Reading list... Fischer et al. chapter in PPVI, Exoplanet Detection Techniques. Chapter 2 in Exoplanets (Fischer & Lovis) pg

Size: px
Start display at page:

Download "Reading list... Fischer et al. chapter in PPVI, Exoplanet Detection Techniques. Chapter 2 in Exoplanets (Fischer & Lovis) pg"

Transcription

1 Reading list... Fischer et al. chapter in PPVI, Exoplanet Detection Techniques Chapter 2 in Exoplanets (Fischer & Lovis) pg (RV method)

2 Radial Velocity (RV) Detection: Early 20th century RV precision ~ 1 km/s By late 80s / early 90s ---> 10 m/s (3 m/s by 1995, detection of 51 Peg b) By 2005, ~ 1 m/s.

3 RV discoveries (up to 2014) Fischer et al. also transits

4 General orientation of orbit: = descending node orbiting body z r ν(t) pericentre reference plane ellipse focus centre of mass Ω = longitude of ascending node ω i ϒ = reference direction = ascending node apocentre orbit plane to observer reference plane tangent to celestial sphere

5 circular VCM V2 V2 V1 VCM V

6 unknowns

7 Still the circular (e = 0) case Usually express the observable (RV semi-amplitude) K as function of P (or a), Mpsin(i), M*. K is directly proportional to Mpsin(i).

8 = descending node orbiting body z r ν(t) pericentre reference plane ellipse focus centre of mass Ω = longitude of ascending node ω i ϒ = reference direction = ascending node t 3 centre of mass acceleration = GM p /r 2 t 1 acceleration = GM /r 2 M p t 2 apocentre orbit plane to observer t 2 M t 1 t 3 (rad. vel. semiamplitude) note: reference plane tangent to celestial sphere

9 systemic vel. + systematics e = 0.03, ω = 340 e = 0.53, ω = 170 e = 0.90, ω = 42 Radial velocity Orbital phase Orbital phase Orbital phase

10

11 mas / 10 pc 0.2 yr 12 yr μas / 100 pc 1 mas / 100 pc Planet mass, M p (M J ) μas / 10 pc 30 nas / 100 pc J S 1% m/s U m/s 0.01% E Semi-major axis, a (AU) detection limits obtained from earlier equations.

12 minimum mass mpsin(i) If planetary systems are randomly oriented (i between 0 and 90 o ): Average of sin(i) = 2/pi ~ 0.6 probability of i being between two values: 87% chance that mpsin(i) is within a factor of 2 of actual mp

13 start here

14 Measuring RVs (basic idea) Radial&Velocity&Technique&

15 Doppler Shift Relativistic terms are usually ignored. However, they can vary by ~ 0.1 m/s over a year (Earth s orbit). note: vel. > 0 for motion away from observer

16 must correct for Earth s motion (barycentric correction) This requires precise clocking of observations (including precise knowledge of where your telescope is located).

17 Measuring RVs (basic idea) You must have a reference spectrum to determine the wavelength calibration. use telluric lines (Griffin & Griffin, 1973) gas-cell (Walker & Campbell, 1979, HF), Iodine is the modern choice. HIRES/Keck simultaneous references spectrum, Thorium-argon lamp (lamp + star spectrum recorded simultaneously) ELODIE, SOPHIE,CORALIE, HARPS other fancy methods...

18 cross-dispersed echelle spectrograph wavelength orders star+lamp spectrum (51 Peg) Lamp Spectrum

19 Quality Factor and theoretical RV limit totally made up example! Bouchy et al. 2001

20 Bouchy et al Quality Factor and theoretical RV limit

21 Spectral Resolution: Resolving Power: R = λ / Δλ = c / Δv R =100,000 --> dlam ~ 0.05 angst, in the optical. 1 m/s shift ---> 1/3000 of a resolution element, for R ~ 100,000. Typical RV instruments disperse light such that 1 m/s doppler shift corresponds to a shift on the detector of ~ 1/1000 of a pixel.

22 Quality Factor and theoretical RV limit Q versus Spectral Resolving Power

23 Measuring tiny fractions of a pixel requires many spectral lines. Usual spectrum might contain ~ 1000 good lines. Modeling and cross-correlation techniques allow greater RV precision than is achieved on a single line. 30 m/s per line can result in 1 m/s (for high SNR spectrum with many lines).

24 cross-correlation of many orders k j low SNR échelle orders 1.0 i h g f e d c b a high SNR cross-correlation function Radial velocity, V r (km s 1 )

25

26

27 RV precision depends on: number of spectral lines / wavelength FWHM of the lines (contrast with continuum) signal-to-noise (SNR) of the data stability of the instrument and wavelength reference

28 The goals are to measure relative RV (not absolute) to high precision and have repeatability, night-to-night, for many years. The instrument must be ultra-stable or the calibration near-perfect and repeatable (preferably both).

29 What are the things you might control? changes in spectrograph variation in instrument illumination

30 What is the source of this wavelength shi9 (~ 1.3 angst.)? 30

31 What is the source of this wavelength shi9 (~ 1.3 angst.)? n(air) ~

32 Wavelength shi9s are around 200 to 300 m/s / K change in temperature (at fixed P) and ~ 100 m/s / mbar change in pressure (at fixed T). need climate- controlled vacuum chamber 32

33 A 1-meter optical bench made of aluminum expands or contracts by ~ 20 microns for every 1 K change in temperature. Thermal stability 20 microns is about the size of one CCD pixel. Such shifts are comparable to, or larger than, the RV change one wants to measure.

34 Image Stability slit wavelength A changes in the illumination across the entrance of the spectrograph can produce wavelength shifts exceeding 100 m/s. Telescope guiding never good enough.

35 Fiber-scramblers: < 10 um (perfect scramble) um (good scramble) input perfect multi-mode fiber (1 is good, 2 is better, aka double-scrambler) output (intermediate) output (to spectrograph) (Queloz 1999)

36 Very stabilized instruments: 3.6m at ESO/Chile Spectrograph on a rigid bench, which is housed in a vacuum tank.

37 Very stabilized instruments: 3.6m at ESO/Chile Spectrograph on a rigid bench, which is housed in a vacuum tank. The tank itself is housed in a climate controlled room that is never opened. Pressure controlled to 10-3 mbar OpOcal bench controlled to 1 mk

38 Very stabilized instruments: 3.6m at ESO/Chile Spectrograph on a rigid bench, which is housed in a vacuum tank. The tank itself is housed in a climate controlled room that is never opened. Light is coupled from the telescope with fiber opocs that scramble the light.

39 Very stabilized instruments: 3.6m at ESO/Chile Spectrograph on a rigid bench, which is housed in a vacuum tank. The tank itself is housed in a climate controlled room that is never opened. Light is coupled from the telescope with fiber opocs that scramble the light. A second fiber feed a simultaneous calibraoon source.

40 Very stabilized instruments: 3.6m at ESO/Chile observed spectrum Cross- CorrelaOon Technique Original reference: Tonry & Davis 1979, AJ, 84, 10 CCF template spectrum radial velocity

41 Gas cell technique

42 Radial Velocity Technique

43 Radial Velocity Technique

44 Radial Velocity Technique iodine lines

45 Gas cell technique: It is a lidle more complicated (involves forward modeling of spectrum) I 2 star (template) instrumental profile Obs & Model Butler et al. 1996, PASP, 108, 500

46 Calibrated instruments: 10m Keck telescope in Hawaii Spectrograph not parocularly stabilized.

47 Which stars to observe? 47

48 Vega Optical

49 Solar-type (The Sun) stars:

50

51 A, F, G, & K-types M dwarfs

52 quantum-efficiency

53 quantum-efficiency

54 Rotational Broadening: Normalised flux HD 1404 (A2V) 110 km/s HD (A3V) 115 km/s HD 6961 (A7V) 91 km/s HD (F0V) 63 km/s HD (F5V) 110 km/s HD (F6V) 5 km/s Mp sin i (MJ) A0V 150 km/s A0V 80 km/s A0V 40 km/s A5V 150 km/s A5V 80 km/s A5V 40 km/s Wavelength (nm) Wavelength (nm) Wavelength (nm) Period (d)

55 young stars have larger rotational velocities, and are more active.

56 Rotational Broadening (vs SpT): Affer et al. (2008)

57 spectral richness near peak of QE low Vsin(i) metal-rich old FGK-type = sweet-spot

58

59 Problem: areas on the surface with different velocioes and brightnesses + changes with Ome

60 P- modes (acousoc pressure waves) The sun oscillates with a characterisoc Omescale of five minutes. The Omescale scales as sqrt(density), so lower- mass stars have longer Omescales, and higher- mass stars have shorter Omescales. Amplitude is approximately 1 m/s.

61 GranulaOon ConvecOve cells on the surface. The bright center is the upwelling of hot gas, and the dark edges are the downward mooon of cooler gas. Relative intensity granular region intergranular region upper region lower region { { line bisector Length ~ 1000 km Timescale ~ 10 minutes Velocity ~ 1 km/s Number ~ 10 6 Wavelength Wavelength

62 Spots

63 A few words about Fourier Transforms Fourier Transform Inverse Fourier Transform

64 see Gray, 3rd ed. chapter 2

65 The professor s watch Amplitude Time

66 The professor s watch Power Frequency (Hz)

67 Sub- saturn mass planet HD3651 Fischer et al. (2003) Power Spectrum (or Lomb-Scargle periodogram, Lomb 1976)

68

69

70 MulZ- planets Example: Example from HARPS southern survey, some planets orbiong acove star BD (Hebrard et al. 2010)

71 MulZ- planets Example: How many planets do you see?

72 MulZ- planets Example: How many planets do you see?

73 MulZ- planets Example: With 238 day signal removed

74

75 Combined Fits to the data

76 What about the planet at 1 day?

77 This is an active star

78 Seven planets around a single star (HD10180) Lovis et al. 2011, A&A, 528, 112

79 Seven planets around a single star (HD10180) Lovis et al. 2011, A&A, 528, 112

80 AcOvity and RVs HD166435: spots masquerading as a planet! Line- bisector mean line- profile Queloz et al. 2001, A&A, 379, 279

81 AcOvity and RVs HD166435: spots masquerading as a planet! Queloz et al. 2001, A&A, 379, 279

82 RV planets as a funczon of date

The Doppler Method, or Radial Velocity Detection of Planets: I. Technique

The Doppler Method, or Radial Velocity Detection of Planets: I. Technique ASTs309L The Doppler Method, or Radial Velocity Detection of Planets: I. Technique 1. Keplerian Orbits 2. Spectrographs/Doppler shifts 3. Precise Radial Velocity measurements ASTs309L The Doppler Effect:

More information

Indirect Methods: gravitational perturbation of the stellar motion. Exoplanets Doppler method

Indirect Methods: gravitational perturbation of the stellar motion. Exoplanets Doppler method Indirect Methods: gravitational perturbation of the stellar motion Exoplanets The reflex motion of the star is proportional to M p /M * This introduces an observational bias that favours the detection

More information

The Role of Precision Spectroscopy in the Search for Earth 2.0. Jacob Bean University of Chicago

The Role of Precision Spectroscopy in the Search for Earth 2.0. Jacob Bean University of Chicago The Role of Precision Spectroscopy in the Search for Earth 2.0 Jacob Bean University of Chicago Known exoplanets N 5000 radial velocity transit direct imaging microlensing The role of precision spectroscopy

More information

Radial Velocity Planet Surveys. Jian Ge, University of Florida

Radial Velocity Planet Surveys. Jian Ge, University of Florida Radial Velocity Planet Surveys Jian Ge, University of Florida 1 Theory vs. Observation Ida & Lin, 2004 2 Major efforts for detecting new planets since 1989 (http://exoplanet.eu/) Doppler method (386 planets)

More information

Radial Velocity Detection of Planets: I. Techniques and Tools

Radial Velocity Detection of Planets: I. Techniques and Tools Radial Velocity Detection of Planets: I. Techniques and Tools 1. Keplerian Orbits 2. Spectrographs/Doppler shifts 3. Precise Radial Velocity measurements 4. Searching for periodic signals Detection and

More information

Analysis of Radial Velocity Measurements

Analysis of Radial Velocity Measurements Analysis of Radial Velocity Measurements Sistemas Planetários - 2nd project - 2011/2012 João Faria 1. Introduction The existence of solar systems other than our own has been speculated for a long time,

More information

Radial Velocities for Exoplanet Discovery and Characterization. Debra Fischer Yale University

Radial Velocities for Exoplanet Discovery and Characterization. Debra Fischer Yale University Radial Velocities for Exoplanet Discovery and Characterization Debra Fischer Yale University Jupiter Neptune Earth Jupiter Neptune Earth We should think about the difference b/t the left and right plots.

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Design Reference Mission. DRM approach

Design Reference Mission. DRM approach Design Reference Mission The Design Reference Mission (DRM) is a set of observing programs which together provide a tool to assist with tradeoff decisions in the design of the E-ELT (examples of observing

More information

ASTRO Fall Lecture 18. Thursday October 28, 2010

ASTRO Fall Lecture 18. Thursday October 28, 2010 ASTRO 2233 Fall 2010 Planet Detec4on Issues Lecture 18 Thursday October 28, 2010 Astrometry: Advantages: Direct measurement of mass of the planet assumes we know star s mass from stellar type i.e. spectral

More information

The effect of stellar activity on radial velocities. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory

The effect of stellar activity on radial velocities. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory The effect of stellar activity on radial velocities Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory Mass and radius are the most fundamental parameters of a planet Main inputs for models

More information

The Sun as an exoplanet-host star: testbed for radial-velocity variations. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory

The Sun as an exoplanet-host star: testbed for radial-velocity variations. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory The Sun as an exoplanet-host star: testbed for radial-velocity variations Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory Motivation: why should we care about the Sun? Accounting for stellar

More information

High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla

High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla Astronomical Institute of the Slovak Academy of Sciences, Tatranská Lomnica, Slovakia PLATOSpec workshop, Ondřejov observatory,

More information

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Actuality of Exoplanets Search. François Bouchy OHP - IAP Actuality of Exoplanets Search François Bouchy OHP - IAP How detect extrasolar planets? Two main difficulties : 1 A tiny angular separation 0.75 arcsec Sun Jupiter at 4 light years 4 Sun Jupiter at 100

More information

ASTB01 Exoplanets Lab

ASTB01 Exoplanets Lab ASTB01 Exoplanets Lab Author: Anders Johansen Revision date: $Date: 2015/08/28 14:55:59 $ Planets orbiting stars other than the Sun are called exoplanets. Stellar light reflected off

More information

Reflex motion: masses and orbits

Reflex motion: masses and orbits Chapter 2 Reflex motion: masses and orbits The mass is one of the most important parameters for the characterization of an astronomical object. This is also the case for planets. For the planets in the

More information

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 5

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 5 Date of delivery: 29 June 2011 Journal and vol/article ref: IAU 1101538 Number of pages (not including this page): 5 Author queries: Typesetter queries: Non-printed material: The Physics of the Sun and

More information

Outline. RV Planet Searches Improving Doppler Precision Population Synthesis Planet Formation Models Eta-Earth Survey Future Directions

Outline. RV Planet Searches Improving Doppler Precision Population Synthesis Planet Formation Models Eta-Earth Survey Future Directions The NASA-UC Eta-Earth Survey: A Systematic Search for Low-mass Planets From Keck Observatory - Andrew Howard - Townes Post-doctoral Fellow, UC Berkeley HD 7924b Collaborators Geoff Marcy Debra Fischer

More information

Measuring Radial Velocities of Low Mass Eclipsing Binaries

Measuring Radial Velocities of Low Mass Eclipsing Binaries Measuring Radial Velocities of Low Mass Eclipsing Binaries Rebecca Rattray, Leslie Hebb, Keivan G. Stassun College of Arts and Science, Vanderbilt University Due to the complex nature of the spectra of

More information

Probing the Galactic Planetary Census

Probing the Galactic Planetary Census Probing the Galactic Planetary Census Greg Laughlin -- UCSC Astronomy Exoplanet News from the AAS meeting (New York Times) The finding was called exciting by Dr. Kenneth Franklin of the American Museum-Hayden

More information

Realistic limitations of detecting planets around young active stars

Realistic limitations of detecting planets around young active stars Realistic limitations of detecting planets around young active stars Sandra Jeffers IAG Goettingen In collaboration with: John Barnes, Hugh Jones, David Pinfield (Hertfordshire, UK) + ROPACS Impact of

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/49240 holds various files of this Leiden University dissertation Author: Schwarz, Henriette Title: Spinning worlds Issue Date: 2017-06-01 89 4 Spin measurement

More information

Helioseismology: GONG/BiSON/SoHO

Helioseismology: GONG/BiSON/SoHO Helioseismology: GONG/BiSON/SoHO Asteroseismology: Solar-like oscillations in other stars Study stars of different Masses, Ages and Chemical Composition Stellar Structure and Evolution Solar-like oscillations

More information

John Barnes. Red Optical Planet Survey (ROPS): A radial velocity search for low mass M dwarf planets

John Barnes. Red Optical Planet Survey (ROPS): A radial velocity search for low mass M dwarf planets Red Optical Planet Survey (ROPS): A radial velocity search for low mass M dwarf planets John Barnes Centre for Astrophysics Research University of Hertfordshire UK -H. Jones, D. Pinfield, M. Tuomi (University

More information

arxiv: v1 [astro-ph.sr] 28 Mar 2016

arxiv: v1 [astro-ph.sr] 28 Mar 2016 Twenty Years of Precise Radial Velocities at Keck and Lick Observatories Jason T. Wright 1 Talk delivered 4 October 2015 arxiv:1603.08384v1 [astro-ph.sr] 28 Mar 2016 1 Center for Exoplanets and Habitable

More information

Other planetary systems

Other planetary systems Exoplanets are faint! Other planetary systems Planets are seen only by reflected light at optical wavelengths At the distance of another star the faint light of a planet is lost in the glare of the star

More information

EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey

EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey EarthFinder A NASA-selected Probe Mission Concept Study for input to the 2020 Astrophysics Decadal Survey Peter Plavchan Assistant Professor George Mason University 1 @PlavchanPeter http://exo.gmu.edu

More information

A Pathway to Earth-like Worlds:

A Pathway to Earth-like Worlds: A Pathway to Earth-like Worlds: Overcoming Astrophysical Noise due to Convection Dr. Heather Cegla!! Dr. Chris Watson, Dr. Sergiy Shelyag, Prof. Mihalis Mathioudakis A Pathway to Earth-like Worlds: CoRoT

More information

APHRODITE. Ground-Based Observing Team -1-

APHRODITE. Ground-Based Observing Team -1- APHRODITE Ground-Based Observing Team -1- Science Goals 1) Detecting Earth-like planets in the habitable zone of solar-type stars Earth around a G2V star @ 1 AU cm/s -2- Science Goals 1) Detecting Earth-like

More information

Fiber scrambling for precise radial velocities at Lick and Keck Observatories

Fiber scrambling for precise radial velocities at Lick and Keck Observatories Fiber scrambling for precise radial velocities at Lick and Keck Observatories J.F.P. Spronck, D.A. Fischer, Z.A. Kaplan and C. Schwab, Department of Astronomy, Yale University, 260 Whitney Ave, New Haven,

More information

Observed Properties of Stars - 2 ASTR 2110 Sarazin

Observed Properties of Stars - 2 ASTR 2110 Sarazin Observed Properties of Stars - 2 ASTR 2110 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Stellar Colors Stellar Colors Stellar Colors Stars

More information

Exoplanet Host Stars

Exoplanet Host Stars Exoplanet Host Stars The Hertzsprung-Russel (HR)Diagram The Hertzsprung-Russel (HR)Diagram Standard Doppler Surveys The Hertzsprung-Russel (HR)Diagram Direct Imaging detections Standard Doppler Surveys

More information

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

Fiber Scrambling for High-Resolution Spectrographs. I. Lick Observatory

Fiber Scrambling for High-Resolution Spectrographs. I. Lick Observatory PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 125:511 521, 2013 May 2013. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Fiber Scrambling for High-Resolution

More information

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars 4. Direct imaging of extrasolar planets Reminder: Direct imaging is challenging: The proximity to its host star: 1 AU at 1 for alpha Cen 0.15 for the 10th most nearby solar-type star The low ratio of planet

More information

Detecting Earth-Sized Planets with Laser Frequency Combs

Detecting Earth-Sized Planets with Laser Frequency Combs Detecting Earth-Sized Planets with Laser Frequency Combs Hayley Finley Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104 Abstract Detection of Earth-mass

More information

PLATO Follow-up. Questions addressed. Importance of the follow-up. Importance of the follow-up. Organisa(on*&*Progress*Report

PLATO Follow-up. Questions addressed. Importance of the follow-up. Importance of the follow-up. Organisa(on*&*Progress*Report PLATO Follow-up Organisa(on*&*Progress*Report Questions addressed A next generation transit mission will be efficient only with ground-based help S. Udry University of Geneva (Geneva Observatory) Needs

More information

ASTRO Fall 2012 LAB #6: Extrasolar Planets

ASTRO Fall 2012 LAB #6: Extrasolar Planets ASTRO 1050 - Fall 2012 LAB #6: Extrasolar Planets ABSTRACT This is an exciting time in astronomy. Over the past two decades we have begun to indirectly detect planets that orbit stars other than our sun.

More information

Red giants with brown dwarfs companions

Red giants with brown dwarfs companions Red giants with brown dwarfs companions Andrzej Niedzielski Toruń Center for Astronomy, Nicolaus Copernicus University in Toruń, Poland Planets around evolved stars 1992 Wolszczan & Frail - first planet

More information

! p. 1. Observations. 1.1 Parameters

! p. 1. Observations. 1.1 Parameters 1 Observations 11 Parameters - Distance d : measured by triangulation (parallax method), or the amount that the star has dimmed (if it s the same type of star as the Sun ) - Brightness or flux f : energy

More information

Spectroscopy, the Doppler Shift and Masses of Binary Stars

Spectroscopy, the Doppler Shift and Masses of Binary Stars Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its present location. Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html

More information

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments

More information

There are 4 x stars in the Galaxy

There are 4 x stars in the Galaxy ExtraSolar Planets Our solar system consists of 1 Star 4 Jovian planets (+ icy moons) 4 Terrestrial planets The asteroid belt (minor planets) The Kuiper belt (dwarf planets, plutinos and TNOs) The Oort

More information

OGLE-TR-56. Guillermo Torres, Maciej Konacki, Dimitar D. Sasselov and Saurabh Jha INTRODUCTION

OGLE-TR-56. Guillermo Torres, Maciej Konacki, Dimitar D. Sasselov and Saurabh Jha INTRODUCTION OGLE-TR-56 Guillermo Torres, Maciej Konacki, Dimitar D. Sasselov and Saurabh Jha Harvard-Smithsonian Center for Astrophysics Caltech, Department of Geological and Planetary Sciences University of California

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

Planets Around M-dwarfs Astrometric Detection and Orbit Characterization

Planets Around M-dwarfs Astrometric Detection and Orbit Characterization Planets Around M-dwarfs Page of 7 Planets Around M-dwarfs Astrometric Detection and Orbit Characterization N. M. Law (nlaw@astro.caltech.edu), S. R. Kulkarni, R. G. Dekany, C. Baranec California Institute

More information

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ)

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ) Search for Transiting Planets around Nearby M Dwarfs Norio Narita (NAOJ) Outline Introduction of Current Status of Exoplanet Studies Motivation for Transiting Planets around Nearby M Dwarfs Roadmap and

More information

Answer Key for Exam C

Answer Key for Exam C Answer Key for Exam C 1 point each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Answer Key for Exam B

Answer Key for Exam B Answer Key for Exam B 1 point each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

arxiv: v2 [astro-ph.ep] 2 Nov 2017

arxiv: v2 [astro-ph.ep] 2 Nov 2017 Palomar Optical Spectrum of Hyperbolic Near-Earth Object A/2017 U1 Joseph R. Masiero 1 ABSTRACT arxiv:1710.09977v2 [astro-ph.ep] 2 Nov 2017 We present optical spectroscopy of the recently discovered hyperbolic

More information

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES DAVID F. GRAY University of Western Ontario, London, Ontario, Canada CAMBRIDGE UNIVERSITY PRESS Contents Preface to the first edition Preface to the

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information

Observations of Extrasolar Planets

Observations of Extrasolar Planets Observations of Extrasolar Planets Hamilton 2005 Shay Zucker Observations of Extrasolar Planets Spectroscopic detection of exoplanets Emerging properties of the sample Transiting planets Future prospects

More information

arxiv: v1 [astro-ph.sr] 26 Jul 2011

arxiv: v1 [astro-ph.sr] 26 Jul 2011 Astronomy & Astrophysics manuscript no. magnetic cycles c ESO 2011 July 28, 2011 The HARPS search for southern extra-solar planets XXXI. Magnetic activity cycles in solar-type stars: statistics and impact

More information

Adam Burrows, Princeton April 7, KITP Public Lecture

Adam Burrows, Princeton April 7, KITP Public Lecture Adam Burrows, Princeton April 7, 2010 KITP Public Lecture The Ancient History of Comparative Planetology There are infinite worlds both like and unlike this world of ours...we must believe that in all

More information

New Projected Rotational Velocity Measurements for 65 Mid M-Dwarfs

New Projected Rotational Velocity Measurements for 65 Mid M-Dwarfs New Projected Rotational Velocity Measurements for 65 Mid M-Dwarfs Cassy L. Davison 1, R.J. White 1, T.J. Henry 1, N. Cabrera 1 1 Georgia State University, Department of Physics and Astronomy, Atlanta,

More information

Progress Towards an Absolute Calibration of Lunar Irradiance at Reflected Solar Wavelengths

Progress Towards an Absolute Calibration of Lunar Irradiance at Reflected Solar Wavelengths Progress Towards an Absolute Calibration of Lunar Irradiance at Reflected Solar Wavelengths Claire Cramer, Steve Brown, Keith Lykke, John Woodward (NIST) Tom Stone (USGS) Motivation for using the Moon

More information

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11 Fundamental (Sub)stellar Parameters: Surface Gravity PHY 688, Lecture 11 Outline Review of previous lecture binary stars and brown dwarfs (sub)stellar dynamical masses and radii Surface gravity stars,

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC Exploring the giant planet - brown dwarf connection with astrometry ESA Research Fellow at ESAC Who s Who, Paris - 2 July 215 IS MASS A GOOD DEMOGRAPHIC INDICATOR? 2MASSWJ127334 393254 first image of a

More information

The Rossiter effect of transiting extra-solar planets Yasushi Suto Department of Physics, University of Tokyo

The Rossiter effect of transiting extra-solar planets Yasushi Suto Department of Physics, University of Tokyo The Rossiter effect of transiting extra-solar planets λ λ = 4 o.4 ± 1 o.4 Yasushi Suto Department of Physics, University of Tokyo International Workshop on on the 10th Gravitational Microlensing and Related

More information

II. Results from Transiting Planets. 1. Global Properties 2. The Rossiter-McClaughlin Effect

II. Results from Transiting Planets. 1. Global Properties 2. The Rossiter-McClaughlin Effect II. Results from Transiting Planets 1. Global Properties 2. The Rossiter-McClaughlin Effect Planet Radius Most transiting planets tend to be inflated. Approximately 68% of all transiting planets have radii

More information

arxiv: v1 [astro-ph.sr] 18 Apr 2016

arxiv: v1 [astro-ph.sr] 18 Apr 2016 Mon. Not. R. Astron. Soc., 6 (5) Printed June 8 (MN LATEX style file v.) High-cadence spectroscopy of M-dwarfs. I. Analysis of systematic effects in HARPS-N line profile measurements on the bright binary

More information

The Telescopes and Activities on Exoplanet Detection in China. ZHOU Xu National Astronomical Observatories

The Telescopes and Activities on Exoplanet Detection in China. ZHOU Xu National Astronomical Observatories The Telescopes and Activities on Exoplanet Detection in China ZHOU Xu National Astronomical Observatories Cloudage Xinglong Station of National Astronomical Observatories Altitude:~900M; Weather:220 clear

More information

Stellar Observations Network Group

Stellar Observations Network Group Stellar Observations Network Group Frank Grundahl, Jørgen Christensen Dalsgaard, Uffe Gråe Jørgensen, Hans Kjeldsen, Søren Frandsen, Per Kjærgaard Rasmussen + participation from IAC (Pere Pallé, Orlagh

More information

The Transit Method: Results from the Ground

The Transit Method: Results from the Ground The Transit Method: Results from the Ground Results from individual transit search programs The Mass-Radius relationships (internal structure) Global Properties The Rossiter-McClaughlin Effect There are

More information

Useful Formulas and Values

Useful Formulas and Values Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes

More information

Lab 5: Searching for Extra-Solar Planets

Lab 5: Searching for Extra-Solar Planets Lab 5: Searching for Extra-Solar Planets Until 1996, astronomers only knew about planets orbiting our sun. Though other planetary systems were suspected to exist, none had been found. Now, thirteen years

More information

Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann

Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann Geneva Observatory The First Years Of ESO, Garching, 4.9.212 high-precision astrometry is powerful yields complete information,

More information

Lab 4: Stellar Spectroscopy

Lab 4: Stellar Spectroscopy Name:... Astronomy 101: Observational Astronomy Fall 2006 Lab 4: Stellar Spectroscopy 1 Observations 1.1 Objectives and Observation Schedule During this lab each group will target a few bright stars of

More information

All Sky Doppler Extra-solar Planet Surveys with a Multi-object Fixed-delay Interferometer 1

All Sky Doppler Extra-solar Planet Surveys with a Multi-object Fixed-delay Interferometer 1 All Sky Doppler Extra-solar Planet Surveys with a Multi-object Fixed-delay Interferometer 1 Jian Ge, Suvrath Mahadevan, Julian van Eyken, Curtis DeWitt 525 Davey Lab, Department of Astronomy & Astrophysics,

More information

Lecture 16 The Measuring the Stars 3/26/2018

Lecture 16 The Measuring the Stars 3/26/2018 Lecture 16 The Measuring the Stars 3/26/2018 Test 2 Results D C B A Questions that I thought were unfair: 13, 18, 25, 76, 77, 80 Curved from 85 to 79 Measuring stars How far away are they? How bright are

More information

USAAAO First Round 2015

USAAAO First Round 2015 USAAAO First Round 2015 This round consists of 30 multiple-choice problems to be completed in 75 minutes. You may only use a scientific calculator and a table of constants during the test. The top 50%

More information

Usually seen only on ~ years- here 3 eruptions in a couple of weeks.

Usually seen only on ~ years- here 3 eruptions in a couple of weeks. Images of Io obtained at different infrared wavelengths (in microns, μm, or millionths of a meter) with the W. M. Keck Observatory's 10-meter Keck II telescope on Aug. 15, 2013 (a-c) and the Gemini North

More information

Astronomical Spectroscopy. Michael Cushing

Astronomical Spectroscopy. Michael Cushing Astronomical Spectroscopy Michael Cushing REU Presentation June, 08, 2009 What Is a Spectrum? A stars have Teff ~10 4 K. Continuum H Line Absorption Jacoby et al. (1984, ApJS, 56, 257) What is a Spectrum?

More information

ASTRO Fall Lecture 19

ASTRO Fall Lecture 19 ASTRO 2233 Fall 2010 Incidence of Earth Like Planets Lecture 19 Tuesday November 2, 2010 Searching for References from Cornell sites: hjp://adswww.harvard.edu/ Click on SEARCH Click on ASTRONOMY AND ASTROPHYSICS

More information

Searching for Extra-Solar Planets

Searching for Extra-Solar Planets Searching for Extra-Solar Planets Until 1996, astronomers only knew about planets orbiting our sun. Though other planetary systems were suspected to exist, none had been found. Now, thirteen years later,

More information

Extra Solar Planetary Systems and Habitable Zones

Extra Solar Planetary Systems and Habitable Zones Lecture Overview Extra Solar Planetary Systems and Habitable Zones Our Galaxy has 200 Billion Stars, Our Sun has 8 planets. It seems like an awful waste if we are alone Exoplanets Karen J. Meech, Svetlana

More information

The Detection and Properties of Planetary Systems. Prof. Dr. Artie Hatzes

The Detection and Properties of Planetary Systems. Prof. Dr. Artie Hatzes The Detection and Properties of Planetary Systems Prof. Dr. Artie Hatzes Artie Hatzes Tel:036427-863-51 Email: artie@tls-tautenburg.de www.tls-tautenburg.de Lehre Vorlesungen Jena The Detection and Properties

More information

arxiv:astro-ph/ v1 28 Feb 2003

arxiv:astro-ph/ v1 28 Feb 2003 Stellar Rotation Proceedings IAU Symposium No. 215, c 2003 IAU André Maeder & Philippe Eenens, eds. Absolute Wavelength Shifts A new diagnostic for rapidly rotating stars arxiv:astro-ph/0302592v1 28 Feb

More information

Simulating Stellar Spectra

Simulating Stellar Spectra Simulating Stellar Spectra Edward Kielb 2013 NSF/REU Program Physics Department, University of Notre Dame Advisor: Professor Justin Crepp Abstract: ilocater is a precision near infrared Doppler spectrometer

More information

Observations of extrasolar planets

Observations of extrasolar planets Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

More information

Earth-like planets in habitable zones around L (and T) dwarfs

Earth-like planets in habitable zones around L (and T) dwarfs Earth-like planets in habitable zones around L (and T) dwarfs David Montes José A. Caballero Departamento de Astrofísica Universidad Complutense de Madrid Detecting planets around lowmass stars (and brown

More information

Prospects for ground-based characterization of Proxima Centauri b

Prospects for ground-based characterization of Proxima Centauri b Prospects for ground-based characterization of Proxima Centauri b Ma#eo Brogi Hubble Fellow, CU-Boulder Ignas Snellen, Remco de Kok, Henrie5e Schwarz (Leiden, NL) Jayne Birkby (CfA, USA), Simon Albrecht

More information

BD b: Chronicle of an exoplanetary discovery

BD b: Chronicle of an exoplanetary discovery BD +2 179 b: Chronicle of an exoplanetary discovery M. Hernán Obispo, M. C. Gálvez, G. Anglada Escudé, S. R. Kane, E. de Castro, and M. Cornide Citation: AIP Conference Proceedings 194, 441 (29); doi:

More information

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh DEPARTMENT OF PHYSICS AND ASTRONOMY Planets around white dwarfs Matt Burleigh Contents Original motivation DODO - results from our direct imaging survey Where do we go next? The role for E-ELT Direct imaging

More information

Astrometric Detection of Exoplanets

Astrometric Detection of Exoplanets Astrometric Detection of Exoplanets Angles & Coordinates: 1 full circle = 360 degrees 1 degree = 60 arcminutes 1 arcminute = 60 arcseconds ~ 1 inch @ 100 yards (2.908 cm at 100 meters) 1 milliarcsec (mas)

More information

4 1 Extrasolar Planets

4 1 Extrasolar Planets Extrasolar Planets 4 1 Introduction 4 2 So far: have looked at planets around our Sun Physics question: Is our Solar System normal? = Are there planets around other stars? can then compare solar system

More information

Stellar Composition. How do we determine what a star is made of?

Stellar Composition. How do we determine what a star is made of? Stars Essential Questions What are stars? What is the apparent visual magnitude of a star? How do we locate stars? How are star classified? How has the telescope changed our understanding of stars? What

More information

ASTRO 1050 Extrasolar Planets

ASTRO 1050 Extrasolar Planets ASTRO 1050 Extrasolar Planets ABSTRACT This is an exciting time in astronomy. Over the past two decades we have begun to indirectly detect planets that orbit stars other than our Sun. Methods of detection

More information

If we see a blueshift on one side and a redshift on the other, this is a sign of rotation.

If we see a blueshift on one side and a redshift on the other, this is a sign of rotation. Galaxies : dynamics, masses, and formation Prof Andy Lawrence Astronomy 1G 2011-12 Overview Spiral galaxies rotate; this allows us to measure masses But there is also a problem : spiral arm winding Elliptical

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Bayesian Model Selection & Extrasolar Planet Detection

Bayesian Model Selection & Extrasolar Planet Detection Bayesian Model Selection & Extrasolar Planet Detection Eric B. Ford UC Berkeley Astronomy Dept. Wednesday, June 14, 2006 SCMA IV SAMSI Exoplanets Working Group: Jogesh Babu, Susie Bayarri, Jim Berger,

More information

The variable nature of the OB star HD13831 Dr. Amira Val Baker. Celebrating Ten Years of Science with STELLA Wednesday 9th November 2016

The variable nature of the OB star HD13831 Dr. Amira Val Baker. Celebrating Ten Years of Science with STELLA Wednesday 9th November 2016 The variable nature of the OB star HD13831 Dr. Amira Val Baker Celebrating Ten Years of Science with STELLA Wednesday 9th November 2016 STELLA robotic telescope Dr Ana Gonzales-Galan Celebrating Ten Years

More information

Observed Properties of Stars - 2 ASTR 2120 Sarazin

Observed Properties of Stars - 2 ASTR 2120 Sarazin Observed Properties of Stars - 2 ASTR 2120 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Hipparchus 1) Classified stars by brightness,

More information

Wobbling Stars: The Search for Extra Terrestrial Planets

Wobbling Stars: The Search for Extra Terrestrial Planets Name: Partner(s): 1101 or 3310: Desk # Date: Purpose Wobbling Stars: The Search for Extra Terrestrial Planets Describe the Doppler effect for sound and light Explain the relationships between the pitch,

More information

Beyond 1 m/s : advances in precision Doppler spectroscopy

Beyond 1 m/s : advances in precision Doppler spectroscopy Beyond 1 m/s : advances in precision Doppler spectroscopy Guillem Anglada-Escude Postdoctoral scientist Georg-August-Universität Göttingen Institute for Astrophysics Oct 2012 Ansgar Reiners, Mathias Zechmeister

More information

Hanle Echelle Spectrograph (HESP)

Hanle Echelle Spectrograph (HESP) Hanle Echelle Spectrograph (HESP) Bench mounted High resolution echelle spectrograph fed by Optical Fiber Second generation instrument for HCT The project is a technical collaboration between Indian Institute

More information

Exoplanets: the quest for Earth twins

Exoplanets: the quest for Earth twins 369, 572 581 doi:1.198/rsta.21.245 Exoplanets: the quest for Earth twins BY MICHEL MAYOR*, STEPHANE UDRY, FRANCESCO PEPE AND CHRISTOPHE LOVIS Observatoire de Genève, Université de Genève, Geneva, Switzerland

More information

arxiv: v1 [astro-ph] 26 Oct 2008

arxiv: v1 [astro-ph] 26 Oct 2008 Astronomy & Astrophysics manuscript no. 10941 c ESO 2008 October 28, 2008 The HARPS search for southern extra-solar planets XVII. Six long-period giant planets around BD -17 0063, HD 20868, HD 73267, HD

More information