The High-Energy Interstellar Medium

Size: px
Start display at page:

Download "The High-Energy Interstellar Medium"

Transcription

1 The High-Energy Interstellar Medium Andy Strong MPE Garching on behalf of Fermi-LAT collaboration Cosmic Ray Interactions: Bridging High and Low Energy Astrophysics Lorentz Centre Workshop March

2 2 years

3 2 years 1 year Both flying now. A lot of common astrophysics!

4

5 Where do most of these gamma rays come from?

6 intergalactic space HALO reacceleration energy loss decay Secondary: 10Be, 10,11B... Fe.. synchrotron Secondary: e+- p cosmic-ray sources: p, He.. Ni, e- πo γ rays B-field gas ISRF bremsstrahlung inverse Compton

7 intergalactic space HALO synchrotron cosmic-ray sources: electrons B-field ISRF inverse Compton γ rays Cosmic-ray electrons provide the link radio gamma ray Hence (one of the) Fermi Planck connection(s)!

8 The goal : use all types of data in self-consistent way to test models of cosmic-ray propagation. Observed directly, near Sun: primary spectra (p, He... Fe; e- ) secondary/primary (B/C etc) secondary e+, antiprotons... Observed from whole Galaxy: γ - rays synchrotron

9 The goal : use all types of data in self-consistent way to test models of cosmic-ray propagation. Observed directly, near Sun: primary spectra (p, He... Fe; e- ) secondary/primary (B/C etc) secondary e+, antiprotons... Observed from whole Galaxy: γ - rays synchrotron

10 DIFFUSE EMISSION RESULTS FROM FERMI-LAT Fermi-LAT Gamma Ray Observatory maps the whole sky every 3 hours 30 MeV 300 GeV arcminute resolution data public immediately 1-2 years of data low background event class (developed for extragalactic background study) Fermi-measured cosmic-ray electron spectrum

11 Modelling the gamma-ray sky Main ingredients of GALPROP model cosmic-ray spectra p, He, e-, e+ (including secondaries) (including Fermi-measured electrons) cosmic-ray source distribution follow e.g. SNR/pulsars secondary/primary ratios (B/C etc) for propagation parameters halo height = 4-10 kpc (from radioactive cosmic-ray nuclei) Interstellar radiation field (Frankie code) (-> inverse Compton) B-field (electron energy losses, synchrotron emission) HI, CO, dust surveys CO-to-H2 conversion a function of position in Galaxy Fermi 1st Year Source Catalogue

12 Use a model based on locally-measured cosmic rays PROTONS ELECTRONS = Fermi

13 Electron spectrum measured by Fermi-LAT 7 GeV 1 TeV Abdo et al 2010 Abdo et al 2009 PRL.102, , Grasso et al 2009 Astropart.Ph. 32, 140

14

15 CHOOSE THIS REGION FOR FIRST DIFFUSE ANALYSIS CHOOSE THIS REGION FOR FIRST DIFFUSE ANALYSIS

16 INTERMEDIATE LATITUDES +10 < b < +20 good agreement with basic model Fermi o total with sources total diffuse sources isotropic inverse Compton bremss. PRELIMINARY

17 Inner Galaxy o o o 330 < l < 30, b <5 o Fermi Catalogue sources Inverse Compton isotropic bremsstrahlung Good agreement overall with basic model

18 Inner Galaxy o o o 330 < l < 30, b <5 excess : unresolved sources? o Fermi Catalogue sources Inverse Compton isotropic bremsstrahlung

19 LONGITUDE PROFILE LOW LATITUDES LATITUDE PROFILE ALL LONGITUDES 1 GeV HI sources HI HII sources H2 H2 IC Agrees within 15% over 2 decades of dynamic range The observed flux is the sum of many components: importance of modelling them all! PRELIMINARY inverse Compton

20 EVIDENCE FOR LARGE COSMIC-RAY HALO 4 kpc halo height 10 kpc halo height 1 GeV inverse Compton at high latitudes suggests a large cosmic-ray halo Important for halo magnetic field! Relevant to Planck! PRELIMINARY

21 HI + CO GAS TRACER dust +10o < b < +20o Improvement! total HI CO IC Fermi: GeV gamma rays from cosmic-ray + gas interactions Dust emission (IRAS + DIRBE) is a better tracer of local gas than HI+CO! (Grenier, Casandjian: found this in EGRET data: 'dark gas')

22 Gamma-ray emissivity distribution in outer Galaxy From Fermi-LAT 2nd and 3rd Galactic Quadrants 2nd quad 3rd quad More cosmic-rays in outer Galaxy than expected! Abdo et al. (2010) ApJ 710, 133, Ackermann etal, ApJ 726, 81 (2011)

23 Gamma-ray emissivity distribution in outer Galaxy From Fermi-LAT 2nd and 3rd Galactic Quadrants varying the halo size SNR source distribution nd 20 kpc halo 2 quad 3rd quad 1 kpc halo More cosmic-rays in outer Galaxy than expected! More evidence for large halo?

24 Gamma-ray emissivity distribution in outer Galaxy From Fermi-LAT 2nd and 3rd Galactic Quadrants varying the halo size SNR source distribution nd 20 kpc halo varying the source distribution SNR source distribution flat source distribution for R > 10 kpc 2 quad 3rd quad 1 kpc halo flat for R > 15 kpc More cosmic-rays in outer Galaxy than expected! More evidence for large halo? More sources in outer Galaxy (what are they?) Or more gas than traced by HI + CO?

25 Gamma-ray emissivity distribution in outer Galaxy From Fermi-LAT 2nd and 3rd Galactic Quadrants varying the halo size SNR source distribution nd 20 kpc halo 2 quad 3rd quad 1 kpc halo varying the source distribution SNR source distribution flat source distribution for R > 10 kpc flat for R > 15 kpc More cosmic-rays in outer Galaxy than expected! More evidence for large halo? More sources in outer Galaxy (what are they?) Or more gas than traced by HI + CO? Implications for synchrotron / B-field models : not yet investigated Important for Planck!

26 Fermi measures molecular gas content of the outer Galaxy by comparing gamma-ray emissivities of molecular and atomic hydrogen Scaling factor Xco from 12CO to H2 Local and Outer Galaxy (2nd quadrant) Confirms increase from inner to outer Galaxy Abdo etal (2010) ApJ 710, 133

27 Cosmic Ray Electrons Synchrotron and Magnetic Fields

28 ELECTRONS synchrotron SAME ELECTRONS for RADIO and GAMMA RAYS! good constraints on models inverse Compton

29 Producing the electron spectrum J(E) injection energy

30 Producing the electron spectrum J(E) injection Energydependent diffusion energy

31 Producing the electron spectrum J(E) injection Energydependent diffusion Energy losses energy

32 Producing the electron spectrum J(E) injection diffusive reacceleration Energydependent diffusion Energy losses energy

33 Producing the electron spectrum J(E) E-1.6 injection E-2.3 E-2 interstellar energy E-3

34 22 MHz 23 GHz 45 MHz 150 MHz Continuum sky surveys 408 MHz 820 MHz 2.3 GHz 1.4 GHz

35 from synchrotron and cosmic-ray propagation model : Btot(µG) = 8 e - (R Ro ) / 50 kpc - z / 3 kpc cosmic-ray source distribution based on pulsars as SNR tracer flat CR distribution R, kpc B Using flat CR distribution Using pulsar-snr cosmic-ray distribution R, kpc Using cosmic-ray distribution consistent with Fermi data, essentially no R- dependence of Btot Only by combining gammas, electrons and synchrotron data can we get Btot! Relevant to Planck!

36 GALPROP model SYNCHROTRON b < MHz l <60

37

38 electrons Synchrotron Primary Electrons interstellar solar-modulated Synchrotron probes the interstellar electron spectrum. Avoids solar modulation! Synchrotron Electrons + Positrons Synchrotron Positrons Secondary positrons (and secondary electrons) are important for synchrotron

39 Synchrotron Spectral index vs frequency Electron index= 3 (consistent with Fermi) ~ 10 GeV electrons Electron index = 2 Measurements from literature Spectral break related to injection, not just propagation

40 -1.0 Electron injection index electrons OK OK synchrotron excluded by synchrotron!

41 -1.0 Electron injection index electrons Small solar modulation OK OK synchrotron Large solar modulation excluded by synchrotron!

42 -1.0 Electron injection index electrons Small solar modulation OK OK synchrotron Large solar modulation excluded by synchrotron!

43 Reacceleration model in trouble with synchrotron ELECTRONS

44 Model Synchrotron spectral index 408 MHz 23 GHz Model predicts small but systematic variations. Reality is of course much more complex. The model gives a minimum underlying variation from electron propagation..

45 'Fermi bubbles' Su, Slayter & Finkbeiner 724 (2010) 1044 kpc-scale features centred on GC Details depend on foreground model used (features ~ 10% of total intensity)! Presumably inverse Compton electrons -> radio > relevant to Planck Joint Fermi + Planck analysis desirable in future.

46 Inner Galaxy: kev to TeV INTEGRAL SPI COMPTEL Fermi

47 AN ALIEN'S VIEW OF THE GALAXY

48 Astrophysical Journal Letters 10 October

49 Since we live inside the Galaxy, global properties like multiwavelength luminosity (SED) are not easy to deduce.

50 what does it look from out there?

51 EXPERIMENTS THEORY intergalactic space HALO Secondary: 10 Be, 10,11B... Fe.. Secondary: e+- p cosmic-ray sources: p, He.. Ni, e- πo B-field gas ISRF bremsstrahlung inverse Compton γ rays GALPROP : synchrotron models all that!

52 Milky Way Galaxy is a special target for multi-wavelength studies because... We know much more about our Galaxy than external galaxies: * cosmic rays directly measured * gamma rays mapped in detail * synchrotron mapped in detail * magnetic fields measured so study of the Galaxy allows a better understanding of the detailed inner workings to clarify the overall picture including e.g. cosmic-ray CALORIMETRY

53 Galaxy luminosity over 20 decades of energy IR/optical cosmic rays p He radio γ-rays e

54 Galaxy luminosity over 20 decades of energy IR/optical Cosmic-ray Electron Calorimeter! cosmic rays p He e

55 FIR / radio correlation Cosmic ray electron Calorimetry Star-formation V Cosmic rays V Synchrotron

56 FIR / radio correlation Cosmic ray electron Milky Way: Calorimetry 0.45e10 2e21 Star-formation V Milky Way Cosmic rays V Synchrotron

57 Galaxy luminosities based on GALPROP model Fermi gamma rays and electrons Cosmic-ray nuclei 1041 Cosmic-ray electrons Gamma rays > 100 MeV o-decay bremsstrahlung inverse Compton erg s -1 < 100 MeV: Synchrotron Optical + IR % of nuclei energy converts to gamma rays 75% of electron energy converts to inverse Compton gamma rays 25% of electron energy converts to synchrotron radiation Galaxy is electron calorimeter! - but only if inverse Compton is included, not just synchrotron

58 M31 first external galaxy detected in gammas (beyond LMC/SMC) Milky Way scaled

59 Search for more normal + starburst galaxies with Fermi underway!

60 Outlook Fermi operational, 2 years so far. Diffuse emission results appearing. Significant implications for Planck Galactic science. Essential to exploit synergy between cosmic-rays - gammas microwave - radio

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010 Interstellar gamma rays New insights from Fermi Andy Strong on behalf of Fermi-LAT collaboration COSPAR Scientific Assembly, Bremen, July 2010 Session E110: ' The next generation of ground-based Cerenkov

More information

a cosmic- ray propagation and gamma-ray code

a cosmic- ray propagation and gamma-ray code GALPROP: a cosmic- ray propagation and gamma-ray code A. Strong, MPE Garching Tools for SUSY, Annecy, June 28 2006 The basis: cosmic-ray production & propagation in the Galaxy intergalactic space HALO

More information

Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone

Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone SciNeGHE 2009 Assisi, October 7th Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone Luigi Tibaldo luigi.tibaldo@pd.infn.it INFN Sezione di Padova Dip. di Fisica G. Galilei,

More information

Sep. 13, JPS meeting

Sep. 13, JPS meeting Recent Results on Cosmic-Rays by Fermi-LAT Sep. 13, 2010 @ JPS meeting Tsunefumi Mizuno (Hiroshima Univ.) On behalf of the Fermi-LAT collaboration 1 Outline Introduction Direct measurement of CRs CRs in

More information

High-Energy GammaRays toward the. Galactic Centre. Troy A. Porter Stanford University

High-Energy GammaRays toward the. Galactic Centre. Troy A. Porter Stanford University High-Energy GammaRays toward the Galactic Centre Troy A. Porter Stanford University Fermi LAT 5-Year Sky Map > 1 GeV Galactic Plane Galactic Centre Point Sources Diffuse γ-ray emission produced by cosmic

More information

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Simona Murgia University of California, Irvine Debates on the Nature of Dark Matter Sackler 2014 19-22 May 2014 arxiv:0908.0195

More information

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics Gamma-ray emission at the base of the Fermi bubbles Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics On behalf of the Fermi-LAT collaboration TeVPA 2018, Berlin Fermi bubbles surprise

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration UCLA Dark Matter 2012 Marina del Rey 22-24 February 2012 arxiv:0908.0195 Gamma

More information

Troy A. Porter Stanford University

Troy A. Porter Stanford University High-Energy Gamma-Rays from the Milky Way: 3D Spatial Models for the CR and Radiation Field Densities Troy A. Porter Stanford University What is GALPROP? Tool for modelling and interpreting cosmic-ray

More information

Galactic Diffuse Gamma-Ray Emission

Galactic Diffuse Gamma-Ray Emission Galactic Diffuse Gamma-Ray Emission The Bright Gamma-Ray Sky 7 th AGILE Workshop 29 Sep - 1 Oct, 2009 Stanley D. Hunter NASA/GSFC stanley.d.hunter@nasa.gov Galactic Diffuse Emission The beginning: OSO

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration Dark Matter Signatures in the Gamma-ray Sky Austin, Texas 7-8 May 2012 arxiv:0908.0195

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Testing a DM explanation of the positron excess with the Inverse Compton scattering Testing a DM explanation of the positron excess with the Inverse Compton scattering Gabrijela Zaharijaš Oskar Klein Center, Stockholm University Work with A. Sellerholm, L. Bergstrom, J. Edsjo on behalf

More information

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background Fiorenza Donato @ Physics Dept., Un. Torino The gamma-ray sky - Minneapolis, October 10, 2013 Plan of my talk What

More information

Dark gas contribution to diffuse gamma-ray emission

Dark gas contribution to diffuse gamma-ray emission Dark gas contribution to diffuse gamma-ray emission Masaki Mori ICRR CANGAROO group internal seminar, November 7, 2005 Adrian Cho S. Hunter, GLAST meeting, Oct.2004 The Galactic Diffuse Gamma-ray Emission...

More information

Diffuse Gamma-Ray Emission

Diffuse Gamma-Ray Emission Diffuse Gamma-Ray Emission Debbijoy Bhattacharya Manipal Centre for Natural Sciences (MCNS) Manipal University 5 Sept 2014 Observational Gamma-Ray Astronomy Atmospheric Window 00 11 00 11 Figure: Atmospheric

More information

observation of Galactic sources

observation of Galactic sources AGILE observation of Galactic sources Andrea Giuliani Istituto Astrofisica Spaziale e Fisica Cosmica, Milano ( INAF ) on behalf of the AGILE Team Summary of the Presentation The AGILE Mission The diffuse

More information

Dark Matter searches with radio observations

Dark Matter searches with radio observations Marco Taoso Dpt. of Physics and Astronomy UBC Vancouver Dark Matter searches with radio observations IDM 2012 Chicago, 23-27 July Search for DM with astrophysical observations Gamma- rays Microwave Radio

More information

Remnants and Pulsar Wind

Remnants and Pulsar Wind High Energy Supernova Remnants and Pulsar Wind Nebulae F. Giordano Dipartimento Interateneo di Fisica and INFN Sez. Bari For the Fermi-LAT Collaboration Scineghe 2010 The Afterlife of a star IC443 Crab

More information

Cosmic rays and the diffuse gamma-ray emission

Cosmic rays and the diffuse gamma-ray emission Cosmic rays and the diffuse gamma-ray emission Dipartimento di Fisica, Torino University and INFN Sezione di Torino via P. Giuria 1, 10125 Torino, Italy E-mail: donato@to.infn.it The diffuse γ-ray emission

More information

Galactic diffuse gamma-rays

Galactic diffuse gamma-rays Galactic diffuse gamma-rays Masaki Mori Department of Physics, College of Science & Engineering, Ritsumeikan University 1 July 31, 2009, Dept. Astronomy, Kyoto University GeV gamma-ray sky by EGRET Compton

More information

GALPROP: principles, internal structure, recent results, and perspective

GALPROP: principles, internal structure, recent results, and perspective GALPROP: principles, internal structure, recent results, and perspective Igor V. Moskalenko & Andy W. Strong NASA/GSFC MPE, Germany with Olaf Reimer Bochum,, Germany Topics to cover: GALPROP: principles,

More information

Resolving the Extragalactic γ-ray Background

Resolving the Extragalactic γ-ray Background Resolving the Extragalactic γ-ray Background Marco Ajello Clemson University On behalf of the Fermi-LAT collab. (with a few additions by Jack) Ackermann+2015, ApJ, 799, 86 Ajello+2015, ApJL, 800,27 Ackermann+2016,

More information

Mattia Di Mauro. Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background. Trieste, May, 3, 2016

Mattia Di Mauro. Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background. Trieste, May, 3, 2016 Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background Mattia Di Mauro On behalf of the Fermi- LAT Collaboration 1 Trieste, May, 3, 2016 THE ISOTROPIC GAMMA RAY BACKGROUND

More information

arxiv: v1 [astro-ph] 17 Nov 2008

arxiv: v1 [astro-ph] 17 Nov 2008 Dark Matter Annihilation in the light of EGRET, HEAT, WMAP, INTEGRAL and ROSAT arxiv:0811.v1 [astro-ph 1 Nov 008 Institut für Experimentelle Kernphysik, Universiät Karlsruhe E-mail: gebauer@ekp.uni-karlsruhe.de

More information

Galactic Diffuse Emissions

Galactic Diffuse Emissions SLAC-PUB-12917 Galactic Diffuse Emissions Seth W. Digel Stanford Linear Accelerator Center and KIPAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA Abstract. Interactions of cosmic rays with interstellar

More information

A New Look at the Galactic Diffuse GeV Excess

A New Look at the Galactic Diffuse GeV Excess A New Look at the Galactic Diffuse GeV Excess Brian Baughman Santa Cruz Institute for Particle Physics 1 Overview Diffuse gamma-ray emission The Galactic diffuse gamma-ray GeV excess Discussion of the

More information

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT Eiichiro Komatsu (Texas Cosmology Center, Univ. of Texas at Austin) MPA Seminar, September

More information

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV Mount Rainier by Will Christiansen Silvia Vernetto & Paolo Lipari 35th ICRC 12-20 July 2017 - Busan - South Korea Gamma ray astronomy

More information

Evidence for a discrete source contribution to low-energy continuum Galactic γ-rays

Evidence for a discrete source contribution to low-energy continuum Galactic γ-rays Proc. 5th Compton Symposium (Portsmouth NH, September 1999) Evidence for a discrete source contribution to low-energy continuum Galactic γ-rays Andrew W. Strong and Igor V. Moskalenko arxiv:astro-ph/9912100

More information

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park 99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park #5 How do Cosmic Rays gain their energy? I. Acceleration mechanism of CR

More information

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects

More information

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Tim Linden UC - Santa Cruz Representing the Fermi-LAT Collaboration with acknowledgements to: Brandon Anderson, Elliott

More information

EBL Studies with the Fermi Gamma-ray Space Telescope

EBL Studies with the Fermi Gamma-ray Space Telescope EBL Studies with the Fermi Gamma-ray Space Telescope Luis C. Reyes KICP The Extragalactic Background Light (EBL) What is it? Accumulation of all energy releases in the form of electromagnetic radiation.

More information

The Characterization of the Gamma-Ray Excess from the Central Milky Way

The Characterization of the Gamma-Ray Excess from the Central Milky Way The Characterization of the Gamma-Ray Excess from the Central Milky Way Tim Linden along with: Tansu Daylan, Doug Finkbeiner, Dan Hooper, Stephen Portillo, Tracy Slatyer, Ilias Cholis 1402.6703 1407.5583

More information

What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies

What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies SLAC-PUB-8660 October 2000 astro-ph/0003407 What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies Seth Digelaxb, Igor V. Moskalenko xc, and Jonathan F. Ormes, P. Sreekumard. and P. Roger

More information

Gamma rays from Galactic pulsars: high- and lowlatitude

Gamma rays from Galactic pulsars: high- and lowlatitude Francesca Calore Gamma rays from Galactic pulsars: high- and lowlatitude emission Conca Specchiulla, 8th September 2014 based on: F. Calore, M. Di Mauro & F. Donato, arxiv:1406.2706 F. Calore, I. Cholis

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

Diffuse Gamma ray emission. P. Sreekumar ISRO Satellite Centre Bangalore

Diffuse Gamma ray emission. P. Sreekumar ISRO Satellite Centre Bangalore Diffuse Gamma ray emission P. Sreekumar ISRO Satellite Centre Bangalore The Gamma Ray Universe - as seen by EGRE 3C 279 Vela Pulsar Geminga Crab Galactic Center Galactic plane The gamma-ray sky - FERMI

More information

SPATIAL UNIFORMITY OF THE GALACTIC GAMMA-RAY EXCESS. Manoj Kaplinghat, UC Irvine

SPATIAL UNIFORMITY OF THE GALACTIC GAMMA-RAY EXCESS. Manoj Kaplinghat, UC Irvine SPATIAL UNIFORMITY OF THE GALACTIC GAMMA-RAY EXCESS Manoj Kaplinghat, UC Irvine Bas Observed Extended Counts Source Model THE GALACTIC CENTER EXCESS 0.69 0.95 GeV 0.95 1.29 GeV 1.29 1.76 GeV 1.76 2.40

More information

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies Brian Lacki With Todd Thompson, Eliot Quataert, Eli Waxman, Abraham Loeb 21 September 2010 The Cosmic SED Nonthermal Thermal Nonthermal

More information

Dark Matter searches with astrophysics

Dark Matter searches with astrophysics Marco Taoso IPhT CEA-Saclay Dark Matter searches with astrophysics IAP 24 February 2013 The cosmological pie Non baryonic Dark Matter dominates the matter content of the Universe Motivation to search for

More information

Cosmic ray electrons from here and there (the Galactic scale)

Cosmic ray electrons from here and there (the Galactic scale) Cosmic ray electrons from here and there (the Galactic scale) Julien Lavalle Department of Theoretical Physics Torino University and INFN Outline: (i) local electrons (ii) comments on synchrotron [based

More information

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV (with spatial dependent CR transport) D. Grasso (INFN, Pisa) with D. Gaggero, A. Marinelli, A. Urbano, M. Valli IceCube recent results

More information

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search Nicolò Masi Bologna University and INFN - 31 May 2016 Topics 1. Towards a unified picture of CRs production and propagation: Astrophysical uncertainties with GALPROP Local Interstellar Spectra: AMS-02

More information

Nonthermal Emission in Starburst Galaxies

Nonthermal Emission in Starburst Galaxies Nonthermal Emission in Starburst Galaxies! Yoel Rephaeli!!! Tel Aviv University & UC San Diego Cosmic Ray Origin! San Vito, March 20, 2014 General Background * Stellar-related nonthermal phenomena * Particle

More information

Fermi-LAT and WMAP observations of the SNR Puppis A

Fermi-LAT and WMAP observations of the SNR Puppis A Fermi-LAT and WMAP observations of the SNR Puppis A Marie-Hélène Grondin & Marianne Lemoine-Goumard Hewitt, J., Grondin, MH, et al. 2012, ApJ, accepted (arxiv:1210.4474) MODE-SNR-PWN workshop - November

More information

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi B. Cañadas, A. Morselli and V. Vitale on behalf of the Fermi LAT Collaboration Outline Gamma rays from Dark Matter Dark

More information

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo Indirect Search for Dark Matter W. de Boer 1, I. Gebauer 1, A.V. Gladyshev 2, D. Kazakov 2, C. Sander 1, V. Zhukov 1 1 Institut

More information

Indirect dark matter detection and the Galactic Center GeV Excess

Indirect dark matter detection and the Galactic Center GeV Excess Image Credit: Springel et al. 2008 Indirect dark matter detection and the Galactic Center GeV Excess Jennifer Siegal-Gaskins Caltech Image Credit: Springel et al. 2008 Jennifer Siegal-Gaskins Caltech Image

More information

Gamma-ray emission from cosmic rays and interstellar medium interactions in star-forming galaxies

Gamma-ray emission from cosmic rays and interstellar medium interactions in star-forming galaxies Mem. S.A.It. Vol. 82, 888 c SAIt 2011 Memorie della Gamma-ray emission from cosmic rays and interstellar medium interactions in star-forming galaxies P. Martin 1 and K. Bechtol 2 on behalf of the Fermi/LAT

More information

Astroparticle Anomalies

Astroparticle Anomalies Astroparticle Anomalies Current Hints of Possible Dark Matter Signals Sheldon Campbell University of California, Irvine What is this talk really about? Isn t discussion of low-significance anomalies just

More information

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath Cosmic Ray Transport (in the Galaxy) Luke Drury Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath 1 A few disclaimers and preliminary remarks! Not my main field of research

More information

The Characterization of the Gamma-Ray Excess from the Central Milky Way

The Characterization of the Gamma-Ray Excess from the Central Milky Way The Characterization of the Gamma-Ray Excess from the Central Milky Way Tim Linden along with: Tansu Daylan, Doug Finkbeiner, Dan Hooper, Stephen Portillo, Tracy Slatyer, Ilias Cholis 1402.6703 1407.5583

More information

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation? Astrophysical issues +/ in the cosmic ray e spectra: Have we seen dark matter annihilation? Julien Lavalle Department of Theoretical Physics University of Torino and INFN Collab: Torino: R. Lineros, F.

More information

Dark matter annihilations and decays after the AMS-02 positron measurements

Dark matter annihilations and decays after the AMS-02 positron measurements Dark matter annihilations and decays after the AMS-02 positron measurements Anna S. Lamperstorfer Technische Universität München SISSA - International School for Advanced Studies of Trieste Workshop The

More information

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Marie-Hélène Grondin Centre d'etudes Nucléaires de Bordeaux- Gradignan SNR/PWN Workshop Montpellier, 2010 June 1 th M.-H. Grondin, SNR/PWN Wokshop,

More information

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars Marie-Hélène Grondin CENBG, Bordeaux (France) on behalf of the Fermi-LAT Collaboration and the Pulsar Timing

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 11. Synchrotron Radiation & Compton Scattering Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Synchrotron Self-Absorption synchrotron emission is accompanied

More information

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Marianne Lemoine-Goumard (CENBG, Université Bordeaux, CNRS-IN2P3, France) On behalf of the Fermi-LAT and HESS Collaborations

More information

Recent Observations of Supernova Remnants

Recent Observations of Supernova Remnants 1 Recent Observations of Supernova Remnants with VERITAS Tülün Ergin (U. of Massachusetts Amherst, MA) on behalf of the VERITAS Collaboration (http://veritas.sao.arizona.edu) 2 Contents Supernova Remnants

More information

Implication of AMS-02 positron fraction measurement. Qiang Yuan

Implication of AMS-02 positron fraction measurement. Qiang Yuan Implication of AMS-02 positron fraction measurement Qiang Yuan (yuanq@ihep.ac.cn) Institute of High Energy Physics, Chinese Academy of Sciences Collaborated with Xiaojun Bi, Guo-Ming Chen, Yi-Qing Guo,

More information

Cosmic Ray Electrons and GC Observations with H.E.S.S.

Cosmic Ray Electrons and GC Observations with H.E.S.S. Cosmic Ray Electrons and GC Observations with H.E.S.S. Christopher van Eldik (for the H.E.S.S. Collaboration) MPI für Kernphysik, Heidelberg, Germany TeVPA '09, SLAC, July 2009 The Centre of the Milky

More information

Gamma ray and antiparticles (e + and p) as tools to study the propagation of cosmic rays in the Galaxy

Gamma ray and antiparticles (e + and p) as tools to study the propagation of cosmic rays in the Galaxy Gamma ray and antiparticles (e + and p) as tools to study the propagation of cosmic rays in the Galaxy INFN Sez. La Sapienza, Rome, Italy E-mail: paolo.lipari@roma1.infn.it The spectra of cosmic rays observed

More information

W.R. Webber. New Mexico State University, Astronomy Department, Las Cruces, NM 88003, USA

W.R. Webber. New Mexico State University, Astronomy Department, Las Cruces, NM 88003, USA A Galactic Cosmic Ray Electron Spectrum at Energies from 2 MeV to 2 TeV That Fits Voyager 5-60 MeV Data at Low Energies and PAMELA and AMS-2 Data at 10 GeV Using an Electron Source Spectrum ~E -2.25 A

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission 1 Outline Mainly from 2009 ApJ 697 1071 The Pair Conversion Telescope The Large Area Telescope Charged Background and Events

More information

The Egret Excess, an Example of Combining Tools

The Egret Excess, an Example of Combining Tools The Egret Excess, an Example of Combining Tools Institut für Experimentelle Kernphysik, Universität Karlsruhe TOOLS 2006-26th - 28th June 2006 - Annecy Outline Spectral Fit to EGRET data Problems: Rotation

More information

arxiv: v1 [astro-ph.he] 4 Apr 2013

arxiv: v1 [astro-ph.he] 4 Apr 2013 4 th Fermi Symposium : Monterey, CA : 28 Oct-2 Nov 2012 1 arxiv:1304.1395v1 [astro-ph.he] 4 Apr 2013 A Method for Exploring Systematics Due to Galactic Interstellar Emission Modeling: Application to the

More information

Instituto de Fisica Teórica, IFT-CSIC Madrid. Marco Taoso. DM and the Galactic Center GeV excess

Instituto de Fisica Teórica, IFT-CSIC Madrid. Marco Taoso. DM and the Galactic Center GeV excess Instituto de Fisica Teórica, IFT-CSIC Madrid Marco Taoso DM and the Galactic Center GeV excess Frontier Objects in Astrophysics and Particle Physics Vulcano Workshop 26-05- 2016 How and where to look for

More information

Radio, γ-ray, and Neutrino Emission from Star- Forming Galaxies

Radio, γ-ray, and Neutrino Emission from Star- Forming Galaxies Radio, γ-ray, and Neutrino Emission from Star- Forming Galaxies M82 core Marvil JVLA 6GHz Todd Thompson The Ohio State University Department of Astronomy Center for Cosmology and Astro-Particle Physics

More information

The AGN Jet Model of the Fermi Bubbles

The AGN Jet Model of the Fermi Bubbles The AGN Jet Model of the Fermi Bubbles Fulai Guo Shanghai Astronomical Observatory IAU 322 Symposium, Palm Cove, July 18-22, 2016 1 The All-sky Fermi View at E >10 GeV The Fermi bubbles! (NASA image based

More information

The γ-ray Milky Way above 10 GeV: Distinguishing Sources from Diffuse Emission

The γ-ray Milky Way above 10 GeV: Distinguishing Sources from Diffuse Emission The γ-ray Milky Way above 10 GeV: Distinguishing Sources from Diffuse Emission, a C. Deil, a A. Donath, a R. Terrier b a Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany

More information

Signals from Dark Matter Indirect Detection

Signals from Dark Matter Indirect Detection Signals from Dark Matter Indirect Detection Indirect Search for Dark Matter Christian Sander Institut für Experimentelle Kernphysik, Universität Karlsruhe, Germany 2nd Symposium On Neutrinos and Dark Matter

More information

The positron and antiproton fluxes in Cosmic Rays

The positron and antiproton fluxes in Cosmic Rays The positron and antiproton fluxes in Cosmic Rays Paolo Lipari INFN Roma Sapienza Seminario Roma 28th february 2017 Preprint: astro-ph/1608.02018 Author: Paolo Lipari Interpretation of the cosmic ray positron

More information

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center! > News < Anti-matter, dark matter measurement By measuring the cosmic rays (Mainly electron, positron, proton, anti-proton and light nuclei) AMS-02 will be launched onboard the Shuttle Endeavour On May

More information

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics Tesla Jeltema Assistant Professor, Department of Physics Observational Cosmology and Astroparticle Physics Research Program Research theme: using the evolution of large-scale structure to reveal the fundamental

More information

DIFFUSE GALACTIC CONTINUUM GAMMA RAYS: A MODEL COMPATIBLE WITH EGRET DATA AND COSMIC-RAY MEASUREMENTS

DIFFUSE GALACTIC CONTINUUM GAMMA RAYS: A MODEL COMPATIBLE WITH EGRET DATA AND COSMIC-RAY MEASUREMENTS The Astrophysical Journal, 613:962 976, 2004 October 1 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. A DIFFUSE GALACTIC CONTINUUM GAMMA RAYS: A MODEL COMPATIBLE WITH

More information

THE WMAP HAZE: PARTICLE PHYSICS ASTROPHYSICS VERSUS. Greg Dobler. Harvard/CfA July 14 th, TeV09

THE WMAP HAZE: PARTICLE PHYSICS ASTROPHYSICS VERSUS. Greg Dobler. Harvard/CfA July 14 th, TeV09 THE WMAP HAZE: PARTICLE PHYSICS VERSUS ASTROPHYSICS Greg Dobler Harvard/CfA July 14 th, 2009 - TeV09 THE WMAP HAZE: PARTICLE PHYSICS VERSUS ASTROPHYSICS Doug Finkbeiner (CfA) Dan Hooper (FNAL) Gabrijela

More information

Indirect Dark Matter constraints with radio observations

Indirect Dark Matter constraints with radio observations Indirect Dark Matter constraints with radio observations In collaboration with E.Borriello and G.Miele, University of Naples Federico II Alessandro Cuoco, Institute for Physics and Astronomy University

More information

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Propagation in the Galaxy 2: electrons, positrons, antiprotons Propagation in the Galaxy 2: electrons, positrons, antiprotons As we mentioned in the previous lecture the results of the propagation in the Galaxy depend on the particle interaction cross section. If

More information

Astrophysical issues in indirect DM detection

Astrophysical issues in indirect DM detection Astrophysical issues in indirect DM detection Julien Lavalle CNRS Lab. Univers & Particules de Montpellier (LUPM), France Université Montpellier II CNRS-IN2P3 (UMR 5299) Service de Physique Théorique Université

More information

Annihilation Phenomenology. Christoph Weniger. GRAPPA, University of Amsterdam

Annihilation Phenomenology. Christoph Weniger. GRAPPA, University of Amsterdam Annihilation Phenomenology Christoph Weniger GRAPPA, University of Amsterdam Thursday 26th March 2015, Effective Field Theories and Dark Matter, Mainz 1 Overview Galactic center excess & PCA Best fit DM

More information

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope Walter Hopkins Physics Department, Cornell University. The Fermi Large Area Telescope is a particle detector in space with an effective collecting

More information

Cosmic Ray Excess From Multi-Component Dark Matter

Cosmic Ray Excess From Multi-Component Dark Matter Cosmic Ray Excess From Multi-Component Dark Matter Da Huang Physics Department, NTHU @ LeCosPA PRD89, 055021(2014) [arxiv: 1312.0366] PRD91, 095006 (2015) [arxiv: 1411.4450] Mod. Phys. Lett. A 30 (2015)

More information

High and low energy puzzles in the AMS-02 positron fraction results

High and low energy puzzles in the AMS-02 positron fraction results High and low energy puzzles in the AMS-02 positron fraction results Dario Grasso (INFN, Pisa) D. Gaggero (SISSA), L.Maccione (MPI, Munich), C. Evoli(DESY), G. Di Bernardo (Göteborg) AMS-02 positron fraction

More information

Galactic radio loops. Philipp Mertsch with Subir Sarkar. The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017

Galactic radio loops. Philipp Mertsch with Subir Sarkar. The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017 Galactic radio loops Philipp Mertsch with Subir Sarkar The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017 Foregrounds in B-modes Adam et al., arxiv:1502.01588 1409.5738 (Planck

More information

ORIGIN AND PROPAGATION OF COSMIC RAYS

ORIGIN AND PROPAGATION OF COSMIC RAYS Frascati Physics Series Vol. XLV (2007) pp.39-47 Science with the New Generation of High Energy Experiments Frascati, 18-20 June, 2007 ORIGIN AND PROPAGATION OF COSMIC RAYS (SOME HIGHLIGHTS) Igor V. Moskalenko

More information

Cosmic Ray Anomalies from the MSSM?

Cosmic Ray Anomalies from the MSSM? Cosmic Ray Anomalies from the MSSM? Randy Cotta (Stanford/SLAC) In collaboration with: J.A. Conley (Bonn) J.S. Gainer (ANL/NU) J.L. Hewett (SLAC) T.G. Rizzo (SLAC) Based on: 0812.0980 0903.4409 1007.5520

More information

Radio Observations of TeV and GeV emitting Supernova Remnants

Radio Observations of TeV and GeV emitting Supernova Remnants Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

Mattia Di Mauro Eric Charles, Matthew Wood

Mattia Di Mauro Eric Charles, Matthew Wood Characterizing the population of pulsars in the Galactic bulge with the Fermi Large Area Telescope ArXiv:1705.00009 Submitted to ApJ Mattia Di Mauro Eric Charles, Matthew Wood On behalf of the Fermi-LAT

More information

What is known about Dark Matter?

What is known about Dark Matter? What is known about Dark Matter? 95% of the energy of the Universe is non-baryonic 23% in the form of Cold Dark Matter From CMB + SN1a + surveys Dark Matter enhanced in Galaxies and Clusters of Galaxies

More information

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier 1 EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY Léa Jouvin, A. Lemière and R. Terrier 2 Excess of VHE cosmic rays (CRs) γ-ray count map Matter traced by CS 150 pc After subtracting the

More information

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET)

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET) Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET) Y.Asaoka for the CALET Collaboration RISE, Waseda University 2016/12/15 CTA-Japan Workshop The extreme

More information

Possible high energy phenomena related to the stellar capture by the galactic supermassive black holes. K S Cheng University of Hong Kong China

Possible high energy phenomena related to the stellar capture by the galactic supermassive black holes. K S Cheng University of Hong Kong China Possible high energy phenomena related to the stellar capture by the galactic supermassive black holes K S Cheng University of Hong Kong China Outline Introduction Swift J1644+57 Positron Annihilation

More information

Sources of GeV Photons and the Fermi Results

Sources of GeV Photons and the Fermi Results Sources of GeV Photons and the Fermi Results 1. GeV instrumentation and the GeV sky with the Fermi Gamma-ray Space Telescope 2. First Fermi Catalog of Gamma Ray Sources and the Fermi Pulsar Catalog 3.

More information

Understanding High Energy Neutrinos

Understanding High Energy Neutrinos Understanding High Energy Neutrinos Paolo Lipari: INFN Roma Sapienza NOW-2014 Conca Specchiulla 12th september 2014 An old dream is becoming a reality : Observing the Universe with Neutrinos ( A new way

More information

Study of the very high energy gamma-ray diffuse emission in the central 200 pc of our galaxy with H.E.S.S.

Study of the very high energy gamma-ray diffuse emission in the central 200 pc of our galaxy with H.E.S.S. Study of the very high energy gamma-ray diffuse emission in the central 200 pc of our galaxy with H.E.S.S. Lemière A., Terrier R., Jouvin L., Marandon V, Lefranc V., Viana A. For the H.E.S.S. Collaboration

More information