theory predicted that Mercury was spinning too slowly for one. 42) 43) Which of these theories seems to best explain the Moon's origin? A) Impact Theory B) Coformation Theory C) Capture Theory D) Fusion Theory E) Fission Theory 43) 44) What are the major factors that rule out the co-formation theory for the Moon-Earth system? A) Each body has a different density and a different chemical composition. B) Each body has different surface features and different atmospheric content. C) Each body has a different chemical composition and different atmospheric content. D) Each body has different chemical composition and different surface features. E) Each body has different atmospheric content and a different density. 44) 45) Which of these would support the capture theory of the Moon's origin? A) the retrograde orbit and large orbital inclination of Neptune's moon Triton B) the rings of all the jovians lying around their equators C) the Caloris basin on Mercury D) the Pluto-Charon system E) the four large moons of Jupiter orbit its equator 45) 46) The cratering of the lunar highlands shows us: A) they are like the Earth's continents, removed from the tectonic cycle of the mare. B) they are younger than the maria. C) they were made of more rigid lavas than the basalts that made the maria. D) they are older than the smoother maria. E) they have been unchanged for the last 4.6 billion years. 46) 47) How are the polar regions of Mercury and the Moon similar? A) Both seem to have ice pockets in the deepest, darkest crater floors. B) Both have bright dry ice polar caps, like Mars. C) Both have been hit by large comets that melted there. D) Both are covered by huge mare-type basins from impacts. E) Both have lakes of liquid water under their regolith. 47) 48) Mercury's evolution was different from the Moon's because: A) Mercury developed a dense atmosphere while the Moon never did. B) Mercury was subject to more intense asteroid bombardment than the Moon. C) dense Mercury had an iron core that shrank, creating the lobate scarps. D) Mercury was located farther from Earth, so experienced no tidal forces. E) Mercury developed a strong magnetic field to protect it from solar radiation. 48) 7

8 49) Both the Moon and Mercury are geologically inactive and have been that way for most of the history of the solar system. However, about 4 billion years ago, it is thought that A) the Moon's atmosphere dissipated. B) both bodies were covered in ice. C) the Moon differentiated. D) the Moon had more frequent and violent volcanic activity than Mercury. E) Mercury had more common volcanic activity than the Moon. 49) 50) Astronomers believe that the Moon did not differentiate to the same degree as Earth because: A) the meteors that hit the moon were lighter than those that hit us, so did not generate as much heat on the surface. B) the Moon was made of solid debris, not liquids like our hydrosphere. C) the less dense and smaller moon did not have as much radioactivity as the larger Earth in its core. D) the Moon was made of very different materials than our mantle and crust. E) the Moon was formed after the Earth was, so its radioactivity was less. 50) 8

Physics Homework Set 3 Fall 2015

Physics Homework Set 3 Fall 2015 1) Mercury presents the same side to the Sun 1) A) every third orbit. B) every 12 hours. C) all the time, just like our Moon. D) every other orbit. E) Twice every orbit. 2) Both the Moon and Mercury are

More information

Mercury and Venus 3/20/07

Mercury and Venus 3/20/07 Announcements Reading Assignment Chapter 13 4 th Homework due today Quiz on Thursday (3/22) Will cover all material since the last exam. This is Chapters 9-12 and the part of 13 covered in the lecture

More information

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury = Hermes Mythology Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury s Orbit Mercury never seen more than 28 from the sun Revolves/orbits

More information

9. Moon, Mercury, Venus

9. Moon, Mercury, Venus 9. Moon, Mercury, Venus All the heavier elements were manufactured by stars later, either by thermonuclear fusion reactions deep in their interiors or by the violent explosions that mark the end of massive

More information

Overview of Solar System

Overview of Solar System Overview of Solar System The solar system is a disk Rotation of sun, orbits of planets all in same direction. Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions). Angular momentum

More information

Moon and Mercury 3/8/07

Moon and Mercury 3/8/07 The Reading Assignment Chapter 12 Announcements 4 th homework due March 20 (first class after spring break) Reminder about term paper due April 17. Next study-group session is Monday, March 19, from 10:30AM-12:00Noon

More information

Lecture 11 Earth s Moon January 6d, 2014

Lecture 11 Earth s Moon January 6d, 2014 1 Lecture 11 Earth s Moon January 6d, 2014 2 Moon and Earth to Scale Distance: a = 385,000 km ~ 60R Eccentricity: e = 0.055 Galileo Spacecraft Dec. 1992 3 [Review question] Eclipses do not occur each month

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am The Moon The Moon's surface Humans on the Moon The Moon's interior The difference between Moon and Earth rocks The collision

More information

Learning Objectives. they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field?

Learning Objectives. they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field? Mercury and Venus Learning Objectives! Contrast the Earth, the Moon, Venus and Mercury. Do they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field?!

More information

Chapter 17: Mercury, Venus and Mars

Chapter 17: Mercury, Venus and Mars Chapter 17: Mercury, Venus and Mars Mercury Very similar to Earth s moon in several ways: Small; no atmosphere lowlands flooded by ancient lava flows heavily cratered surfaces Most of our knowledge based

More information

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth The Moon Mass = 7.4 x 1025 g = 0.012 MEarth Radius = 1738 km = 0.27 REarth Density = 3.3 g/cm3 (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth Dark side of the moon We always see the same face of the Moon.

More information

Lecture #10: Plan. The Moon Terrestrial Planets

Lecture #10: Plan. The Moon Terrestrial Planets Lecture #10: Plan The Moon Terrestrial Planets Both Sides of the Moon Moon: Direct Exploration Moon: Direct Exploration Moon: Direct Exploration Apollo Landing Sites Moon: Apollo Program Magnificent desolation

More information

Lecture Outlines. Chapter 8. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 8. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 8 Astronomy Today 7th Edition Chaisson/McMillan Chapter 8 The Moon and Mercury Units of Chapter 8 8.1 Orbital Properties 8.2 Physical Properties 8.3 Surface Features on the Moon

More information

Announcements. NRAO REU program Feb 1, summerstudents

Announcements. NRAO REU program Feb 1, summerstudents Announcements NRAO REU program Feb 1, 2019 https://science.nrao.edu/opportunities/student-programs/ summerstudents AFRL Scholars program Jan 16, 2019 https://afrlscholars.usra.edu HW#8 due Nov 1 Test#2

More information

Agenda. Chapter 7. The Earth s Moon. The Moon. Surface Features. Magnificent Desolation. The Moon

Agenda. Chapter 7. The Earth s Moon. The Moon. Surface Features. Magnificent Desolation. The Moon Chapter 7 The 1 Agenda Announce: Project Part II due Tue No class next Thursday...Tgiving break! No class 12/14 (last day) Spectral Lines Lab due Pass Back Test 2 Discuss grades NYT article on gamma ray

More information

After you read this section, you should be able to answer these questions:

After you read this section, you should be able to answer these questions: CHAPTER 16 4 Moons SECTION Our Solar System California Science Standards 8.2.g, 8.4.d, 8.4.e BEFORE YOU READ After you read this section, you should be able to answer these questions: How did Earth s moon

More information

The Moon & Mercury: Dead Worlds

The Moon & Mercury: Dead Worlds The Moon & Mercury: Dead Worlds There are many similarities between the Moon and Mercury, and some major differences we ll concentrate mostly on the Moon. Appearance of the Moon from the Earth We ve already

More information

What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth

What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth The Moon What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth Location, location, location! About 384,000 km (240,000 miles) from Earth

More information

Lecture Outlines. Chapter 10. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 10. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 10 Astronomy Today 8th Edition Chaisson/McMillan Chapter 10 Mars Units of Chapter 10 10.1 Orbital Properties 10.2 Physical Properties 10.3 Long-Distance Observations of Mars 10.4

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version E of the exam. Please fill in (E). A) This

More information

Lunar Geology ASTR 2120 Sarazin

Lunar Geology ASTR 2120 Sarazin Lunar Geology ASTR 2120 Sarazin Interior of the Moon Density low (3.3 gm/cc), very little iron No iron core Very small heat flow out of interior Little radioactive heating No magnetic field No molten iron

More information

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets Lecture #11: Plan Terrestrial Planets (cont d) Jovian Planets Mercury (review) Density = 5.4 kg / liter.. ~ Earth s Rocky mantle + iron/nickel core Slow spin: 59 days (orbital period = 88 days) No satellites

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version B of the exam. Please fill in (B). A) This

More information

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet Part II: Solar System The Moon Audio update: 2014Feb23 The Moon A. Orbital Stuff B. The Surface C. Composition and Interior D. Formation E. Notes 2 A. Orbital Motion 3 Earth-Moon is a Binary Planet 4 1.

More information

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 11 Jupiter MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Jupiter is noticeably oblate because: A) it has a

More information

The Solar System 6/23

The Solar System 6/23 6/23 The Solar System I. Earth A. Earth is the prototype terrestrial planet 1. Only planet in the solar system (we know of so far) with life 2. Temperature 290 K B. Physical Characteristics 1. Mass: 6

More information

Chapter 5 Review. 1) Our Earth is about four times larger than the Moon in diameter. 1)

Chapter 5 Review. 1) Our Earth is about four times larger than the Moon in diameter. 1) Chapter 5 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Our Earth is about four times larger than the Moon in diameter. 1) 2) The Earth's hotter, inner

More information

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves.

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves. Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds What are terrestrial planets like on the inside? Seismic Waves Vibrations that travel through Earth s interior tell us what Earth is

More information

ASTRO 120 Sample Exam

ASTRO 120 Sample Exam ASTRO 120 Sample Exam 1) If a planet has a reasonably strong magnetic field, we know that a. It is made entirely of iron b. There is liquid nitrogen below the surface c. It can harbor life d. It has a

More information

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds 9.1 Connecting Planetary Interiors and Surfaces Our goals for learning What are terrestrial planets like on the inside? What causes geological

More information

NSCI SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: MOONS OF THE OUTER PLANETS PLUS: WHY IS PLUTO NO LONGER CNSIDERED A PLANET?

NSCI SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: MOONS OF THE OUTER PLANETS PLUS: WHY IS PLUTO NO LONGER CNSIDERED A PLANET? NSCI 314 LIFE IN THE COSMOS 11 - SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: MOONS OF THE OUTER PLANETS PLUS: WHY IS PLUTO NO LONGER CNSIDERED A PLANET? Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/

More information

Astronomy I Exam 2 Sample

Astronomy I Exam 2 Sample NAME: Part I: Multiple Choice (2 points. ea.) Read carefully, choose the best answer 1. Which of the following occurs because of the orbital motion of the Earth about the Sun and cannot be accounted for

More information

PHYS 160 Astronomy Test #3 Nov 1, 2017 Version B

PHYS 160 Astronomy Test #3 Nov 1, 2017 Version B PHYS 160 Astronomy Test #3 Nov 1, 2017 Version B I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. The clouds of Jupiter are composed

More information

Surface Features. Chapter 7. Rays. Craters. Origin of Lunar Surface Features. Rilles 5/10/12. The Moon

Surface Features. Chapter 7. Rays. Craters. Origin of Lunar Surface Features. Rilles 5/10/12. The Moon Chapter 7 The Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Surface divided into two major regions Highlands Bright rugged areas composed mainly of anorthosite

More information

The Moon. Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon

The Moon. Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon The Moon Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon Earth Moon Semi-major Axis 1 A.U. 384 x 10 3 km Inclination 0 Orbital period 1.000 tropical year 27.32

More information

1 Describe the structure of the moon 2. Describe its surface features 3. Summarize the hypothesis of moon formation

1 Describe the structure of the moon 2. Describe its surface features 3. Summarize the hypothesis of moon formation Loulousis 1 Describe the structure of the moon 2. Describe its surface features 3. Summarize the hypothesis of moon formation moon -a body that revolves around a planet and that has less mass than the

More information

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury Lecture 19: The Moon & Mercury The Moon & Mercury The Moon and Mercury are similar in some ways They both have: Heavily cratered Dark colored surfaces No atmosphere No water They also have some interesting

More information

AST Section 2: Test 1

AST Section 2: Test 1 AST1002 - Section 2: Test 1 Date: 10/06/2009 Name: Equations: c = λ f, λ peak = Question 1: A star with a declination of +40.0 degrees will be 1. east of the vernal equinox. 2. west of the vernal equinox.

More information

Astronomy 1140 Quiz 3 Review

Astronomy 1140 Quiz 3 Review Astronomy 1140 Quiz 3 Review Anil Pradhan October 27, 2017 I The Inner Planets 1. What are the terrestrial planets? What do they have in common? Terrestrial planets: Mercury, Venus, Earth, Mars. Theses

More information

Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System

Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23.1 The Solar System Terrestrial planets- Small Rocky

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

Astronomy 1140 Quiz 3 Review

Astronomy 1140 Quiz 3 Review Astronomy 1140 Quiz 3 Review Anil Pradhan October 26, 2016 I The Inner Planets 1. What are the terrestrial planets? What do they have in common? Terrestrial planets: Mercury, Venus, Earth, Mars. Theses

More information

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts Jupiter Orbit, Rotation Physical Properties Atmosphere, surface Interior Magnetosphere Moons (Voyager 1) Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Announcements: 1. Midterm exam on Thursday (in this room) 2. Oct 21 st - 26 th : Sections replaced by evening observing) Lecture 8: October 18, 2016 Previously on Astro 1 Solar System

More information

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus Fall 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy AST0111-3 (Astronomía) Semester 2014B Prof. Thomas H. Puzia Venus Venus The atmosphere of Venus is very dense and an opaque layer of clouds covers the planet, such that we cannot

More information

Descriptive Astronomy (ASTR 108) Exam 2A March 29, 2010

Descriptive Astronomy (ASTR 108) Exam 2A March 29, 2010 Descriptive Astronomy (ASTR 108) Exam 2A March 29, 2010 Name: In each of the following multiple choice questions, select the best possible answer. First circle the answer on this exam, then in the line

More information

Ag Earth Science Chapter 23

Ag Earth Science Chapter 23 Ag Earth Science Chapter 23 Chapter 23.1 Vocabulary Any of the Earth- like planets, including Mercury, Venus, and Earth terrestrial planet Jovian planet The Jupiter- like planets: Jupiter, Saturn, Uranus,

More information

Chapter 17. Chapter 17

Chapter 17. Chapter 17 Chapter 17 Moons and Other Solar System Objects Sections 17.1-17.2 Chapter 17 Parallax http://www.youtube.com/watc h?v=xuqaildqpww The Moon July 20, 1969 humans first landed on moon What was the first

More information

10. Our Barren Moon. Moon Data (Table 10-1) Moon Data: Numbers. Moon Data: Special Features 1. The Moon As Seen From Earth

10. Our Barren Moon. Moon Data (Table 10-1) Moon Data: Numbers. Moon Data: Special Features 1. The Moon As Seen From Earth 10. Our Barren Moon Lunar plains & craters Manned lunar exploration The lunar interior The Moon s geologic history The formation of the Moon Moon Data (Table 10-1) Moon Data: Numbers Diameter: 3,476.km

More information

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17.

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17. Astronomy 1 S 16 Exam 1 Name Identify terms Label each term with the appropriate letter of a definition listed 1. Spectral line R 8. Albedo H 15. helioseismology E 2. Terrestrial Planet G 9. Coulomb Force

More information

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of

More information

Chapter 9 Lecture. The Cosmic Perspective Seventh Edition. Planetary Geology: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Chapter 9 Lecture. The Cosmic Perspective Seventh Edition. Planetary Geology: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Chapter 9 Lecture The Cosmic Perspective Seventh Edition Planetary Geology: Earth and the Other Terrestrial Worlds Planetary Geology: Earth and the Other Terrestrial Worlds 9.1 Connecting Planetary Interiors

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

Study Guide for Test 2. Chapter How does refraction allow a lens to bring parallel rays of light to a focus?

Study Guide for Test 2. Chapter How does refraction allow a lens to bring parallel rays of light to a focus? Study Guide for Test 2 1. What is refraction? Chapter 6 2. How does refraction allow a lens to bring parallel rays of light to a focus? 3. Can a mirror also be used to bring parallel rays of light to a

More information

Astronomy 1001/1005 Midterm (200 points) Name:

Astronomy 1001/1005 Midterm (200 points) Name: Astronomy 1001/1005 Midterm (00 points) Name: Instructions: Mark your answers on this test AND your bubble sheet You will NOT get your bubble sheet back One page of notes and calculators are allowed Use

More information

The Solar System. Tour of the Solar System

The Solar System. Tour of the Solar System The Solar System Tour of the Solar System The Sun more later 8 planets Mercury Venus Earth more later Mars Jupiter Saturn Uranus Neptune Various other objects Asteroids Comets Pluto The Terrestrial Planets

More information

Our Planetary System. Chapter 7

Our Planetary System. Chapter 7 Our Planetary System Chapter 7 Key Concepts for Chapter 7 and 8 Inventory of the Solar System Origin of the Solar System What does the Solar System consist of? The Sun: It has 99.85% of the mass of the

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 10 - SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: THE OUTER PLANETS AND THEIR MOONS Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/ JUPITER DIAMETER:

More information

Chapter: The Earth-Moon-Sun System

Chapter: The Earth-Moon-Sun System Chapter 7 Table of Contents Chapter: The Earth-Moon-Sun System Section 1: Earth in Space Section 2: Time and Seasons Section 3: Earth s Moon 1 Earth in Space Earth s Size and Shape Ancient Measurements

More information

1/3/12. Chapter: The Earth-Moon-Sun System. Ancient Measurements. Earth s Size and Shape. Ancient Measurements. Ancient Measurements

1/3/12. Chapter: The Earth-Moon-Sun System. Ancient Measurements. Earth s Size and Shape. Ancient Measurements. Ancient Measurements // Table of Contents Chapter: The Earth-Moon-Sun System Section : Chapter 7 Section : Section : Earth s Size and Shape Ancient Measurements First, no matter where you are on Earth, objects fall straight

More information

I always wanted to be somebody, but I should have been more specific. Lilly Tomlin Reading has been updated. (All of Chaps. 9& 10) Friday, first sit

I always wanted to be somebody, but I should have been more specific. Lilly Tomlin Reading has been updated. (All of Chaps. 9& 10) Friday, first sit I always wanted to be somebody, but I should have been more specific. Lilly Tomlin Reading has been updated. (All of Chaps. 9& 10) Friday, first sit for passing back HW, then with chart. Water on the Moon?

More information

Moons of Sol Lecture 13 3/5/2018

Moons of Sol Lecture 13 3/5/2018 Moons of Sol Lecture 13 3/5/2018 Tidal locking We always see the same face of the Moon. This means: period of orbit = period of spin Top view of Moon orbiting Earth Earth Why? The tidal bulge in the solid

More information

Image of the Moon from the Galileo Space Craft

Image of the Moon from the Galileo Space Craft Image of the Moon from the Galileo Space Craft Moon: Overview Due to its size (diameter 3476 km, Mercury s diameter is 4880 km) and composition, the moon is sometimes considered as a terrestrial planet

More information

Class Announcements. Solar System. Objectives for today. Will you read Chap 32 before Wed. class? Chap 32 Beyond the Earth

Class Announcements. Solar System. Objectives for today. Will you read Chap 32 before Wed. class? Chap 32 Beyond the Earth Class Announcements Please fill out an evaluation for this class. If you release your name I ll I give you quiz credit. Will you read Chap 32 before Wed. class? a) Yes b) No Chap 32 Beyond the Earth Objectives

More information

9/15/16. Guiding Questions. Our Barren Moon. The Moon s Orbit

9/15/16. Guiding Questions. Our Barren Moon. The Moon s Orbit Our Barren Moon Guiding Questions 1. Is the Moon completely covered with craters? 2. Has there been any exploration of the Moon since the Apollo program in the 1970s? 3. Does the Moon s interior have a

More information

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc.

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc. Review Clickers The Cosmic Perspective Seventh Edition Jovian Planet Systems If Jupiter was the size of a basketball, Earth would be the size of a(n) a) bacterium. b) grain of rice. c) marble. d) orange.

More information

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton

3. The name of a particularly large member of the asteroid belt is A) Halley B) Charon C) Eris D) Ceres E) Triton Summer 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

Climate Regulation. - What stabilizes the climate - Greenhouse effect

Climate Regulation. - What stabilizes the climate - Greenhouse effect Climate Regulation - What stabilizes the climate - Greenhouse effect Last time! Processes that shaped Earth: Volcanism, tectonics! How we retain atmospheric molecules ( escape speed )! A magnetic field

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1 Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology I Terrestrial and Jovian planets Similarities/differences between planetary satellites Surface and atmosphere

More information

Our Barren Moon. Chapter Ten. Guiding Questions

Our Barren Moon. Chapter Ten. Guiding Questions Our Barren Moon Chapter Ten Guiding Questions 1. Is the Moon completely covered with craters? 2. Has there been any exploration of the Moon since the Apollo program in the 1970s? 3. Does the Moon s interior

More information

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa Spring 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

Today. Events. Terrestrial Planet Geology. Fall break next week - no class Tuesday

Today. Events. Terrestrial Planet Geology. Fall break next week - no class Tuesday Today Terrestrial Planet Geology Events Fall break next week - no class Tuesday When did the planets form? We cannot find the age of a planet, but we can find the ages of the rocks that make it up. We

More information

page - Lab 13 - Introduction to the Geology of the Terrestrial Planets

page - Lab 13 - Introduction to the Geology of the Terrestrial Planets page - Lab 13 - Introduction to the Geology of the Terrestrial Planets Introduction There are two main families of planets in our solar system: the inner Terrestrial planets (Earth, Mercury, Venus, and

More information

Name Date Class. Earth in Space

Name Date Class. Earth in Space Chapter Review Earth in Space Part A. Vocabulary Review Directions: Select the term from the following list that matches each description. axis orbit rotation revolution equinox solstice lunar eclipse

More information

Geology of the terrestrial planets Pearson Education, Inc.

Geology of the terrestrial planets Pearson Education, Inc. Geology of the terrestrial planets 2014 Pearson Education, Inc. Earth s Bulk Properties Earth s Bulk Properties albedo - A = 0.39 A = 0 planet absorbs all sunlight that hits it A =1 planet reflects all

More information

KEY. Planetary Sciences Section 2 Midterm Examination #2 9:30-10:45 a.m., Tuesday, October 8, 2013

KEY. Planetary Sciences Section 2 Midterm Examination #2 9:30-10:45 a.m., Tuesday, October 8, 2013 KEY Planetary Sciences 206 -- Section 2 Midterm Examination #2 9:30-10:45 a.m., Tuesday, October 8, 2013 INSTRUCTIONS: There are 35 multiple-choice questions, which are worth 2 points each. The last two

More information

What is there in thee, moon, That thou shouldst move My heart so potently? By John Keats

What is there in thee, moon, That thou shouldst move My heart so potently? By John Keats What is there in thee, moon, That thou shouldst move My heart so potently? By John Keats The most popular view about how the moon formed was that a space object collided with the Earth. The material that

More information

The Moon. A look at our nearest neighbor in Space! Free powerpoints at

The Moon. A look at our nearest neighbor in Space! Free powerpoints at The Moon A look at our nearest neighbor in Space! Free powerpoints at http://www.worldofteaching.com What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of

More information

Chapter 7. The Moon. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 7. The Moon. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 7 The Moon Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The Earth s Moon Earth s nearest neighbor is space Once the frontier of direct human exploration

More information

Earth. Physical Properties of Earth kg. Average Density g/cm 2. Surface Gravity 9.8 m/s o C to 50 o C. Surface Temperature

Earth. Physical Properties of Earth kg. Average Density g/cm 2. Surface Gravity 9.8 m/s o C to 50 o C. Surface Temperature Earth Physical Properties of Earth Equatorial Diameter Mass 12,756 km 5.976 10 24 kg Average Density 5.497 g/cm 2 Surface Gravity 9.8 m/s 2 Escape Velocity Surface Temperature 11.2 km/s -50 o C to 50 o

More information

Mercury Data (Table 11-1) 11a. Sun-Scorched Mercury. Mercury Data: Numbers

Mercury Data (Table 11-1) 11a. Sun-Scorched Mercury. Mercury Data: Numbers 11a. Sun-Scorched Mercury Earth-based observations of Mercury Mercury s rotation & year Mariner 10 s images of Mercury Mercury s interior Mercury Data (Table 11-1) Mercury Data: Numbers Diameter: 4,878.km

More information

Q. Some rays cross maria. What does this imply about the relative age of the rays and the maria?

Q. Some rays cross maria. What does this imply about the relative age of the rays and the maria? Page 184 7.1 The Surface of the Moon Surface Features To the naked eye, the Moon is a world of grays. Some patches are darker than others, creating a vague impression of what some see as a face ( the man

More information

The Planets, Asteroids, Moons, etc.

The Planets, Asteroids, Moons, etc. DATE DUE: Ms. Terry J. Boroughs Geology 305 Name: Section: The Planets, Asteroids, Moons, etc. Instructions: Read each question carefully before selecting the BEST answer or option. Use GEOLOGIC vocabulary

More information

The Sun and Planets Lecture Notes 6.

The Sun and Planets Lecture Notes 6. The Sun and Planets Lecture Notes 6. Lecture 6 Venus 1 Spring Semester 2017 Prof Dr Ravit Helled Cover photo: Venus in true color (Courtesy of NASA) Venus Properties Venus is the second brightest natural

More information

TopHat quizzes for astro How would you represent in scientific notation? A 2.7 x 10 2 B 2.7 x 10 3 C 2.7 x 10 4 D 2.

TopHat quizzes for astro How would you represent in scientific notation? A 2.7 x 10 2 B 2.7 x 10 3 C 2.7 x 10 4 D 2. TopHat quizzes for astro 111 Lecture week 1 1. If you multiply 2 x 10 4 by itself, what do you get? A. 4 x 10 4 B. 4 x 10 8 C. 2 x 10 4 D. 4 x 10 16 2. Jupiter's maximum distance from the sun is approximately

More information

Mars: The Red Planet. Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos

Mars: The Red Planet. Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos Mars: The Red Planet Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos Property Earth Mars Radius 6378km 3394km ~ 0.51R E Mass 5.97x10 24 kg 6.42x10 23 kg =

More information

Terrestrial World Surfaces

Terrestrial World Surfaces 1 Terrestrial World Surfaces Solid rocky surfaces shaped (to varying degrees) by: Impact cratering Volcanism Tectonics (gross movement of surface by interior forces) Erosion (by impacts or by weather)

More information

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Exam# 2 Review Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the

More information

Astro 1010 Planetary Astronomy Sample Questions for Exam 4

Astro 1010 Planetary Astronomy Sample Questions for Exam 4 Astro 1010 Planetary Astronomy Sample Questions for Exam 4 Chapter 8 1. Which of the following processes is not important in shaping the surface of terrestrial planets? a) Impact cratering b) Tectonism

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy LESSON 2 THE EARTH-SUN-MOON SYSTEM Chapter 8 Astronomy OBJECTIVES Investigate how the interaction of Earth, the Moon, and the Sun causes lunar phases. Describe conditions that produce lunar and solar eclipses.

More information

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

The Moon s radius is about 1100 miles. The mass of the Moon is 7.3x10 22 kg

The Moon s radius is about 1100 miles. The mass of the Moon is 7.3x10 22 kg The Moon Orbit Parallax methods can provide us with quite accurate measurements of the distance to the Moon Earth s diameter is used as a baseline Radar and laser ranging yield more accurate distances

More information

Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of the normal stars.

Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of the normal stars. Chapter 23 Our Solar System Our Solar System Historical Astronomy Wandering Stars Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of

More information

Evolution of the Solar System

Evolution of the Solar System DATE DUE: Name: Ms. Terry J. Boroughs Geology 305 Section: Evolution of the Solar System Instructions: Read each question carefully before selecting the BEST answer or option. Use GEOLOGIC vocabulary where

More information

Solar System. Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc.

Solar System. Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc. Solar System Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc. Comparative Planetology Compares planets and other solar system bodies to help understand how they

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 4 - Group Homework Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Density is defined as A) mass times weight. B) mass per unit volume.

More information

A Survey of the Planets Earth Mercury Moon Venus

A Survey of the Planets Earth Mercury Moon Venus A Survey of the Planets [Slides] Mercury Difficult to observe - never more than 28 degree angle from the Sun. Mariner 10 flyby (1974) Found cratered terrain. Messenger Orbiter (Launch 2004; Orbit 2009)

More information

37. Planetary Geology p

37. Planetary Geology p 37. Planetary Geology p. 656-679 The Solar System Revisited We will now apply all the information we have learned about the geology of the earth to other planetary bodies to see how similar, or different,

More information