HABITABLE EXTRASOLAR PLANETARY SYSTEMS, THE CASE OF 55 CNC

Size: px
Start display at page:

Download "HABITABLE EXTRASOLAR PLANETARY SYSTEMS, THE CASE OF 55 CNC"

Transcription

1 HABITABLE EXTRASOLAR PLANETARY SYSTEMS, THE CASE OF 55 CNC Desiree Cotto-Figueroa University of Puerto Rico at Humacao Institute for Astronomy, University of Hawaii Mentor : Nader Haghighipour ABSTRACT The results of a study of the orbital evolution and habitability of the ρ Cnc system are presented. Initial integration of the system using the reported orbital parameters (McArthur et. al 2004) indicates that the system is unstable. In search of the stable planetary orbits, an extensive search of the parameter-space of the system was carried out and a stable region was identified. Within this region, dynamical stability of an Earthlike planet in the habitable zone of the system was studied and two regions of harboring habitable planets were recognized. INTRODUCTION: The notion of planetary worlds orbiting stars other than our Sun is not new. History has revealed that human ponderings over the possibility of other solar systems beyond our own dates as far back as early Greek times, when the Greek philosopher Epicurus wrote: There exist countless worlds like ours also as well as others. It wasn t until 1991 when radio signals from the pulsar PSR B in the constellation Virgo led Alexander Wolszczan, an astronomer from Pennstate University to discover the first planets ever known outside our solar system. Later, in the following year, using radial velocity measurements, Michel Mayor and Didier Queloz from the University of Geneva announced the discovery of the first extrasolar planet around a main sequence star (51 Pegasi) (Mayor & Queloz,1995). Two years later, at the Lick Observatory, Geoffrey Marcy and Paul Butler confirmed the existence of that planet using the Hamilton Spectrograph (Marcy et al. 1997). Since then more than 160 planets have been detected. Considering the vastness of the universe, containing in all probability millions of planets, it is difficult to imagine that our solar system is unique and our planet is the only one that harbors life. In fact, discovery of multiple planets around a star is not unexpected. Among the currently known extrasolar planetary systems, there are over 14 systems with more than one planet. The planetary system of ρ Cancri (55Cnc) is one of such systems. This project has to do with exploring the possibility of habitable worlds in the ρ Cancri system. The single most crucial factor in the evolution of life is the availability of liquid water. In our solar system, the habitable zone (HZ) lies approximately between 0.8 to 1.3 AU where water can sustain its liquid form. In a extrasolar multiple planet system, one

2 Table 1. Element ρ Cnc e ρ Cnc b ρ Cnc c ρ Cnc d Orbital Period ± ± ± ±77.8 (days) Eccentricity 0.174± ± ± ±0.28 ω ( ) ± ± ± ±6.74 a (AU) 0.038± ± ± ±0.208 M (M JUP ) 0.056± ± ± ±1.1 Velocity Amplitude (ms -1 ) 6.665± ± ± ±1.53 major question, would then be; Can the system support a habitable planet? The HZ of a main-sequence star is defined as where liquid water can exist on the surface of a planet. This implies a moderate planetary surface temperature suitable for the development and subsistence of life. The size and location of the HZ depend on the physical properties of the star in question. ρ Cancri (55 Cnc) is a visual binary system in the constellation of Cancer. It consists of a middle-aged, Sun-like (G8V) primary of high metallicity (Rho A) and a red dwarf companion mass (Rho B). A mean distance of approximately 1,150 AU separates these two stars. Four planets, Ab, Ac, Ad, and Ae, have been discovered in orbits around the primary star. Table 1 shows the orbital parameters of these objects. This is the largest number of planets currently known to exist around a star other than our Sun. Ab was announced as the fourth extrasolar planet discovered (Butler et al. 1997) and apparently also was listed as the second "Hot Jupiter" found after 51 Pegasi b. In 2002, the second planet Ad, a high-mass classical jovian, was discovered (Marcy et al. 2002). When signals of the first two planets were removed from the radial velocity measurements of ρ Cancri, a sharp peak remained indicating the possibility of a lower mass planet with a period of 44 days. Despite the similarity between the planet s period and the period of the rotation of the star (35-42 days), the third planet Ac, was tentatively added to the list of extrasolar planets. Since ρ Cancri is a quiet star, showing no signs of photospheric irregularities, the planet interpretation is more likely viable. Analysis of the dynamics of this planet indicates that it orbits bring it very close to Ab, resulting in a near 3:1 resonance. The most recent planet discovered in the ρ Cnc system, Ae, is a "Neptune-class" extrasolar planet (McArthur et al. 2004). The discovery of this planet confirmed the existence of Ac as well. Ac shows an amplitude of the signal of 12 m s -1 when the effects produced by stellar activity normally do not exceed 3 ms -1. Having the largest number of planets and an outer planet that orbits at 5.3 AU which is comparable to Jupiter s distance from our Sun, ρ Cancri becomes one of the most interesting systems for investigating the following question: Could a planet harbors life in this system?

3 METHOD The goal of this project is to identify regions within the habitable zone of ρ Cancri where a life-harboring planet can have a long-term stable orbit. The habitable zone of the system is identified as the appropriate position for an Earth-like planet where it would receive the same amount of radiation as our Earth receives from our Sun. The amount of radiation emitted by a star depends on its luminosity, and varies with the radius and surface temperature of the star (Stefan-Boltzman law E=σT 4 ). That is, L=4πr 2 b(r)= 4πR 2 σt 4 Where L is the luminosity of the star, R is its radius, T is the star s surface temperature, and b(r) represents the star s brightness at a distance r. From this equation, the amount of radiation receive by a planet at a distance r relative to the radiation received by Earth from the sun is given by This equation indicates a habitable zone with an inner edge at AU and an outer edge at AU. Previous studies, however, reported different boundaries for this region (Table 2). In this paper, in order to be consistent with previous studies, we choose the habitable zone to have a range of 0.4 to 1.3 AU. Table 2 Reference Menou & Tabachnick (2003) Rivera &Haghighipour (2003) Bloh,Cuntz,Franck &Bounama (2003) Whitmire et. al (1998) Habitable Zone 1.00 ± 0.10 AU AU 0.66 ± ± 0.04 AU AU The orbit of an Earth-like planet along with the orbits of the four planets of the system were integrated numerically using Mercury N-body integrator (Chambers 1999). The time step of integrations were set to 0.14 days, equivalent to 1/20 of the inner planet s orbital period (2.808 days). We simulated the dynamics of ρ Cnc system with the orbital parameters reported by McArthur et al. (2004), and assumed coplanarity of the system. Using these orbital elements, our simulations indicated that the system was unstable. There was an ejection of Planet Ae from the system at 23,877 years. Figure 1

4 shows the semi-major axes of these planets. Searching the orbital parameters space of the system, we were able to identify a region of the parameter space where the system is stable. Figure 2 shows the semi-major axis of the planets of the system for one of such cases. As shown here the system is stable for 10 million years. Figure 1 Figure 2

5 Using the orbital parameters of the system of Figure 2 as our initial parameters, we simulated the dynamics of an Earth-like planet in the Habitable Zone of the system. The results are shown in Figure 3. An Earth-like planet with an initial semi-major axis of 0.4 AU was ejected at 4,579 years. Simulations testing the following three regions: AU, 1 AU, and AU, were unsuccessful: the Earth-like planet escaped the Habitable Zone in parts of it s orbit. At 0.98 AU planet E was ejected at 4.4 Myr and at 1.03 AU planet E collided with the star at 6.8 Myr. Our studies have shown that in order for an Earth-like planet to survive in the ρ Cnc planetary system and remain habitable, it must reside within the ranges of : AU or AU. Figure 4 shows the semi-major axes of the four planets of the system and that of a hypothetical Earth-like planet for a stable and also an unstable configuration. 1.E+08 1.E+07 1.E+06 Time (yrs) 1.E+05 1.E+04 1.E+03 1.E+02 1.E+01 1.E Initial Semi-major Axis (AU) Figure 3

6 (a) (b) Figure 4 Fig. 4 is an example of the evolution of the system. The system became unstable with an Earth-like planet at 1.03 AU (left column), and became stable with the Earth-like planet at 1.05 AU (right column)

7 SUMMARY AND CONCLUSION We ran simulations of the orbital evolution of ρ Cnc system using the parameters reported by McArthur et al. (2004). Our results indicated that the system was not stable; the innermost planet would eject at less than 30,000 years. Increasing the value of the longitude of the periastron of planet Ab (ω B ), within the margin of error, to the system became stable for 10 7 years. We then added a hypothetical Earth-like planet with a circular orbit to the system s habitable zone and we integrated the orbit of this planet for 10 millions years. In general a habitable planet in the habitable zone of ρ Cnc is stable. Our results indicated that, in addition to the region between 0.9 to 0.95 AU and 1.05 to 1.1 AU, there is a region of 0.85 to 1 AU where an Earth-like will be temporarily out of the habitable zone. Such a planet may still be habitable as long as it s greenhouse process is not affected too much causing no loss or addition of CO 2. The greenhouse effect is what makes the Earth suitable for life as we know it. It consists of the warming of the Earth's surface and lower atmosphere that tends to intensify with an increase in atmospheric carbon dioxide. The atmosphere allows a large percentage of the rays of visible light from the Sun to reach the Earth's surface and heat it. The warmed Earth emits back into space part of this energy in the form of long-wave infrared radiation, much of which is absorbed by molecules of carbon dioxide and water vapour in the atmosphere, and is reflected back to the surface. The ρ Cnc system is very similar to our own solar system. Currently, it has four planets orbiting its star and it is possible that this number will increase with time. However, the question that interests humanity concerns the possibility of being able to find life outside of our own solar system. ρ Cnc is a good system to conduct this type of search. Our knowledge in the study of extrasolar planets has gradually grown, by first discovering planets larger than Jupiter, and very recently a planet with a mass similar to Neptune s like ρ Cnc E. It just matter of time till planets with masses like our Earth are discovered and the question of whether life exists outside our solar system is answered. The detection of Earth-like planets would be more effective with the missions that the space agencies ESA and NASA are preparing, such as Darwin and Terrestrial Planet Finder.

8 REFERENCES McArthur, Barbara E.; Endl, Michael; Cochran, William D.; Benedict, G. Fritz; Fischer, Debra A.; Marcy, Geoffrey W.; Butler, R. Paul; Naef, Dominique; Mayor, Michel; Queloz, Diedre; 2004 ApJ...614L..81M Barnes, Roy and Raymond, Sean ; 2004ApJ B Rivera, Eugenio J. and Haghighipour, Nader; 2003ASPC R Menou, Kristen and Tabachnick, Serge; 2003ApJ M Bloh, W.; Cuntz, M.; Franck, S.; and Bounama, C.; 2003AsBio V Marcy, Geoffrey; Butler, Paul; Fischer, Debra; Laughlin, Greg; Vogt, Steven; Henry, Gregory; Pourbaix, Dimitri; 2002ApJ M Whitmire, Daniel P.; Matese, John J.; Criswell, Lee and Mikola, Seppo;1998Icar W Butler, Paul; Marcy, Geoffrey; Williams, Eric; Hauser, Heather; Shirts, Phill; 1997ApJ...474L.115B Marcy Geoffrey; Butler, Paul; Williams, Eric; Bildsten, Lars; Graham, James; Ghez, Andrea; Jernigan, Garrett; 1997ApJ M Mayor, M.; Queloz, D.; 1997isia.conf...63M

Dynamical Stability of Terrestrial and Giant Planets in the HD Planetary System

Dynamical Stability of Terrestrial and Giant Planets in the HD Planetary System Dynamical Stability of Terrestrial and Giant Planets in the HD 155358 Planetary System James Haynes Advisor: Nader Haghighipour ABSTRACT The results of a study of the dynamical evolution and the habitability

More information

Joseph Castro Mentor: Nader Haghighipour

Joseph Castro Mentor: Nader Haghighipour ON THE POSSIBILITY OF ADDITIONAL PLANETS IN THE γ CEPHEI BINARY-PLANETARY SYSTEM Joseph Castro Mentor: Nader Haghighipour ABSTRACT Results of the simulations of the dynamical stability of additional hypothetical

More information

Habitability in the Upsilon Andromedae System

Habitability in the Upsilon Andromedae System Habitability in the Upsilon Andromedae System Adrienne Dove University of Missouri Columbia Institute for Astronomy University of Hawaii Mentor: Nader Haghighipour ABSTRACT We investigate the habitability

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

4 1 Extrasolar Planets

4 1 Extrasolar Planets Extrasolar Planets 4 1 Introduction 4 2 So far: have looked at planets around our Sun Physics question: Is our Solar System normal? = Are there planets around other stars? can then compare solar system

More information

Probing the Galactic Planetary Census

Probing the Galactic Planetary Census Probing the Galactic Planetary Census Greg Laughlin -- UCSC Astronomy Exoplanet News from the AAS meeting (New York Times) The finding was called exciting by Dr. Kenneth Franklin of the American Museum-Hayden

More information

CENTRAL STAR LUMINOSITY MEAN GLOBAL TEMPERATURE SILICATE-ROCK WEATHERING SPREADING RATE HEAT FLOW

CENTRAL STAR LUMINOSITY MEAN GLOBAL TEMPERATURE SILICATE-ROCK WEATHERING SPREADING RATE HEAT FLOW Order and Chaos in Stellar and Planetary Systems ASP Conference Series, Vol. 000, 2003 G. G. Byrd, K. V. Kholshevnikov, eds. Habitability and Stability of Orbits for Earth-Like Planets in the Extrasolar

More information

Analysis of Radial Velocity and Astrometric Signals in the Detection of Multi-Planet Extrasolar Planetary Systems Barbara McArthur

Analysis of Radial Velocity and Astrometric Signals in the Detection of Multi-Planet Extrasolar Planetary Systems Barbara McArthur Analysis of Radial Velocity and Astrometric Signals in the Detection of Multi-Planet Extrasolar Planetary Systems Barbara McArthur Dominique Naef Stephane Udry Didier Queloz Michel Mayor Mike Endl Tom

More information

PLANETARY SYSTEM: FROM GALILEO TO EXOPLANETS

PLANETARY SYSTEM: FROM GALILEO TO EXOPLANETS PLANETARY SYSTEM: FROM GALILEO TO EXOPLANETS Rosa M. Ros Technical University of Catalonia, Barcelona (Spain) Abstract When in 1610 Galileo Galilei looked at Jupiter with the use of his telescope, he saw

More information

Detecting Extra Solar Planets

Detecting Extra Solar Planets Detecting Extra Solar Planets The Extrasolar Planet Count Currently, 288 stars have been discovered to have planets. Some of these have more than one, so a total of 380 planets have been discovered as

More information

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

The Use of Transit Timing to Detect Extrasolar Planets with Masses as Small as Earth

The Use of Transit Timing to Detect Extrasolar Planets with Masses as Small as Earth arxiv:astro-ph/41228v1 1 Dec 24 The Use of Transit Timing to Detect Extrasolar Planets with Masses as Small as Earth Matthew J. Holman, 1 Norman W. Murray 2,3 1 Harvard-Smithsonian Center for Astrophysics,

More information

III The properties of extrasolar planets

III The properties of extrasolar planets III The properties of extrasolar planets (as of early 2016) http://sgoodwin.staff.shef.ac.uk/phy229.html 3.0 Introduction This lecture will discuss what we have found so far. It is important to remember

More information

{ 2 { of planetary systems and stability of planetary orbits in these systems (e.g., Marcy & Butler 1998, 2000; Queloz 2001). Obviously, the ultimate

{ 2 { of planetary systems and stability of planetary orbits in these systems (e.g., Marcy & Butler 1998, 2000; Queloz 2001). Obviously, the ultimate Orbital Stability of Terrestrial Planets inside the Habitable Zones of Extra-Solar Planetary Systems M. Noble, Z. E. Musielak, and M. Cuntz Department of Physics, Science Hall University of Texas at Arlington,

More information

Observations of Extrasolar Planets

Observations of Extrasolar Planets Observations of Extrasolar Planets Hamilton 2005 Shay Zucker Observations of Extrasolar Planets Spectroscopic detection of exoplanets Emerging properties of the sample Transiting planets Future prospects

More information

Observations of extrasolar planets

Observations of extrasolar planets Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

More information

Planets are plentiful

Planets are plentiful Extra-Solar Planets Planets are plentiful The first planet orbiting another Sun-like star was discovered in 1995. We now know of 209 (Feb 07). Including several stars with more than one planet - true planetary

More information

White Paper. Terrestrial and Habitable Planet Formation in Binary and Multi-star Systems

White Paper. Terrestrial and Habitable Planet Formation in Binary and Multi-star Systems Authors White Paper (Submitted to ExoPlanet Task Force) Terrestrial and Habitable Planet Formation in Binary and Multi-star Systems Nader Haghighipour Institute for Astronomy and NASA Astrobiology Institute,

More information

ASTB01 Exoplanets Lab

ASTB01 Exoplanets Lab ASTB01 Exoplanets Lab Author: Anders Johansen Revision date: $Date: 2015/08/28 14:55:59 $ Planets orbiting stars other than the Sun are called exoplanets. Stellar light reflected off

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets Credit: NASA/Kepler Mission/Dana Berry Exoplanets Outline What is an exoplanet? Why are they interesting? How can we find them? Exolife?? The future... Jon Thaler Exoplanets 2 What is an Exoplanet? Most

More information

Astronomy 101 Lab: Hunt for Alien Worlds

Astronomy 101 Lab: Hunt for Alien Worlds Name: Astronomy 101 Lab: Hunt for Alien Worlds Be prepared to make calculations in today s lab. Laptops will also be used for part of the lab, but you aren t required to bring your own. Pre-Lab Assignment:

More information

Evidence of a Neptune-sized Planet in the ρ 1 Cancri System

Evidence of a Neptune-sized Planet in the ρ 1 Cancri System Evidence of a Neptune-sized Planet in the ρ 1 Cancri System Jack Wisdom 1 ABSTRACT Reanalyzing published data, I find evidence of a Neptune-sized planet in the ρ 1 Cancri system with a period near 261

More information

In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life?

In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life? The Habitability of Worlds Lecture 31 NASA: The Visible Earth In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life? a) 1 (yes, definitely)

More information

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017 Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

More information

Searching for Other Worlds: The Methods

Searching for Other Worlds: The Methods Searching for Other Worlds: The Methods John Bally 1 1 Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder The Search Extra-Solar

More information

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations Lecture #36: Planets Around Other Stars Extrasolar Planets! Theory Observations Detection methods Results to date... Implications for "Habitable Zones" Reading: Chapter 13 Astro 102/104 1 The Main Point(s)

More information

Planets and Brown Dwarfs

Planets and Brown Dwarfs Extra Solar Planets Extra Solar Planets We have estimated there may be 10 20 billion stars in Milky Way with Earth like planets, hospitable for life. But what evidence do we have that such planets even

More information

UNIVERSITY of CALIFORNIA SANTA CRUZ

UNIVERSITY of CALIFORNIA SANTA CRUZ UNIVERSITY of CALIFORNIA SANTA CRUZ NUMERICAL AND ANALYTIC RESEARCH INTO THE FORMATION OF THE HD 80606B PLANETARY SYSTEM A thesis submitted in partial satisfaction of the requirements for the degree of

More information

Extrasolar Planets. Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau

Extrasolar Planets. Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau Extrasolar Planets Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau Lecture Introduction to Solar System Physics Uni Göttingen, 8 June 2009 Outline Historical Overview Detection

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

Discovery of Planetary Systems With SIM

Discovery of Planetary Systems With SIM Discovery of Planetary Systems With SIM Principal Investigator: Geoffrey W. Marcy (UC Berkeley) Team Members: Paul R. Butler (Carnegie Inst. of Washington), Sabine Frink (UC San Diego), Debra Fischer (UC

More information

Wobbling Stars: The Search for Extra Terrestrial Planets

Wobbling Stars: The Search for Extra Terrestrial Planets Name: Partner(s): 1101 or 3310: Desk # Date: Purpose Wobbling Stars: The Search for Extra Terrestrial Planets Describe the Doppler effect for sound and light Explain the relationships between the pitch,

More information

Young Solar-like Systems

Young Solar-like Systems Young Solar-like Systems FIG.2. Panels(a),(b),and(c)show 2.9,1.3,and 0.87 mm ALMA continuum images of other panels, as well as an inset with an enlarged view of the inner 300 mas centered on the (f) show

More information

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory Finding Extra-Solar Earths with Kepler William Cochran McDonald Observatory Who is Bill Cochran? Senior Research Scien;st McDonald Observatory Originally interested in outer planet atmospheres Started

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us.

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Current techniques can measure motions as small as 1 m/s (walking speed!). Sun motion due to: Jupiter:

More information

Extrasolar Planet Detection Methods. Tom Koonce September, 2005

Extrasolar Planet Detection Methods. Tom Koonce September, 2005 Extrasolar Planet Detection Methods Tom Koonce September, 2005 Planets Around Other Stars? How is it possible to see something so small, so far away? If everything is aligned perfectly, we can see the

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

A Long-Period Jupiter-Mass Planet Orbiting the Nearby M Dwarf GJ 849 1

A Long-Period Jupiter-Mass Planet Orbiting the Nearby M Dwarf GJ 849 1 Publications of the Astronomical Society of the Pacific, 118: 1685 1689, 2006 December 2006. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. A Long-Period Jupiter-Mass Planet

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Problem Set 6

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Problem Set 6 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department Astronomy 8.282J 12.402J March 17, 2006 Problem Set 6 Due: Friday, March 24 (in lecture) Reading:

More information

Searching for transiting giant extrasolar planets. Department of Physics University of Tokyo Yasushi Suto

Searching for transiting giant extrasolar planets. Department of Physics University of Tokyo Yasushi Suto Searching for transiting giant extrasolar planets Department of Physics University of Tokyo Yasushi Suto Cosmology in the 20 th th century Rapid progress of cosmology since 1980 s existence of dark matter

More information

HD10647 and the Distribution of Exoplanet Properties with Semi-major Axis

HD10647 and the Distribution of Exoplanet Properties with Semi-major Axis Extrasolar planets : Today and Tomorrow ASP Conference Series, Vol. 321, 2004 J.-P. Beaulieu, A. Lecavelier des Etangs, and C. Terquem HD10647 and the Distribution of Exoplanet Properties with Semi-major

More information

PTYS 214 Spring Announcements. Midterm 3 next Thursday!

PTYS 214 Spring Announcements. Midterm 3 next Thursday! PTYS 214 Spring 2018 Announcements Midterm 3 next Thursday! 1 Previously Habitable Zone Energy Balance Emission Temperature Greenhouse Effect Vibration/rotation bands 2 Recap: Greenhouse gases In order

More information

The Discovery of Planets beyond the Solar System. Luis A. Aguilar Instituto de Astronomía, UNAM. México

The Discovery of Planets beyond the Solar System. Luis A. Aguilar Instituto de Astronomía, UNAM. México The Discovery of Planets beyond the Solar System Luis A Aguilar Instituto de Astronomía, UNAM México First of all, What is a planet? Contrary to what you may have thought, this is something difficult to

More information

Key Ideas: The Search for New Planets. Scientific Questions. Are we alone in the Universe? Direct Imaging. Searches for Extrasolar Planets

Key Ideas: The Search for New Planets. Scientific Questions. Are we alone in the Universe? Direct Imaging. Searches for Extrasolar Planets The Search for New Planets Key Ideas: Search for planets around other stars. Successful Search Techniques: Astrometric Wobble Doppler Wobble major discovery method Planetary Transits planets we can study

More information

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference Chapter 13 Other Planetary Systems Why is it so difficult to detect planets around other stars? Size Difference Planets are small compared to interstellar distances 10 billion to 1 scale Sun is size of

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

UNIT 3: Chapter 8: The Solar System (pages )

UNIT 3: Chapter 8: The Solar System (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

The Plethora of Exoplanets Could Any Have Life? Kevin H Knuth University at Albany Spring 2015

The Plethora of Exoplanets Could Any Have Life? Kevin H Knuth University at Albany Spring 2015 The Plethora of Exoplanets Could Any Have Life? Kevin H Knuth University at Albany Spring 2015 For there is a single general space, a single vast immensity which we may freely call Void; in it are innumerable

More information

Bayesian Model Selection & Extrasolar Planet Detection

Bayesian Model Selection & Extrasolar Planet Detection Bayesian Model Selection & Extrasolar Planet Detection Eric B. Ford UC Berkeley Astronomy Dept. Wednesday, June 14, 2006 SCMA IV SAMSI Exoplanets Working Group: Jogesh Babu, Susie Bayarri, Jim Berger,

More information

Other planetary systems

Other planetary systems Exoplanets are faint! Other planetary systems Planets are seen only by reflected light at optical wavelengths At the distance of another star the faint light of a planet is lost in the glare of the star

More information

Hunting Habitable Shadows. Elizabeth Tasker

Hunting Habitable Shadows. Elizabeth Tasker Hunting Habitable Shadows Elizabeth Tasker Saturn Earth Uranus Mercury Mars Jupiter Venus Neptune Saturn Earth Uranus Mercury Mars Jupiter Venus Neptune 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004

More information

[25] Exoplanet Characterization (11/30/17)

[25] Exoplanet Characterization (11/30/17) 1 [25] Exoplanet Characterization (11/30/17) Upcoming Items APOD 12/2/16 1. Read chapters 24.1-24.3 for Tuesday 2. We will have a final exam review in the last discussion section (Friday, Dec 8) and also

More information

Extra Solar Planetary Systems and Habitable Zones

Extra Solar Planetary Systems and Habitable Zones Lecture Overview Extra Solar Planetary Systems and Habitable Zones Our Galaxy has 200 Billion Stars, Our Sun has 8 planets. It seems like an awful waste if we are alone Exoplanets Karen J. Meech, Svetlana

More information

A REGION VOID OF IRREGULAR SATELLITES AROUND JUPITER

A REGION VOID OF IRREGULAR SATELLITES AROUND JUPITER The Astronomical Journal, 136:909 918, 2008 September c 2008. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-6256/136/3/909 A REGION VOID OF IRREGULAR SATELLITES

More information

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question Key Concepts: Lecture 21: Measuring the properties of stars (cont.) The Hertzsprung-Russell (HR) Diagram (L versus T) The Hertzprung-Russell Diagram The Stefan-Boltzmann Law: flux emitted by a black body

More information

PLANETARY ATMOSPHERES

PLANETARY ATMOSPHERES NAME: What will you learn in this Lab? PLANETARY ATMOSPHERES How important is a planet s atmosphere in controlling its surface temperature? What keeps the Earth at a habitable temperature, its distance

More information

Planet Detection. AST 105 Intro Astronomy The Solar System

Planet Detection. AST 105 Intro Astronomy The Solar System Review AST 105 Intro Astronomy The Solar System MIDTERM III this THURSDAY 04/8 covering LECT. 17 through We ve talked about the Terrestrial Planets and the Jovian Planets - What about planets around other

More information

EXOPLANET DISCOVERY. Daniel Steigerwald

EXOPLANET DISCOVERY. Daniel Steigerwald EXOPLANET DISCOVERY Daniel Steigerwald WHAT IS AN EXOPLANET? An exoplanet is a planet outside of our solar system Extrastellar Rogue 1853 Planets 1162 planetary systems 473 Multiple planetary systems HISTORY

More information

Useful Formulas and Values

Useful Formulas and Values Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes

More information

Exoplanets. Saturday Physics for Everyone. Jon Thaler October 27, Credit: NASA/Kepler Mission/Dana Berry

Exoplanets. Saturday Physics for Everyone. Jon Thaler October 27, Credit: NASA/Kepler Mission/Dana Berry Exoplanets Saturday Physics for Everyone Jon Thaler October 27, 2012 Credit: NASA/Kepler Mission/Dana Berry Outline What is an exoplanet? Why are they intereskng? How can we find them? Exolife?? The future...

More information

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning Why is it so difficult to detect planets around other stars? How do we detect

More information

Planetary Companions to HD , HD 50554, and HD

Planetary Companions to HD , HD 50554, and HD Publications of the Astronomical Society of the Pacific, 114:529 535, 2002 May 2002. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Planetary Companions to HD 136118, HD

More information

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Instructor: L. M. Khandro 1. Relatively speaking, objects with high temperatures emit their peak radiation in short wavelengths

More information

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe?

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe? Other Planetary Systems (Chapter 13) Extrasolar Planets Is our solar system the only collection of planets in the universe? Based on Chapter 13 No subsequent chapters depend on the material in this lecture

More information

The Search for Another Earth Part II

The Search for Another Earth Part II The Search for Another Earth Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will

More information

HABITABLE PLANET FORMATION IN BINARY PLANETARY SYSTEMS

HABITABLE PLANET FORMATION IN BINARY PLANETARY SYSTEMS The Astrophysical Journal, 666:436 Y 446, 2007 September 1 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. HABITABLE PLANET FORMATION IN BINARY PLANETARY SYSTEMS Nader

More information

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

Planets Around Other Stars Extrasolar Planet Detection Methods. February, 2006

Planets Around Other Stars Extrasolar Planet Detection Methods. February, 2006 Planets Around Other Stars Extrasolar Planet Detection Methods February, 2006 Distribution of this File Extrasolar_planet_detection.ppt This Powerpoint presentation was put together for the purpose of

More information

n p = n e for stars like Sun f s = fraction of stars with suitable properties

n p = n e for stars like Sun f s = fraction of stars with suitable properties Habitable Planets n e Number of planets, per planetary system that are suitable for life n e = n p x f s planetary stellar n p = n e for stars like Sun f s = fraction of stars with suitable properties

More information

The Sun and Planets Lecture Notes 6.

The Sun and Planets Lecture Notes 6. The Sun and Planets Lecture Notes 6. Lecture 6 Venus 1 Spring Semester 2017 Prof Dr Ravit Helled Cover photo: Venus in true color (Courtesy of NASA) Venus Properties Venus is the second brightest natural

More information

arxiv:astro-ph/ v1 12 Sep 2006

arxiv:astro-ph/ v1 12 Sep 2006 A Statistical Stability Analysis of Earth-like Planetary Orbits in Binary Systems Marco Fatuzzo, 1 Fred C. Adams, 2,3 Richard Gauvin 1 and Eva M. Proszkow 2 1 Physics Department, Xavier University, Cincinnati,

More information

Searching For Habitable Exoplanets

Searching For Habitable Exoplanets Searching For Habitable Exoplanets Gongjie Li, Harvard -> Georgia Tech Life in the Cosmos, Georgia Tech Credit: ESO Are we alone? How common are we in the Universe? Search for alien civilization. Credit:

More information

PROXIMA CENTAURI B: DISCOVERY AND HABITABILITY XIANG ZHANG

PROXIMA CENTAURI B: DISCOVERY AND HABITABILITY XIANG ZHANG PROXIMA CENTAURI B: DISCOVERY AND HABITABILITY XIANG ZHANG Advertisement time Discovery methods of exoplanets Discovery Method Number Astrometry 1 Imaging 44 Radial Velocity 621 Transit 2707 Transit timing

More information

ASTRONOMY 202 Spring 2007: Solar System Exploration. Instructor: Dr. David Alexander Web-site:

ASTRONOMY 202 Spring 2007: Solar System Exploration. Instructor: Dr. David Alexander Web-site: ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 37: Life in the Universe [4/18/07] Announcements Habitability of

More information

Properties of the Solar System

Properties of the Solar System Properties of the Solar System Dynamics of asteroids Telescopic surveys, especially those searching for near-earth asteroids and comets (collectively called near-earth objects or NEOs) have discovered

More information

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

arxiv: v1 [astro-ph.ep] 23 Aug 2009

arxiv: v1 [astro-ph.ep] 23 Aug 2009 1 Formation, Dynamical Evolution, and Habitability of Planets in Binary Star Systems Nader Haghighipour arxiv:0908.3328v1 [astro-ph.ep] 23 Aug 2009 Abstract. A survey of currently known planet-hosting

More information

Research Paper. Trojans in Habitable Zones ABSTRACT

Research Paper. Trojans in Habitable Zones ABSTRACT ASTROBIOLOGY Volume 5, Number 5, 2005 Mary Ann Liebert, Inc. Research Paper Trojans in Habitable Zones RICHARD SCHWARZ, 1 ELKE PILAT-LOHINGER, 1 RUDOLF DVORAK, 1 BALINT ÉRDI, 2 and ZSOLT SÁNDOR 2 ABSTRACT

More information

The evolution of a Solar-like system. Young Solar-like Systems. Searching for Extrasolar Planets: Motivation

The evolution of a Solar-like system. Young Solar-like Systems. Searching for Extrasolar Planets: Motivation Young Solar-like Systems The evolution of a Solar-like system FIG.2. Panels(a),(b),and(c)show2.9,1.3,and0.87mmALMAcontinuum images of HL Tau. Panel (d) shows the 1.3 mm psf for the same FOV as the other

More information

Class 15 Formation of the Solar System

Class 15 Formation of the Solar System Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

More information

arxiv:astro-ph/ v1 24 Apr 2000

arxiv:astro-ph/ v1 24 Apr 2000 Sub-Saturn Planet Candidates to HD 16141 and HD 46375 1 Geoffrey W. Marcy 2, R. Paul Butler 3, Steven S. Vogt 4 gmarcy@etoile.berkeley.edu arxiv:astro-ph/0004326v1 24 Apr 2000 Received ; accepted Submitted

More information

Terrestrial Planet (and Life) Finder. AST 309 part 2: Extraterrestrial Life

Terrestrial Planet (and Life) Finder. AST 309 part 2: Extraterrestrial Life Terrestrial Planet (and Life) Finder AST 309 part 2: Extraterrestrial Life The Drake Equation: N = N * f pl n hab f L f C f T L/T Stars? Planets? Habitable Origin Complex Intelligence, Lifetime planets?

More information

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning:! Why is it so difficult to detect planets around other stars?! How do we detect

More information

PRE-LAB FOR PLANETARY ATMOSPHERES

PRE-LAB FOR PLANETARY ATMOSPHERES PRE-LAB FOR PLANETARY ATMOSPHERES 1. Find pictures of Venus, Earth, and Mars in an astronomy textbook or other book or online at a website. Estimate, to the nearest 10%, the percentage of surface of each

More information

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1. The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary

More information

Orbital Evolution in Extra-solar systems

Orbital Evolution in Extra-solar systems Orbital Evolution in Extra-solar systems George Voyatzis Section of Astronomy, Astrophysics and Mechanics, Department of Physics, Aristotle University of Thessaloniki, Greece. Abstract Nowadays, extra-solar

More information

Notes 9: Extrasolar Planets and Exo-biology

Notes 9: Extrasolar Planets and Exo-biology Notes 9: Extrasolar Planets and Exo-biology This is an interesting section. We have all sorts of observations and data concerning extrasolar planets (planets outside the solar system), but no evidence

More information

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller Habitability Outside the Solar System A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller 1 Chapter Overview Distant Suns (11.1) Life cycle of stars and their habitability zones Extrasolar

More information

Astron 104 Laboratory #10 Solar Energy and the Habitable Zone

Astron 104 Laboratory #10 Solar Energy and the Habitable Zone Name: Date: Section: Astron 104 Laboratory #10 Solar Energy and the Habitable Zone Introduction The Sun provides most of the energy available in the solar system. Sunlight warms the planet and helps create

More information

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our » How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our Wars are transacted, is when compared to them. A very fit

More information

Analysis of Radial Velocity Measurements

Analysis of Radial Velocity Measurements Analysis of Radial Velocity Measurements Sistemas Planetários - 2nd project - 2011/2012 João Faria 1. Introduction The existence of solar systems other than our own has been speculated for a long time,

More information

arxiv:astro-ph/ v1 10 Nov 2005

arxiv:astro-ph/ v1 10 Nov 2005 Astronomy & Astrophysics manuscript no. ms c ESO 17 August 3, 17 About putative Neptune-like extrasolar planetary candidates Krzysztof Goździewski and Cezary Migaszewski Toruń Centre for Astronomy, PL-87-1

More information

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets. Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

More information

arxiv: v1 [astro-ph] 23 May 2007

arxiv: v1 [astro-ph] 23 May 2007 Terrestrial Planet Formation in Binary Star Systems arxiv:0705.3444v1 [astro-ph] 23 May 2007 Elisa V. Quintana 1 and Jack J. Lissauer 2 1 SETI Institute, 515 N. Whisman Road, Mountain View, CA 94043, USA

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Homework Ch 7, 8, 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Our most detailed knowledge of Uranus and Neptune comes from 1) A) the

More information