Tracing the bright and dark sides of the universe with X-ray observations. Yasushi Suto. Department of Physics University of Tokyo

Size: px
Start display at page:

Download "Tracing the bright and dark sides of the universe with X-ray observations. Yasushi Suto. Department of Physics University of Tokyo"

Transcription

1 Tracing the bright and dark sides of the universe with X-ray observations Yasushi Suto Department of Physics University of Tokyo 1

2 WMAP summary of cosmic energy budget baryons ordinary matter makes up merely 4 percent dark matter dark energy galaxies and clusters are surrounded by invisible mass an order-of-magnitude more massive than their visible part dominated by even more exotic component! homogeneously fills the universe (unclustered) repulsive force (negative pressure; P= ) Einstein s cosmological constant? 2

3 More intriguingly, most of the cosmic dark matter dark energy baryons baryon is also dark composition of cosmic baryons stars hot gas Cosmic Baryon Budget: Fukugita, Hogan & Peebles ApJ 503 (1998) 518 3

4 99% of the universe is DARK visible baryons 1% dark baryons 3% Quite frustrating We finally realized that we have not yet understood 99% of the universe at all! Beyond precision cosmology? from how much to what/where are they? 4

5 Can we understand the dark sides of the universe? Identify dark matter particles New physics beyond the standard model maybe new experimental results in next years important and feasible projects for experimental physicists, but no more for astronomical observations Identify dark energy (?) candidates Too challenging physics unlikely to have any major breakthroughs in this century Identify physical states of dark baryons Should be entirely in well-established established physics astronomical observations are essential 5

6 Dark and bright sides from cosmological SPH simulation SPH simulation in CDM : dark matter hot gas galaxy (Yoshikawa, Taruya, Jing & Suto 2001) 6

7 Large-scale structure in SPH simulation (75h -1 Mpc) 3 box z=0 N=128 3 :DM particles N=128 3 :gas particles (Yoshikawa et al. 2001) Galaxy (cold clump) Dark matter All gas particles Hot gas (T>10 7 K) Warm gas (10 5 K<T<10 7 K) 7

8 A filamentary region in SPH simulation (30h -1 Mpc) 3 box around a massive cluster at z=0 CDM SPH simulation Yoshikawa et al. 2001) Galaxy (cold clump) Dark matter All gas particles Hot gas (T>10 7 K) Warm gas (10 5 K<T<10 7 K) 8

9 Four phases of cosmic baryons Dave et al. ApJ 552(2001) 473 Condensed: >1000, T<10 5 K Stars + cold intergalactic gas Diffuse: <1000, T<10 5 K Photo-ionized intergalactic medium Ly absorption line systems Hot: T>10 7 K X-ray emitting hot intra-cluster gas Warm-hot: 10 5 K<T<10 7 K Warm-hot intergalactic medium ( (WHIM) Cen & Ostriker (1999) 9

10 Emission lines of oxygen in WHIM OVII (561eV, 568eV, 574eV, 665eV), OVIII (653eV) Why oxygen emission lines? Most abundant other than H and He Good tracers of gas around T= K No other prominent lines in E= eV Not restricted to regions towards background QSOs systematic WHIM survey 10

11 DIOS: Diffuse Intergalactic Oxygen Surveyor A Japanese proposal of a dedicated X-ray mission to search for dark baryons PI: Takaya Ohashi (Tokyo Metropolitan Univ.) + Univ. of Tokyo, JAXA/ISAS, Nagoya Univ., Tokyo Metro. Univ. A dedicated small satellite with cost < 40M USD. Proposed launch in 2008/2009 (not yet approved). Unprecedented energy spectral resolution: E=2eV in soft X-ray band (0.1-1keV) Aim at detection of 30 percent of the total cosmic baryons via Oxygen emission lines. 11

12 Requirements for detection Good energy resolution to identify the emission lines from WHIM at different redshifts E<5eV X-ray calorimeter using superconducting TES (Transition Edge Sensor) Large field-of of-view and effective area for survey S eff = 100cm 2, Ω=1deg 2 4-stage reflection telescope Angular resolution is not so important (but useful in removing point source contaminations) θ 600 h Mpc D 10 h 1 o 1 1 L Mpc 12

13 DIOS: instrument summary Area Field of View S Ω Angular Resol. Energy Resol. Energy Range Life > 100 cm 2 50' diameter ~100 cm 2 deg 2 3' (16 2 pixels) 2 ev (FWHM) kev > 5 yr Mechanical coolers + ADR: < 100 mk Initial cooling ~ 3 months 13

14 Expected S/N for OVIII line For a detector of S eff Ω =100cm 2 deg 2 and E=2eV T exp =10 5 sec T exp =10 4 sec T exp =10 6 sec 14

15 Searching for dark baryons with DIOS (Diffuse Intergalactic Oxygen Surveyor) PASJ 55 (2003) 879 astro-ph/ , Mock simulations Univ of Tokyo: K. Yoshikawa Y.Suto JAXA/ISAS: N. Yamasaki K. Mitsuda Tokyo Metropolitan Univ.: T. Ohashi Nagoya Univ.: Y. Tawara A. Furuzawa 15

16 Light-cone output from simulation z=0 z=0.3 Cosmological SPH simulation in Ω m =0.3, Ω Λ =0.7, σ 8 =1.0, and h=0.7 CDM with N=128 3 each for DM and gas (Yoshikawa, Taruya, Jing,, & Suto 2001) Light-cone output from z=0.3 to z=0 by stacking 11 simulation cubes of (75h -1 Mpc) 3 at different z 5 FOV mock data in 64x64 grids on the sky 128 bins along the redshift direction ( z=0.3/128)( 16

17 Surface brightness on the sky Bolometric X-ray emission 0.0< z < < z < < z < 0.11 OVII and OVIII line emission 0.0< z < < z < < z <

18 Metallicity models Oxygen enrichment scenario in IGM Type-II SNe galaxy wind merging metal pollution in IGM Metallicity of WHIM is quite uncertain Adopted models for metallicity distribution Model I : uniform and constant Z = 0.2 Z solar Model II : uniform and evolving Z = 0.2 Z solar (t/t 0 ) Model III : density-dependent (Aguirre et al. 2001) Z = Z solar (ρ/ρ mean ) 0.33 Model IV Z = 0.02 Z solar (ρ/ρ mean ) 0.3 (galactic wind driven) IV : density-dependent (Aguirre et al. 2001) (radiation pressure driven) 18

19 Creating Mock spectra from light-cone simulation output T=10 7 K T= K T=10 6 K For a given exposure time, convolve the emissivity according to gas density and temperature in (5 /64) 2 pixels over the lightcone Add the Galactic line emission (McCammon et al. 2002) Add the cosmic X-ray X background contribution (power-law+poisson noise) Then statistically subtract the Galactic emission and the CXB and obtain the residual spectra for E=2eV resolution. 19

20 Simulated spectra: region A Shallow survey observation with the DIOS field-of-view (16 2 pixels) A = 0.88 deg 2 T exposure = 3x10 5 sec 20

21 Simulated spectra: region D Deeper observation of targeted fields with DIOS (5 2 pixels) 19 x19 = deg 2 D T exposure =10 6 sec 21

22 Simulating the local universe Simulation by Dolag et al. (astro-ph/ ) Initial condition: smoothing the observed galaxy density field of IRAS 1.2 Jy galaxy survey (over 5h -1 Mpc), linearly evolving back to z=50 adiabatic run of dark matter and baryons (without cooling or feedback) in a canonical ΛCDM model Locating the WHIM in the local universe Yoshikawa, Dolag, Suto, Sasaki, Yamasaki, Ohashi, Mitsuda, Tawara, Fujimoto, Furusho, Furuzawa, Ishida & Ishisaki (2004), PASJ, submitted (astro-ph/ ) Independent and earlier work to consider oxygen emissions from WHIM in constrained simulations Kravtsov, Klypin & Hoffman, ApJ 571(2002)563 22

23 Simulated local universe vs. 2MASS map Hydra-Centaurus Coma Pisces-Perseus A3627 Virgo Horologium Soft X-ray map of the simulated local universe (Yoshikawa et al. 2004) 23

24 Tour of the simulated local universe Klaus Dolag (2003) 24

25 Simulated gas distribution on the supergalactic plane gas temperature Coma Hydra Centaurus Virgo A3627 Pisces-Perseus gas density (adopted) metallicity 25

26 Mock observation of simulated Coma S(0.5-2keV) T gas S(OVII) S(OVIII) 1 1 FOV 26

27 a small clump in front of simulated Coma S(0.5-2keV) T gas 10 ( 5h-1 Mpc) away from los toward Coma S(OVII) S(OVIII) 1 1 FOV 27

28 Soft X-ray X excess of Coma XMM-Newton observations of the outskirts of Coma (Finoguenov, Briel & Henry 2003, A&A 410, 777) X-ray filament of 0.2keV warm gas? Finoguenov et al. (2003) Simulated observation T=0.2keV) (1/8) (1/8) FOV 28

29 Fraction of cosmic baryons detectable via oxygen emission OVII OVIII DIOS detection limit (T exp =10 5 s; S/N=10) DIOS detection limit (T exp =10 5 s; S/N=10) 29

30 Locating Warm-Hot Intergalactic Medium via Oxygen emission lines Mock spectral observations of oxygen emission lines (Yoshikawa et al. 2003, 2004) DIOS will be able to locate 30 percent of the total cosmic baryons directly E=2eV, S eff Ω=100 [cm 2 deg 2 ], T exp =10 5 s, S/N=10 flux limit = 6x10-11 [erg/s/cm 2 /str] Things remain to be checked Validity of the collisional ionization equilibrium? Strategy to quantify the fraction of WHIM; targeted observations vs. blank survey Sciences with DIOS other than WHIM search 30

31 Thanks! 31

Locating missing baryons from oxygen emission lines with DIOS

Locating missing baryons from oxygen emission lines with DIOS Locating missing baryons from oxygen emission lines with DIOS (Diffuse Intergalactic Oxygen Surveyor) Yasushi Suto Department of Physics University of Tokyo July 19, 2004 University College London WHIM

More information

Weighing the dark side of the universe

Weighing the dark side of the universe Weighing the dark side of the universe Department of Physics The University of Tokyo Yasushi Suto June 18, 2004 Particle Physics Group Seminar Tsukuba University Hierarchical structure in the universe

More information

Weighing the universe : baryons, dark matter, and dark energy

Weighing the universe : baryons, dark matter, and dark energy Weighing the universe : baryons, dark matter, and dark energy Department of Physics The University of Tokyo Yasushi Suto The 21 st century COE program of Tohoku University International symposium Exploring

More information

X-Ray observability of WHIM and our new mission concept DIOS Intergalactic. Oxygen. Surveyor ) Noriko Yamasaki ISAS/JAXA

X-Ray observability of WHIM and our new mission concept DIOS Intergalactic. Oxygen. Surveyor ) Noriko Yamasaki ISAS/JAXA X-Ray observability of WHIM and our new mission concept DIOS (Diffuse Intergalactic Oxygen Surveyor ) Noriko Yamasaki ISAS/JAXA 1 Cosmic Baryon Budget requires missing baryon The observed baryons are only

More information

Confronting the CDM paradigm with numerical simulations

Confronting the CDM paradigm with numerical simulations Evrard et al. (2002) Miyoshi & Kihara (1975) 1/4 century Ludwig-Maximilians- University August 6, 2003 Munich, Germany Confronting the CDM paradigm with numerical simulations Yasushi Suto Department of

More information

Looking into CDM predictions: from large- to small-scale scale structures

Looking into CDM predictions: from large- to small-scale scale structures Looking into CDM predictions: from large- to small-scale scale structures 20h -1 Mpc 5h -1 Mpc 75h -1 Mpc SPH simulation in ΛCDM (Yoshikawa et al. 2001) Yasushi Suto Department of Physics The University

More information

Where are oxygen synthesized in stars?

Where are oxygen synthesized in stars? The oxygen abundance from X-rays : methods and prospects K. Matsushita Where are oxygen synthesized in stars? Hot intracluster medium (ICM) Warm-hot intergalactic medium? Hot interstellar medium in early-type

More information

Prospects for the direct WHIM detection by Athena

Prospects for the direct WHIM detection by Athena Exploring the Hot and Energetic Universe: 2mm The rst scientic conference dedicated to the Athena X-ray observatory Prospects for the direct WHIM detection by Athena The soft X-ray WHIM emission with WFI

More information

Detectability of the Warm/Hot Intergalactic Medium through Emission Lines of O VII and O VIII

Detectability of the Warm/Hot Intergalactic Medium through Emission Lines of O VII and O VIII PASJ: Publ. Astron. Soc. Japan 55, 879 890, 2003 October 25 c 2003. Astronomical Society of Japan. Detectability of the Warm/Hot Intergalactic Medium through Emission Lines of O VII and O VIII Kohji YOSHIKAWA,

More information

from dark sky to dark matter and dark energy

from dark sky to dark matter and dark energy Unknowns and unknown unknowns: from dark sky to dark matter and dark energy known knowns known unknowns unknown unknowns Did we make progress at all? Yasushi Suto Dept. of Phys., The University of Tokyo

More information

Non Baryonic Nature of Dark Matter

Non Baryonic Nature of Dark Matter Non Baryonic Nature of Dark Matter 4 arguments MACHOs Where are the dark baryons? Phys 250-13 Non Baryonic 1 Map of the territory dark matter and energy clumped H 2? gas baryonic dust VMO? MACHOs Primordial

More information

Future X-rayX Spectroscopy Missions. Jan-Willem den Herder

Future X-rayX Spectroscopy Missions. Jan-Willem den Herder Future X-rayX Spectroscopy Missions Jan-Willem den Herder contents Plasma diagnostics in the 0.1 to 10 kev band with resolution > 100 X-ray spectrometers: instrumental promises Future missions (a dream)

More information

Temperature Map of the Perseus Cluster of Galaxies Observed with ASCA

Temperature Map of the Perseus Cluster of Galaxies Observed with ASCA Temperature Map of the Perseus Cluster of Galaxies Observed with ASCA T. Furusho 1, N. Y. Yamasaki 2,T.Ohashi 2, R. Shibata 3, and H. Ezawa 4 ABSTRACT We present two-dimensional temperature map of the

More information

The Physical Properties of Low-z OVI Absorbers in the OverWhelmingly Large Simulations

The Physical Properties of Low-z OVI Absorbers in the OverWhelmingly Large Simulations The Physical Properties of Low-z OVI Absorbers in the OverWhelmingly Large Simulations Thorsten Tepper García in collaboration with: Philipp Richter (Universität Potsdam) Joop Schaye (Sterrewacht Leiden)

More information

Dark Baryons and their Hidden Places. Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007

Dark Baryons and their Hidden Places. Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007 Dark Baryons and their Hidden Places Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007 Contents History Inconsistent Matter Inventory Dark Baryon vs. Dark Matter Possible Hidden Places Search

More information

Future Japanese X-ray TES calorimeter satellite: DIOS (Diffuse Intergalactic Oxygen Surveyor)

Future Japanese X-ray TES calorimeter satellite: DIOS (Diffuse Intergalactic Oxygen Surveyor) LTD16, 2015, 7/20-24 @Grenoble Future Japanese X-ray TES calorimeter satellite: DIOS (Diffuse Intergalactic Oxygen Surveyor) Shinya Yamada Tokyo Metropolitan University T. Ohashi 1, Y. Ishisaki 1, Y. Ezoe

More information

The perspective of X-ray galaxy clusters with the XIFU/Athena instrument

The perspective of X-ray galaxy clusters with the XIFU/Athena instrument The perspective of X-ray galaxy clusters with the XIFU/Athena instrument Nicolas Clerc IRAP Toulouse, France AtomDB workshop 17, Athens, GA November 3rd 17 Clusters of galaxies ; large-scale structure

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Reasons to care Concordance of many measures of baryon number (BBN, CMB,.) Evolution of our personal baryons (galaxies, stars, planets,

More information

X- ray surface brightness fluctuations and turbulence in galaxy clusters. Jeremy Sanders. Andy Fabian. Sanders & Fabian 2011, MNRAS, submitted

X- ray surface brightness fluctuations and turbulence in galaxy clusters. Jeremy Sanders. Andy Fabian. Sanders & Fabian 2011, MNRAS, submitted X- ray surface brightness fluctuations and turbulence in galaxy clusters Jeremy Sanders Andy Fabian Sanders & Fabian 2011, MNRAS, submitted Simulations predict that in galaxy clusters turbulent energy

More information

METAL ABUNDANCES IN THE OUTSKIRTS OF

METAL ABUNDANCES IN THE OUTSKIRTS OF METAL ABUNDANCES IN THE OUTSKIRTS OF GALAXY CLUSTERS AURORA SIMIONESCU ISAS/JAXA with: Ondrej Urban, N. Werner, S. Allen, Y. Ichinohe and the Perseus/Virgo Suzaku Key Project collaborations 5 YEARS OF

More information

AC Fabian, M. Cappi, J Sanders. Cosmic Feedback from AGN

AC Fabian, M. Cappi, J Sanders. Cosmic Feedback from AGN AC Fabian, M. Cappi, J Sanders Cosmic Feedback from AGN AC Fabian, M Cappi, J Sanders, S Heinz, E Churazov, B McNamara, J Croston, D Worrall, F Humphrey, F Tombesi, J Reeves, M Giustini, P O Brien, T Reiprich

More information

Clusters of galaxies and the large scale structure of the universe. Gastão B. Lima Neto IAG/USP

Clusters of galaxies and the large scale structure of the universe. Gastão B. Lima Neto IAG/USP Clusters of galaxies and the large scale structure of the universe Gastão B. Lima Neto IAG/USP IWARA, Maresias 10/2009 Our story begins... William Herschel recognizes the clustering of nebulae and their

More information

Large-Scale Structure

Large-Scale Structure Large-Scale Structure Evidence for Dark Matter Dark Halos in Ellipticals Hot Gas in Ellipticals Clusters Hot Gas in Clusters Cluster Galaxy Velocities and Masses Large-Scale Distribution of Galaxies 1

More information

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat Analyzing the CMB Brightness Fluctuations (predicted) 1 st rarefaction Power = Average ( / ) 2 of clouds of given size scale 1 st compression 2 nd compression (deg) Fourier analyze WMAP image: Measures

More information

DETECTION OF A TEMPERATURE STRUCTURE IN THE COMA CLUSTER OF GALAXIES WITH ASCA

DETECTION OF A TEMPERATURE STRUCTURE IN THE COMA CLUSTER OF GALAXIES WITH ASCA THE ASTROPHYSICAL JOURNAL, 473 : L71 L74, 1996 December 20 1996. The American Astronomical Society. All rights reserved. Printed in U.S.A. DETECTION OF A TEMPERATURE STRUCTURE IN THE COMA CLUSTER OF GALAXIES

More information

Physics of the hot evolving Universe

Physics of the hot evolving Universe Physics of the hot evolving Universe Science themes for a New-Generation X-ray Telescope Günther Hasinger Max-Planck-Institut für extraterrestrische Physik Garching ESA Cosmic Vision 2015-2025 Workshop,

More information

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift =

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift = Cosmology Study of the structure and origin of the universe Observational science The large-scale distribution of galaxies Looking out to extremely large distances The motions of galaxies Clusters of galaxies

More information

New generation X-ray telescope

New generation X-ray telescope New generation X-ray telescope Your image Agata Różańska CAMK PAN, Warsaw 38 Zjazd PTA, Kraków, Atmosphere is not transparent to X-rays Kraków, 38 Zjazd PTA, Zielona Góra ATHENA L2 mission of ESA Cosmic

More information

AN UNIDENTIFIED X-RAY LINE IN ANDROMEDA, PERSEUS AND THE GALACTIC CENTER

AN UNIDENTIFIED X-RAY LINE IN ANDROMEDA, PERSEUS AND THE GALACTIC CENTER AN UNIDENTIFIED X-RAY LINE IN ANDROMEDA, PERSEUS AND THE GALACTIC CENTER Jeroen Franse Instituut Lorentz & Leiden Observatory COSMO 2014 - August 26, Chicago JEROEN FRANSE INSTITUUT LORENTZ & LEIDEN OBSERVATORY

More information

Metals in clusters of galaxies observed with Suzaku and XMM- Newton

Metals in clusters of galaxies observed with Suzaku and XMM- Newton Metals in clusters of galaxies observed with Suzaku and XMM- Newton Kyoko Matsushita, K. Sato, T. Sato, E. Sakuma, T. Sasaki Radial profiles of metals outside cool cores Abundance pabern of O, Mg, Si,

More information

HaloSat Overview. Philip Kaaret August 17, 2016

HaloSat Overview. Philip Kaaret August 17, 2016 HaloSat Overview Philip Kaaret (philip-kaaret@uiowa.edu) August 17, 2016 Outline Scientific Motivation Missing Baryon Problem Mission Goal and Science Requirements Impediments Mission Level 1 Requirements

More information

The Cosmic Web of Baryons

The Cosmic Web of Baryons The Cosmic Web of Baryons A White Paper submitted to Galaxies across Cosmic Time (GCT) and The Cosmology and Fundamental Physics (CFP) Science Frontiers Panels Joel N. Bregman Department of Astronomy University

More information

Detection of hot gas in the filament connecting the clusters of galaxies Abell 222 and Abell 223

Detection of hot gas in the filament connecting the clusters of galaxies Abell 222 and Abell 223 Astronomy & Astrophysics manuscript no. 09599 c ESO 2008 March 19, 2008 Detection of hot gas in the filament connecting the clusters of galaxies Abell 222 and Abell 223 N. Werner 1, A. Finoguenov 2, J.

More information

Isotropy and Homogeneity

Isotropy and Homogeneity Cosmic inventory Isotropy and Homogeneity On large scales the Universe is isotropic (looks the same in all directions) and homogeneity (the same average density at all locations. This is determined from

More information

X-raying Galaxy Ecosystems of Disk Galaxies. Q. Daniel Wang IoA/Cambridge University University of Massachusetts

X-raying Galaxy Ecosystems of Disk Galaxies. Q. Daniel Wang IoA/Cambridge University University of Massachusetts X-raying Galaxy Ecosystems of Disk Galaxies Q. Daniel Wang IoA/Cambridge University University of Massachusetts Hot Gaseous Corona Wang et al. (2001) Key questions to be addressed: 1. How do diffuse X-ray

More information

A Cluster of Galaxies, Abell 496

A Cluster of Galaxies, Abell 496 A Cluster of Galaxies, Abell 496 F. Nobels and W. Mulder MSc Astronomy & Kapteyn Astronomical Institute, University of Groningen (Dated: November 11, 2015) As part of the course High-Energy Astrophysics,

More information

Course of Galaxies course organizer: Goeran Ostlin ESSAY. X-ray physics of Galaxy Clusters

Course of Galaxies course organizer: Goeran Ostlin ESSAY. X-ray physics of Galaxy Clusters Course of Galaxies course organizer: Goeran Ostlin ESSAY X-ray physics of Galaxy Clusters Student: Angela Adamo angela@astro.su.se fall 2006 Front:-The double cluster A1750. The contours of the XMM-Newton

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

Discovery of Emission Lines in the X-ray Spectrum of the Perseus Cluster

Discovery of Emission Lines in the X-ray Spectrum of the Perseus Cluster Discovery of Emission Lines in the X-ray Spectrum of the Perseus Cluster J. L. Culhane University College London Mullard Space Science Laboratory Summary Nature of the Solar Corona and properties of its

More information

QSO ABSORPTION LINE STUDIES with the HUBBLE SPACE TELESCOPE

QSO ABSORPTION LINE STUDIES with the HUBBLE SPACE TELESCOPE QSO ABSORPTION LINE STUDIES with the HUBBLE SPACE TELESCOPE COLORADO GROUP: JOHN STOCKE, MIKE SHULL, JAMES GREEN, STEVE PENTON, CHARLES DANFORTH, BRIAN KEENEY Results thus far based on: > 300 QSO ABSORBERS

More information

Observational Cosmology

Observational Cosmology (C. Porciani / K. Basu) Lecture 7 Cosmology with galaxy clusters (Mass function, clusters surveys) Course website: http://www.astro.uni-bonn.de/~kbasu/astro845.html Outline of the two lecture Galaxy clusters

More information

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Rupert Croft. QuickTime and a decompressor are needed to see this picture. Rupert Croft QuickTime and a decompressor are needed to see this picture. yesterday: Plan for lecture 1: History : -the first quasar spectra -first theoretical models (all wrong) -CDM cosmology meets the

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Most of the volume of the current-day universe is considered to be cold and empty, but most of the baryonic mass is actually hot and concentrated in a structure called the cosmic

More information

Formation and growth of galaxies in the young Universe: progress & challenges

Formation and growth of galaxies in the young Universe: progress & challenges Obergurgl. April 2014 Formation and growth of galaxies in the young Universe: progress & challenges Simon White Max Planck Institute for Astrophysics Ly α forest spectra and small-scale initial structure

More information

Introducing DENET, HSC, & WFMOS

Introducing DENET, HSC, & WFMOS RESCEU & JSPS core-tocore program DENET Summer School Dark energy in the universe September 1-4, 2007 Introducing DENET, HSC, & WFMOS Yasushi Suto Department of Physics, The University of Tokyo 1 International

More information

Observational signatures of the warm-hot intergalactic medium and X-ray absorption lines by the halo of our Galaxy

Observational signatures of the warm-hot intergalactic medium and X-ray absorption lines by the halo of our Galaxy Chin. J. Astron. Astrophys. Vol. 3 (2003) Suppl. 169 180 (http: /www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Observational signatures of the warm-hot intergalactic medium and X-ray absorption

More information

Current status of the ΛCDM structure formation model. Simon White Max Planck Institut für Astrophysik

Current status of the ΛCDM structure formation model. Simon White Max Planck Institut für Astrophysik Current status of the ΛCDM structure formation model Simon White Max Planck Institut für Astrophysik The idea that DM might be a neutral, weakly interacting particle took off around 1980, following a measurement

More information

Probing the Outskirts of Strongly Merging Double Clusters

Probing the Outskirts of Strongly Merging Double Clusters Probing the Outskirts of Strongly Merging Double Clusters S. W. Randall - CfA E. Bulbul, R. Paterno-Mahler, C. Jones, W. Forman, E. Miller, S. Murray, C. Sarazin, E. Blanton Probing the Outskirts of Strongly

More information

BAO and Lyman-α with BOSS

BAO and Lyman-α with BOSS BAO and Lyman-α with BOSS Nathalie Palanque-Delabrouille (CEA-Saclay) BAO and Ly-α The SDSS-III/BOSS experiment Current results with BOSS - 3D BAO analysis with QSOs - 1D Ly-α power spectra and ν mass

More information

Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges

Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges Daisuke Nagai Yale University IPMU, July 15 th, 2010 Large-scale structure in the Universe SDSS (optical) Today δρ/ρ>>1

More information

Advanced Telescope for High Energy Astrophysics

Advanced Telescope for High Energy Astrophysics Advanced Telescope for High Energy Astrophysics Etienne Pointecouteau IRAP (Toulouse, France) Member of the Athena Collaboration and of the X-IFU Science Team Why does the observable universe look the

More information

Detecting Dark Matter in the X-ray

Detecting Dark Matter in the X-ray Detecting Dark Matter in the X-ray Kev Abazajian University of Maryland Quantum 2 Cosmos 3: Airlie Center, July 8, 2008 The CDM Ansatz Problems in Cold Dark Matter? Halo Substructure: satellite galaxies

More information

A Decade of WHIM search:

A Decade of WHIM search: A Decade of WHIM search: Where do We Stand Where do We Go F. Nicastro (OAR-INAF) Y. Krongold, M. Elvis, S. Mathur 5/18/16 XMM-Newton: the Next Decade (F. Nicastro) 1 The Missing Baryons Problems McGaugh+1

More information

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics The Millennium Simulation: cosmic evolution in a supercomputer Simon White Max Planck Institute for Astrophysics The COBE satellite (1989-1993) Two instruments made maps of the whole sky in microwaves

More information

X-rays from Clusters of Galaxies!

X-rays from Clusters of Galaxies! Back from Japan Clusters of Galaxies X-ray Overview Probes of the history of structure formation Dynamical timescales are not much shorter than the age of the universe Studies of their evolution, temperature

More information

Clusters of Galaxies " High Energy Objects - most of the baryons are in a hot (kt~ k) gas." The x-ray luminosity is ergs/sec"

Clusters of Galaxies  High Energy Objects - most of the baryons are in a hot (kt~ k) gas. The x-ray luminosity is ergs/sec Clusters of Galaxies! Ch 4 Longair Clusters of galaxies are the largest gravitationally bound systems in the Universe. At optical wavelengths they appear as over-densities of galaxies with respect to the

More information

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Motohiro ENOKI (National Astronomical Observatory of Japan) Kaiki Taro INOUE (Kinki University) Masahiro NAGASHIMA

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

Modelling the Milky Way: challenges in scientific computing and data analysis. Matthias Steinmetz

Modelling the Milky Way: challenges in scientific computing and data analysis. Matthias Steinmetz Modelling the Milky Way: challenges in scientific computing and data analysis Matthias Steinmetz Can we form disk galaxies? 3 Not really Formation of disks has been notoriously difficult Feedback? Resolution?

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

The Circumgalactic Medium, the Intergalactic Medium, and Prospects with TMT

The Circumgalactic Medium, the Intergalactic Medium, and Prospects with TMT The Circumgalactic Medium, the Intergalactic Medium, and Prospects with TMT Taotao Fang 方陶陶 Xiamen University 厦 门 大学 2014.11 Beijing 1 The circumgalactic medium (CGM) and the intergalactic medium (IGM)

More information

Killing Dwarfs with Hot Pancakes. Frank C. van den Bosch (MPIA) with Houjun Mo, Xiaohu Yang & Neal Katz

Killing Dwarfs with Hot Pancakes. Frank C. van den Bosch (MPIA) with Houjun Mo, Xiaohu Yang & Neal Katz Killing Dwarfs with Hot Pancakes Frank C. van den Bosch (MPIA) with Houjun Mo, Xiaohu Yang & Neal Katz The Paradigm... SN feedback AGN feedback The halo mass function is much steeper than luminosity function

More information

The visible constituents of the Universe: Non-relativistic particles ( baryons ): Relativistic particles: 1. radiation 2.

The visible constituents of the Universe: Non-relativistic particles ( baryons ): Relativistic particles: 1. radiation 2. The visible constituents of the Universe: Non-relativistic particles ( baryons ): Galaxies / Clusters / Super-clusters Intergalactic Medium Relativistic particles: 1. radiation 2. neutrinos Dark sector

More information

arxiv:astro-ph/ v1 6 Dec 1999

arxiv:astro-ph/ v1 6 Dec 1999 RESULTS FROM X-RAY SURVEYS WITH ASCA arxiv:astro-ph/9912084v1 6 Dec 1999 Yoshihiro Ueda Institute of Space and Astronautical Science, Kanagawa 229-8510, Japan ABSTRACT We present main results from X-ray

More information

SZ Effect with ALMA. Kaustuv moni Basu (MPIfR / Universität Bonn)

SZ Effect with ALMA. Kaustuv moni Basu (MPIfR / Universität Bonn) SZ Effect with ALMA Kaustuv moni Basu (MPIfR / Universität Bonn) with Martin Nord, Frank Bertoldi, Florian Pacaud APEX SZ collaboration, X ray cluster cosmology group at AIfA The Sunyaev-Zel'dovich Effect

More information

Sterile Neutrino Candidates for the 3.5 kev Line. Kevork Abazajian University of California, Irvine

Sterile Neutrino Candidates for the 3.5 kev Line. Kevork Abazajian University of California, Irvine Sterile Neutrino Candidates for the 3.5 kev Line Kevork Abazajian University of California, Irvine UCLA Dark Matter 2016 February 18, 2016 Sterile Neutrinos as Dark Matter: History Super-weak neutrinos

More information

Simulating magnetic fields within large scale structure an the propagation of UHECRs

Simulating magnetic fields within large scale structure an the propagation of UHECRs Simulating magnetic fields within large scale structure an the propagation of UHECRs Klaus Dolag ( ) Max-Planck-Institut für Astrophysik ( ) Introduction Evolution of the structures in the Universe t =

More information

The shapes of faint galaxies: A window unto mass in the universe

The shapes of faint galaxies: A window unto mass in the universe Lecture 15 The shapes of faint galaxies: A window unto mass in the universe Intensity weighted second moments Optimal filtering Weak gravitational lensing Shear components Shear detection Inverse problem:

More information

Energy Balance in Clusters of Galaxies. Patrick M. Motl & Jack O. Burns Center for Astrophysics and Space Astronomy University of Colorado at Boulder

Energy Balance in Clusters of Galaxies. Patrick M. Motl & Jack O. Burns Center for Astrophysics and Space Astronomy University of Colorado at Boulder Energy Balance in Clusters of Galaxies Patrick M. Motl & Jack O. Burns Center for Astrophysics and Space Astronomy University of Colorado at Boulder X-ray and Radio Connections, February 6th, 2004 With

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe Astronomy 422 Lecture 15: Expansion and Large Scale Structure of the Universe Key concepts: Hubble Flow Clusters and Large scale structure Gravitational Lensing Sunyaev-Zeldovich Effect Expansion and age

More information

SERCH FOR LARGE-SCALE

SERCH FOR LARGE-SCALE SERCH FOR LARGE-SCALE Université Libre de Bruxelles (ULB) Brussels SNOWPAC 23-28 March, 2010 Matter tracer model: generic model of CRs under the assumptions: nearly straight propagation typical deflections

More information

An Auger Observatory View of Centaurus A

An Auger Observatory View of Centaurus A An Auger Observatory View of Centaurus A Roger Clay, University of Adelaide based on work particularly done with: Bruce Dawson, Adelaide Jose Bellido, Adelaide Ben Whelan, Adelaide and the Auger Collaboration

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

Lecture 12 : Clusters of galaxies

Lecture 12 : Clusters of galaxies Lecture 12 : Clusters of galaxies All sky surveys in the later half of 20th century changed the earlier view that clusters of galaxies are rare and that only a small fraction of galaxies are grouped together

More information

Chapter 25: Galaxy Clusters and the Structure of the Universe

Chapter 25: Galaxy Clusters and the Structure of the Universe Chapter 25: Galaxy Clusters and the Structure of the Universe Distribution of galaxies Evolution of galaxies Study of distant galaxies Distance derived from redshift Hubble s constant age of the Universe:

More information

Multi-wavelength studies of substructures and inhomogeneities in galaxy clusters

Multi-wavelength studies of substructures and inhomogeneities in galaxy clusters Multi-wavelength studies of substructures and inhomogeneities in galaxy clusters SZE (RX J1347) ΔS X (A3667) Tetsu Kitayama Toho University, Japan Infrared (Coma) 1. How can we study ICM physics with the

More information

Lecture 27 The Intergalactic Medium

Lecture 27 The Intergalactic Medium Lecture 27 The Intergalactic Medium 1. Cosmological Scenario 2. The Ly Forest 3. Ionization of the Forest 4. The Gunn-Peterson Effect 5. Comment on HeII Reionization References J Miralda-Escude, Science

More information

GALAXIES. Edmund Hodges-Kluck Andrew Ptak

GALAXIES. Edmund Hodges-Kluck Andrew Ptak GALAXIES Edmund Hodges-Kluck Andrew Ptak Galaxy Science with AXIS How does gas get into and out of galaxies? How important is hot accretion for L* or larger galaxies? How does star formation/black hole

More information

ATHENA Mission Design and ESA Status. David Lumb ESA Study Scientist MPE Jan 13 th 2012

ATHENA Mission Design and ESA Status. David Lumb ESA Study Scientist MPE Jan 13 th 2012 ATHENA Mission Design and ESA Status David Lumb ESA Study Scientist MPE Jan 13 th 2012 Topics covered ESA L class mission reformulation Current status & programmatics Athena Mission Design Spacecraft Optics

More information

Era of Atoms 5/3/18. Our Schedule and Topics

Era of Atoms 5/3/18. Our Schedule and Topics 5/3/18 ASTR 1040: Stars & Galaxies Cosmic Web Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 30 Thur 3 May 2018 zeus.colorado.edu/astr1040-toomre Our Schedule and Topics Final Exam on Wed May

More information

Two Phase Formation of Massive Galaxies

Two Phase Formation of Massive Galaxies Two Phase Formation of Massive Galaxies Focus: High Resolution Cosmological Zoom Simulation of Massive Galaxies ApJ.L.,658,710 (2007) ApJ.,697, 38 (2009) ApJ.L.,699,L178 (2009) ApJ.,725,2312 (2010) ApJ.,744,63(2012)

More information

Imprint of Scalar Dark Energy on CMB polarization

Imprint of Scalar Dark Energy on CMB polarization Imprint of Scalar Dark Energy on CMB polarization Kin-Wang Ng ( 吳建宏 ) Institute of Physics & Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan Cosmology and Gravity Pre-workshop NTHU, Apr

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

Simulating cosmic reionization at large scales

Simulating cosmic reionization at large scales Simulating cosmic reionization at large scales I.T. Iliev, G. Mellema, U. L. Pen, H. Merz, P.R. Shapiro and M.A. Alvarez Presentation by Mike Pagano Nov. 30th 2007 Simulating cosmic reionization at large

More information

Probing RMs due to Magnetic Fields in the Cosmic Web

Probing RMs due to Magnetic Fields in the Cosmic Web Probing RMs due to Magnetic Fields in the Cosmic Web Takuya Akahori JSPS Postdoctoral Fellow for Research Abroad Sydney Institute for Astronomy, The University of Sydney Japan SKA Consortium Cosmic Magnetism

More information

Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias)

Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias) Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias) In collaboration with: F. Prada, A. Cuesta, A. Domínguez, M. Fornasa, F. Zandanel (IAA/CSIC) E. Bloom, D. Paneque (KIPAC/SLAC) M. Gómez, M.

More information

NuStar has similar area kev, Astro-H better at E> 80 Kev

NuStar has similar area kev, Astro-H better at E> 80 Kev NuStar has similar area 20-80 kev, Astro-H better at E> 80 Kev 10 3 1 HXI Effective Area [cm 2 ] 10 2 10 1 5 10 30 80 Energy [kev] NuStar and Astro-H HXI should have similar FOV HXI becomes background

More information

Lecture 03. The Cosmic Microwave Background

Lecture 03. The Cosmic Microwave Background The Cosmic Microwave Background 1 Photons and Charge Remember the lectures on particle physics Photons are the bosons that transmit EM force Charged particles interact by exchanging photons But since they

More information

X-ray spectroscopy of nearby galactic nuclear regions

X-ray spectroscopy of nearby galactic nuclear regions X-ray spectroscopy of nearby galactic nuclear regions 1. How intermittent are AGNs? 2. What about the silent majority of the SMBHs? 3. How do SMBHs interplay with their environments? Q. Daniel Wang University

More information

The Intergalactic Medium: Overview and Selected Aspects

The Intergalactic Medium: Overview and Selected Aspects The Intergalactic Medium: Overview and Selected Aspects Draft Version Tristan Dederichs June 18, 2018 Contents 1 Introduction 2 2 The IGM at high redshifts (z > 5) 2 2.1 Early Universe and Reionization......................................

More information

Chapter 17. Active Galaxies and Supermassive Black Holes

Chapter 17. Active Galaxies and Supermassive Black Holes Chapter 17 Active Galaxies and Supermassive Black Holes Guidepost In the last few chapters, you have explored our own and other galaxies, and you are ready to stretch your scientific imagination and study

More information

Astronomy 330 Lecture Dec 2010

Astronomy 330 Lecture Dec 2010 Astronomy 330 Lecture 26 10 Dec 2010 Outline Clusters Evolution of cluster populations The state of HI sensitivity Large Scale Structure Cluster Evolution Why might we expect it? What does density determine?

More information

Star Formation at the End of the Dark Ages

Star Formation at the End of the Dark Ages Star Formation at the End of the Dark Ages...or when (rest-frame) UV becomes (observed) IR Piero Madau University of California Santa Cruz Distant Star Formation: what who came first? neanderthal Outline

More information

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy 12-14 April 2006, Rome, Italy Francesco Melchiorri Memorial Conference Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher

More information

Dark Matter and Dark Energy components chapter 7

Dark Matter and Dark Energy components chapter 7 Dark Matter and Dark Energy components chapter 7 Lecture 4 See also Dark Matter awareness week December 2010 http://www.sissa.it/ap/dmg/index.html The early universe chapters 5 to 8 Particle Astrophysics,

More information

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University The First Galaxies Erik Zackrisson Department of Astronomy Stockholm University Outline The first galaxies what, when, why? What s so special about them? Why are they important for cosmology? How can we

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum. 1 1 Université Libre de Bruxelles, Bruxelles, Belgium Telescope Outline Telescope Global distributions Hot spot Correlation with LSS Other searches Telescope UHECR experiments Telescope ARRAY COLLABORATION

More information